
Review
Special Issue: The Connectome – Feature Review

Functional connectomics from
resting-state fMRI
Stephen M. Smith1, Diego Vidaurre2, Christian F. Beckmann3,4,1,
Matthew F. Glasser5, Mark Jenkinson1, Karla L. Miller1, Thomas E. Nichols6,1,
Emma C. Robinson1, Gholamreza Salimi-Khorshidi1, Mark W. Woolrich1,2,
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Spontaneous fluctuations in activity in different parts of
the brain can be used to study functional brain networks.
We review the use of resting-state functional MRI (rfMRI)
for the purpose of mapping the macroscopic functional
connectome. After describing MRI acquisition and im-
age-processing methods commonly used to generate
data in a form amenable to connectomics network anal-
ysis, we discuss different approaches for estimating
network structure from that data. Finally, we describe
new possibilities resulting from the high-quality rfMRI
data being generated by the Human Connectome Project
and highlight some upcoming challenges in functional
connectomics.

Resting-state fMRI and the connectome: what’s the
connection?
rfMRI has been used to study spontaneous fluctuations in
brain activity since it was first noted that the rfMRI time
series from one part of the motor cortex were temporally
correlated with other parts of the same functional network,
even with the subject at rest [1]. Many other large-scale
networks of correlated temporal patterns in the ‘resting
brain’ have subsequently been identified. These patterns
can be distinguished from each other because, although
each has a relatively consistent time course across its set of
involved regions, the different networks have distinct time
courses [2]. These ‘resting-state networks’ (RSNs) persist
even during sleep and under anaesthesia [3] and are
consistent across subjects [4] and, to some extent, across
species [5]. RSNs have also been investigated with other
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modalities such as magnetoencephalography (MEG) [6,7],
but most RSN research to date has used rfMRI. In addition
to providing new information about the structure and func-
tion of thehealthybrain, the studyofRSNshasalreadybeen
shown to have potential clinical value, providing rich and
sensitive markers of disease [8]. Although there has been
concern that some patterns of spatially-extended spontane-
ous signals may be of non-neural physiological origin, these
concerns are increasingly being addressed [9]. It is now
generally accepted not only that RSNs do reflect networks
of brain function [10], but also that the extensive set of
functional networks identified in the task fMRI literature
(e.g., as encoded in the BrainMap meta-analysis database
[11]) can be found in rfMRI data [12].

The biological significance of such a rich and continu-
ously present set of spontaneous, correlated activities in
the resting brain remains poorly understood. Presumably,
the brain is continuously engaged in undirected cognitive
activities (both conscious thought processes and subcon-
scious activity such as learning/unlearning) and also
responds to uncontrolled external stimuli. However, the
high level of overall spontaneous activity measured in
rfMRI and the correspondingly large energy expenditure
[13] have been surprising to many. Linking rfMRI inves-
tigations of themacroscopic-scale functional connectome to
other modalities should further our understanding of rest-
ing-state activity and functional connectomics. Other types
of connectome-related information include:

� m
acroscopic structural connectomics from diffusion

MRI data [14–19];

� t
he ‘mesoscopic’ connectome of long-distance connec-

tions studied at the cellular level [20–22];

� t
he ‘microscopic’ connectome of all neurons and synap-

ses [23];

� e
lectrophysiological measures [24–26];

� e
x vivo histological mapping [27];

� c
ovariance of anatomical measures such as cortical

thickness [28];
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Glossary

Connectomics: the mapping of the brain’s structural and/or functional

connections.

Diffusion MRI: an MRI modality that allows for the tracking of the major white

matter fibre bundles and hence the mapping of the macroscopic structural

connectome.

Dynamic causal modelling (DCM): the estimation of effective connectivity in

the brain through the application of biophysical models, applied to neuroima-

ging data such as fMRI and inferred on using Bayesian techniques.

Effective connectivity: the estimated direct connection strengths and the

causal connection directionality between distinct macroscopic-scale functional

regions.

Functional connectivity: (i) as opposed to effective connectivity, functional

connectivity estimates whether there is any functional connection between

functional regions, even if indirect (polysynaptic); or (ii) can also be used more

generally to refer to any approach to connectivity modelling based on

functional data, in contradistinction to structural connectivity.

Graph theory: the study of network characteristics. Once a functional or

structural connectivity network matrix (or graph) has been estimated (and

often thresholded to identify a binarised set of connections), graph theory can

be applied to study characteristics of the network. For example, graph theory

may be used to study subclusters in the network, to identify highly connected

network nodes, or to investigate overall network efficiency in terms of

information passing around the network.

Independent component analysis (ICA): a data-driven method for identifying

structured processes in the data (e.g., where multiple voxels behave with the

same time course). Spatial ICA separates distinct components from each other

that are spatially independent, whereas temporal ICA separates distinct

components that are temporally independent of each other.

Network matrix: the representation of functionally distinct brain regions as

network nodes and the connectivities between these as network edges. The

strengths of the estimated network edges are placed as elements in an

Nnodes � Nnodes network matrix that is a compact representation of the entire

network.

Nonstationarity: variability in any given statistic (e.g., signal variance changing

over time). In rfMRI, nonstationarity is most commonly used to refer to the

changing of correlation strength over time, which may inform about functional

network dynamics.

Parcellated connectome: another term for the network matrix, assuming that

the network nodes are defined as the parcels from a parcellation of the brain’s

grey matter.

Partial correlation: a variant of correlation that attempts to infer the direct

connections between nodes from analysis of correlations between multiple

nodes’ time series. Before correlating any two nodes’ time series, all other time

series are first regressed out of the two in question. Partial correlation is an

approximation to solving a structural equation model, but cannot estimate

causal directions.

Resting-state functional MRI (rfMRI): an MRI modality that measures

spontaneous temporal fluctuations in brain activity (i.e., with the subject ‘at

rest’). rfMRI is primarily used to estimate connectivity in the brain, given that

functionally connected areas have related spontaneous time series.

Resting-state networks (RSNs): functional networks in the brain that are most

commonly estimated from rfMRI data.

Sparsity: reference to the existence of a large number of zero (or close to zero)

values in a set of parameters. For example, a network matrix (of edge

strengths) might be sparse, which would indicate that many node pairs are not

directly connected.

Structural equation modelling (SEM): the estimation of effective connectivity

through statistical modelling of, for example, neuroimaging time series data,

as opposed to explicit biological and/or physical modelling (for example, as

applied in DCM). In this context, SEM is most commonly applied to functional

time series data and the term ‘structural’ here refers to the type of modelling

and not the use of structural connectivity data (such as from diffusion MRI).

Review Trends in Cognitive Sciences December 2013, Vol. 17, No. 12
� t
ask fMRI, behavioural measurements, and genotyping
[10,11,29,30].

Early rfMRI studies typically characterised functional

connectivity via a small number of large-scale spatial
maps [1,2]. By contrast, the nascent field of ‘connec-
tomics’ [31] generally attempts to study brain connectiv-
ity in a different way, first identifying a number of
network nodes (functionally distinct brain regions) and
then estimating the functional connections (network
edges) between these nodes (Figure 1). To generate
nodes, parcellation of the brain is often conducted by
clustering together neighbouring voxels (3D pixels) on
the basis of similarity of their time series. This typically
yields a large number of non-overlapping parcels, with a
single contiguous group of voxels in each parcel or node,
and is then generally referred to as a ‘hard parcellation’
[32,33]. Another approach to generating nodes involves
high-dimensional independent-component analysis (ICA)
[34]. Using ICA, each node is described by a spatial map
of varying weights; each map may overlap with other
nodes’ maps and may span more than one group of
contiguously neighbouring points. Network edges (con-
nections between nodes) are estimated by comparing the
fMRI time series associated with the nodes (e.g., the
average time series of all voxels in a parcel). In some
approaches, the directionality of these connections is
estimated in an attempt to infer the direction of infor-
mation flow through the network (see detailed discussion
and references in [35]). As a result, brain connectivity
can be represented as a ‘parcellated connectome’, which
can be visualized simply as an Nnodes � Nnodes network
matrix or a graph (explicitly showing nodes and the
strongest edges) or using more sophisticated visualiza-
tion approaches that embed nodes and edges into spatial
representations of the brain [36].

rfMRI acquisition and image-processing overview
fMRI data (both task based and resting state) is acquired as
a series of volumetric images over time, with each image
generally taking 2–3 s to acquire. rfMRI data is typically
acquired for 5–15 min, with the subject asked to ‘lie still,
think of nothing in particular, and not fall asleep’. The fMRI
acquisition is tuned such that the image intensity reflects
local blood flow and oxygenation changes resulting from
variations in local neural activity [37]. To achieve this
sensitivity, and to acquire the fMRI data rapidly, it is
common to utilise echo planar imaging (EPI) [38], which
acquires the data one 2D slice at a time. Standard acquisi-
tions working at amagnetic field strength of 3 T can achieve
a temporal resolution of 2–3 s with a spatial resolution of 3–
5 mm.More recently, faster acquisitions have emerged. For
example, multiband accelerated EPI acquires multiple
slices simultaneously [39,40]. Such approaches enable ma-
jor improvements in spatial and/or temporal resolution; for
example, acquiringdatawith2 mmspatial resolution in less
than 1 s. Higher temporal resolution of the fMRI data can
improve overall statistical sensitivity and also increase the
information content of the data (e.g., in terms of reflecting
the richness of the neural dynamics) [41,42], although the
sluggish response of the brain’s haemodynamics (to neural
activity) will ultimately place a limit on the usefulness of
further improvements in temporal resolution.

A four-dimensional rfMRI dataset requires extensive
preprocessing before resting-state network analyses can be
conducted. The preprocessing reduces the effects of arte-
facts (such as subject head motion and non-neural physio-
logical signals), spatially aligns the functional data to the
subject’s high-resolution structural scan, and may subse-
quently align the data into a ‘standard-space’ reference
coordinate system; for example, based on a population-
average brain image. A standard sequence of processing
steps [43,44] is as follows.
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Figure 1. The main steps in taking resting-state functional MRI (rfMRI) data (with an activity time series at every point in the brain), identifying network nodes, and then

estimating network edges.
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ealign each time point’s image to a reference image,
reducing the effects of subject head motion over the
duration of the rfMRI acquisition.
� C
orrect the data for MRI spatial distortions.

� R
emove non-brain parts of the image.

� E
stimate the alignment transformations between the

rfMRI data and the same subject’s high-resolution
structural image and between the structural image and
a population-average brain image.
� O
ptionally, map the cortical data from the 3D voxel
matrix (‘volume based’) onto the vertices of a cortical
surface representation (‘surface based’), in which a
surface mesh follows the intricate convolutions of the
cortical sheet. This aids visualization and enables better
intersubject alignment (see below).
� O
ptionally, apply spatial smoothing to improve signal-
to-noise ratio and ameliorate the effects of functional
misalignments across subjects. In the best datasets and
when using the most advanced methods for intersubject
alignment, smoothing can be minimised. Unless
smoothing is constrained to act within the cortical
sheet, it will cause undesirable mixing of signal across
tissue compartments and across sulcal banks between
functionally distinct regions.
� A
pply filtering to remove the slowest temporal drifts in
the data.
� R
emove other artefacts.

This last stage – the removal of other artefacts in the

data – includes a diversity of commonly used approaches.
Effective artefact removal is particularly important for
resting-state analyses, which rely fundamentally on corre-
lations between different voxels’ time series, because these
will be corrupted by artefacts that span multiple voxels.
(By contrast, task fMRI has the advantage of fitting a
prespecified temporal model, which provides greater ro-
bustness against artefactual influences.) Artefact clean up
[9] can involve one or more of:
� r
egression of confound time series out of the data; for
example, those derived from

�
 average white matter and/or ventricle time series

�
 head motion parameters (to further remove residual

motion-related artefacts)

�
 separately measured cardiac and breathing signals

�
 global-average time series (although many researchers

consider this to be a blunt tool that makes the
interpretation of the final correlations difficult [44]);

� removal of corrupted time points [45];
� data-driven structured noise removal, using ICA with

automated component classification to remove remain-
ing artefacts [46];

� filtering out the highest temporal frequencies (this is
commonly applied when more targeted artefact removal
approaches are not available, because the balance
between signal and noise is expected to be worst at the
highest frequencies; related to this, it is widely presumed
that resting-state signals of interest are fundamentally
lowfrequency, but, asdiscussedbelow, there is increasing
evidence that there is useful signal at relatively high
frequencies [47]).
Once preprocessing is complete, the data is ready for
some form of connectivity analysis. In early rfMRI stud-
ies, connectivity was often summarised by one (or a few)
spatial maps spanning the whole brain. For example, in
seed-based correlation (Figure 2), a single seed voxel or
region of interest is selected, such as a 5-mm radius
sphere centred in the precuneus. The average time
course from this seed region is extracted and every other
voxel’s time series is correlated against it, creating a
correlation-strength map spanning all of the brain. Such an
approach contains fine spatial detail, but only informsabout
average correlation with the selected seed. More informa-
tion is obtained by low-dimensional ICA decomposition, for
example, reducing the data to ten to 30 independent spatial
maps, each of which is analogous to a distinct seed-based
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Figure 2. Examples of different approaches to connectivity analysis. All results are derived from group-average connectivity from the first 131 subjects’ resting-state

functional MRI (rfMRI) data released publicly by the Human Connectome Project (HCP) (available from http://www.humanconnectome.org) and displayed on lateral and

medial views of the inflated left hemisphere. (A) and (B) show large-scale networks represented by extended spatial maps; (A) shows a single seed-based correlation map,

with the seed (marked with a dot) placed in the precuneus, whereas (B) shows the spatial map from a single component from a low-dimensional (30) independent-

component analysis (ICA) decomposition. (C) and (D) show high-dimensional decompositions of the data into hundreds of network nodes; (C) shows an exemplar ‘hard’

parcellation of the grey matter into hundreds of non-overlapping parcels, whereas (D) shows several ICA components from a high-dimensional (300) ICA decomposition.

Seed-correlation maps may contain negative values (seen here in blue/purple), which indicate cortical regions that are anticorrelated over time with the seed. Likewise, ICA

components’ spatial maps can contain negative values, which indicate anticorrelation with that component’s associated time series. In the case of high-dimensional

parcellations, anticorrelations would probably be seen not in the spatial maps, but as negative correlations between the time series associated with different parcels. The

cortical surface renderings were generated using the Connectome Workbench display tool (http://www.humanconnectome.org/connectome/connectome-workbench.html).
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correlation map. This therefore generates a richer descrip-
tion of multiple networks in the brain, but at the expense of
no longer dictating in advance the regions with which the
connectivity maps are related.

In contrast to seed-based correlation and low-dimen-
sional ICA, high-dimensional parcellation intomany nodes
(potentially hundreds) allows a richer analysis of the net-
work connections; by shifting the emphasis from large-
scale maps with fine spatial detail into a network descrip-
tion of nodes and edges, new information can be obtained.
For example, whereas two large-scale networks might
have some functional interaction (seen as non-zero corre-
lation between their associated time series), a detailed
nodes+edges network model may reveal which nodes (sub-
parts of the large-scale networks) are responsible for the
correlations seen between the larger-scale networks. Put
another way, detailed network modelling facilitates anal-
ysis of both functional specialisation (investigating the
functional connectivities of each node separately) and
functional integration (investigating how nodes interact
with each other and form communities of functionally
related clusters of nodes).

‘Mapping the functional connectome’ may be regarded
as taking a nodes+edges approach to connectivity model-
ling. To combine or compare connectomes across subjects,
it is important to strive for ‘the same’ parcellation in each
subject; comparisons between two network models are
inherently flawed if they are derived from non-correspond-
ing sets of nodes. One simple approach to this problem is to
generate a group-level parcellation and then impose this
parcellation onto each subject. If every subject has been
transformed into the same space as part of the preproces-
sing, this is conceptually straightforward. In reality, accu-
rate alignment of functionally corresponding cortical
parcels is an exceedingly challenging problem, largely
owing to individual variability of cortical folding patterns
alongwith variability of functional parcel locations relative
to these folds (see below).
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Once a parcellation has been applied (e.g., as a set of
parcel masks) to a given subject’s dataset, each parcel can
then be assigned a representative time series based on that
subject’s rfMRI data, for example, by averaging the time
series from all voxels within a parcel. From the resulting
Ntimepoints � Nnodes data matrix, one can then compute the
subject-specific Nnodes � Nnodes parcellated connectome
matrix; for example, by correlating each time series with
every other. However, correlation is just one approach
(albeit the simplest and most commonly used) for inferring
the network edges (elements in the network matrix). The
strengths and weaknesses of more sophisticated
approaches are considered in the next section.

Functional network modelling
We now discuss in more detail the estimation of network
edges, given a set of nodes’ time series. The simplest
method, correlation between the time courses of any two
brain regions, allows one to infer whether the regions are
functionally connected, although many factors other than
the direct anatomical node-to-node connection ‘true
strength’ can affect correlation coefficients, including var-
iations in signal amplitude and noise level [48]. Further-
more, correlation cannot reveal anything about causality
or even whether connectivity is direct versus indirect [49].
A common implicit assumption – that correlation is

[(Figure_3)TD$FIG]

Figure 3. Schematic of relationships between various network model
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unambiguously indicative of a direct connection – creates
a major problem for network modelling (and graph theory
applied to networks estimated from rfMRI) [35]. The
distinction between simple correlation and trying to esti-
mate the underlying, direct, causal connections (some-
times referred to as the distinction between functional
and effective connectivity [50]) is important for decipher-
ing the underlying biological networks. For example, in a
three-node network A!B!C, all three nodes’ time series
will be correlated, so correlationwill incorrectly estimate a
fully-connected network (including an A–C connection).
However, another simple estimation method, partial cor-
relation, aims to more accurately estimate the direct con-
nections (though not their directionalities). In the three-
node network example, this works by taking each pair of
time series in turn and regressing out the third from each
of the two time series in question before estimating the
correlation between the two. (For more than three nodes,
all of the otherNnodes – 2 nodes are regressed out of the two
under consideration.) In this case, regression of B out of A
and C removes the correlation between A and C and hence
the spurious third edge (A–C).

A wide range of different network modelling approaches
can be placed along a spectrum (Figure 3). This starts with
neural-level brain simulations at one end [51], includes
network modelling methods in the middle that can be
ling analyses for/from functional MRI (fMRI). Adapted from [12].
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applied to real rfMRI data (with full and partial correlation
sitting at the simple extreme), and ends with abstract
graph-theoretical network analyses that require the net-
work to have already been estimated.

Of the methods for connectivity modelling that have
been applied to rfMRI data, at one extreme are complex
models of effective connectivity with many parameters,
each representing a biological or physical measure such
as average neuronal activity and (separately) the haemo-
dynamic response to neural activity; this model is ideally
fit to data using probabilistic (e.g., Bayesian) methods. One
such approach is dynamic causal modelling (DCM) [52].
Not only is the model complex, but so is the Bayesian
inference method, which is computationally more sophis-
ticated than simple ‘point estimate’ model fitting. Estimat-
ing quantitative, biologically meaningful parameters is
clearly of great value if we want to find and interpret
changes in functional networks, for example, as a result
of disease. Moving towards the simpler end of the model-
ling spectrum, with methods such as structural equation
modelling [53], model parameters refer to statistical rela-
tionships between data variables (e.g., causations or cor-
relations between node time series) as opposed to
underlying biological or physical quantities. At the sim-
plest extreme are mathematically straightforward meth-
ods such as correlation. The simpler methods are in
general more robust (with respect to fitting the model to
the data) and faster to compute. Related to this, and the
fact that they havemany fewer parameters to estimate, the
simpler methods can handle a much larger number of
network nodes than the more complex methods; they do
not require the scope of possible network models to be
preconstrained, making them computationally feasible for
attempting network discovery. However, simpler methods
provide descriptions of the data rather than being directly
tied to underlying, more biologically interpretable network
parameters.

These considerations motivate a desire to work at the
more complex, biophysically interpretable level, but they
also restrict the practicality of the analyses that are feasi-
ble. For example, although DCM was originally developed
for task data, it has recently been extended [54] to allow
modelling of resting-state data and to search across a wide
range of possible network matrix models (rather than
requiring the prespecification of just a few). However, this
is currently practical (in terms of both computational
expense and mathematical robustness) only for networks
with a small number of nodes (<10). A major challenge for
functional connectomics will be to enable application of
biologically interpretable models using large numbers of
nodes in a robust and practical way.

Currently, if one wishes to conduct connectomics net-
work modelling using a reasonably large number of nodes
(50–500), one pragmatic compromise is to use partial
correlation. The estimation of partial correlation effective-
ly involves inverting the full correlation matrix, a process
that is often quite unstable depending on the quality of the
data and the number of original time points. Hence, im-
proved estimation can often be achieved by ‘regularising’
the estimated inverse covariance matrix. For example, L1-
norm regularisation of the inverse covariance matrix [55]
shrinks the estimated values in the partial correlation
matrix so that very small, noisy values are forced to zero
and all other values are better estimated. In recent work
involving networks of simulated fMRI time series with up
to 50 nodes, such methods performed the most accurately
[56]. These methods also scale well, handling hundreds of
nodes given sufficient data (primarily, a large number of
time points). Additionally, it may be of value to apply
regularisation across different subjects’ network matrix
estimation, utilising the similarities in network structure
across the population to improve within-subject estimation
[57].

The directionality of edges (causality) is often investi-
gated, but in general it is harder to estimate the direction of
a connection from fMRI data than to detect whether an
edge exists [56]. Many methods, such as correlation, give
no directionality information at all. Those that do attempt
to estimate directionality fall into several classes, as fol-
lows.

� T
emporal lag between pairs of time series [58] is often

used, although it is arguably too confounded by the slow
and variable haemodynamics to be useful with fMRI
data [56] and is better suited to electrophysiological
modalities.
� B
ayes nets model the full set of covariances (or
conditional dependencies) between all nodes’ time series
[59] and show some promise.
� N
on-Gaussianities in the time series [60,61] provide a
distinct, potentially valuable source of causality infor-
mation.

Because most brain connections are bidirectional [62],

simplistic views of causality may not be appropriate when
considering rfMRI-based connectomics. Furthermore, cau-
sality estimation when the brain is ‘at rest’ may involve
many different functional processes mixed together and
would be estimated as the average ‘relative causality’ over
all possible spontaneous fluctuations. This may be so
different from what occurs during individual focussed
tasks that dominant average causalities found from rfMRI
may not relate meaningfully to the route by which infor-
mation flows around the ‘brain network’ when triggered by
distinct external events. Finally, observational data (such
as rfMRI) is in general not a robust and safe tool for
inferring causality, compared with interventional studies
(such as task fMRI experiments) [63]. It may therefore be
profitable to utilise task fMRI in a confirmatory role after
an exploratory study using rfMRI, when attempting to
study causalities in the brain.

At the highest networkmodelling level, many efforts fall
in the domain of graph theory [64,65] (see also van den
Heuvel and Sporns, this issue). This includes: the study of
node clustering and hierarchies; the study of hubs (nodes,
or clusters of nodes, that are particularly highly connected
to other parts of the network); and deriving global network
summary metrics such as small worldness (looking at how
the communication and clustering acts over multiple
scales) or measures of general network efficiency. Natural-
ly, these techniques are dependent on accurate network
modelling at the lower level (carefully constructed network
matrices); the abstraction of these metrics from the
671



Box 1. Macroscopic in vivo connectome projects

Here we list the major macroscopic-level connectome projects that

are disseminating data publicly.

� As described in the main text, the Washington University–

University of Minnesota–Oxford (WU–Minn) HCP is generating

high-quality and high-resolution 3T rfMRI and diffusion MRI data

from over 1000 healthy adults, as well as task fMRI, genotyping,

and behavioural data. MEG and 7T MRI data will be acquired on a

subset of subjects.

� The MGH–UCLA HCP is using extremely powerful MRI gradients

to generate leading-edge 3T diffusion MRI data.

� The Developing Human Connectome Project (dHCP), led by King’s

College London, Imperial College London and Oxford, will map

functional and structural connectomes in 1000 babies (in utero

and after birth, from 20 to 44 weeks’ post-conceptional age) using

rfMRI and diffusion MRI. It will also conduct 25 post mortem

diffusion MRI scans at 7 T.

� The Thousand Functional Connectomes (and related) projects

[81,82], led by Mike Milham, are seeking to generate even larger

numbers of subjects than the HCP, bringing together data from a

wide range of imaging studies and scanners and covering a wider

range of subject groups, including a range of pathologies. This

growing dataset comes with the caveat of having greater

heterogeneity of scanning parameters (and lower data quality)

than the HCP, although some of the most recent additions are

utilising EPI accelerations and should approach the quality of HCP

data. Hopefully, such larger, heterogeneous databases of con-

nectivity data, although not supporting the most sophisticated

analysis techniques, will complement studies such as the HCP by

being able to find gross imaging phenotypes and conducting very

large-N subject–pathology correlations.
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underlying data makes it challenging to evaluate results,
regardless of how advanced or conceptually elegant a given
graph-theoretical measure may be. One specific risk is the
use of inappropriate node definition [56,66], such as a gross
structural atlas-based parcellation that corresponds poorly
to functional boundaries and results in network matrices
whose neurobiological interpretability is limited (as is
therefore any graph-theory analysis fed by such network
matrices). Another concern is that it is frequently the
(thresholded) full correlation matrix that is input into
graph-theoretical analyses rather than an estimate of
direct network connections; interpretations of graph theo-
ry-based measures (such as communication path length)
are often, as a result, somewhat questionable. A third
concern is that graph theory can abstract the network
matrix to a very high degree (e.g., summarising an entire
study down to a single measure representing overall net-
work efficiency, or small worldness) and any apparent
change in this measure (e.g., between patients and con-
trols) might not reflect a genuine change in the brain
connectivity but rather any of a myriad of potential con-
founds (e.g., factors as basic as systematic group differ-
ences in head motion or heart rate).

Despite such concerns, graph-theory investigations of
network topological properties should become more mean-
ingful as improved data and better network modelling
methods yield more accurately estimated sets of network
matrices. One interesting challenge for network modelling
will be to ascertain whether information flowing between
multiple nodes really is being passed around the network;
even if amethod such as partial correlation correctly shows
a direct functional connection between node A and node B,
and also a connection between node B and node C, it will
still be important to knowwhether information originating
in node A does reach C. For example, a potential confound
would be if two such direct connectionswere never active at
the same points in time; it cannot be assumed that the
brain’s connections are static. A further complication
arises if brain activity in one region modulates the connec-
tion strengths between other nodes. This renders analyses
based on assumptions of linearity inaccurate, but should
add extra richness to the data that more sophisticated
analysis methodologies may be able to take advantage
of. Other important issues for future network modelling
research, such as dynamic network estimation and the
estimation of overlapping clusters of nodes, are discussed
below.

The Human Connectome Project and future directions
for macroscopic functional connectomics
In 2009, the National Institutes of Health (NIH) an-
nounced a program targeted at characterising the human
connectome and its variability using cutting-edge neuro-
imaging methods, seeking applications that would acceler-
ate advances in imaging technologies and apply these
advances to a large population of healthy adults. In
2010, the NIH awarded Human Connectome Project
grants to two consortia, one led byWashington University,
the University of Minnesota and the University of Oxford
(referred to below as the HCP) [67] and the other led
by Massachusetts General Hospital (MGH) and the
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University of California, Los Angeles (UCLA) [16]. The
latter is concentrating on leading-edge structural connec-
tomics (via diffusionMRI) and so is not discussed further in
this review (see also Box 1). The former is generating and
sharing both functional and structural connectome data. In
this section we give an overview of the HCP, present exam-
ples of connectomic investigations using publicly released
HCP rfMRI data, and discuss how these developments raise
exciting possibilities for functional connectomics.

The HCP is generating a detailed in vivo mapping of
functional connectivity in a large cohort (over 1000 sub-
jects) and is making these datasets freely available for use
by the neuroimaging community (over 200 subjects’ data-
sets are already acquired and publicly released, available
via http://www.humanconnectome.org). Subjects are
drawn from a population of healthy adult twins and their
non-twin siblings (in the age range 22–35 years), thus
aiding the study of the influence of heritability and envi-
ronmental factors on the connectome. From each subject,
1 h of whole-brain rfMRI data is acquired at 3 T (in two
pairs of 15-min runs on separate days). A spatial resolution
of 2 � 2 � 2 mm and temporal resolution of 0.7 s are
achieved utilising an EPI acceleration factor of�8. Subsets
of the cohort will additionally be scanned at higher field
strength (and resolution) and using MEG [26]. The rfMRI
acquisitions (including the use of leading-edge, customized
MRI hardware and acquisition software) and image pro-
cessing are covered in detail in [43,44,68]. The HCP is also
acquiring data from diffusion MRI, task fMRI with a broad
range of behavioural paradigms, extensive behavioural
phenotyping outside the scanner [29], and genotyping, to
allow future researchers to relate the HCP functional and
structural connectomes to behaviour and genetics.

http://www.humanconnectome.org/
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In addition to achieving unusually high spatial and
temporal resolution and acquisition duration, significant
effort has been put intominimizingMRI spatial distortions
and signal loss and achieving accurate alignment of the
functional data to the high-resolution (0.7 mm) structural
data acquired for each subject. This allows for the trans-
formation of the cortical rfMRI signal from the originally
acquired 3D voxel matrix onto a grey matter surface mesh.
Surface-based analysis is advantageous, because it: (i)
restricts data storage and analysis to just the grey matter
domains of interest (bypassing the storage of white matter
and non-brain data); (ii) represents grey matter in a way
that respects its natural geometry – 2D mesh-surface
vertices for cerebral cortex, plus 3D image-matrix voxels
for subcortical grey matter (when all combined together,
referred to as ‘grayordinates’); and (iii) therefore allows for
better functional alignment across subjects, because the
variability in cortical folding patterns in different subjects
is greatly ameliorated by modelling on the cortical surface.
[(Figure_4)TD$FIG]

Figure 4. Functional connectomes estimated for 98 nodes derived from 131 Human C

group independent-component analysis (ICA) (via the FMRIB Software Library [FSL] MEL

the diagonal and partial correlation above. Intersubject alignment was conducted using t

of each column summarise each node’s spatial map. The nodes were reordered accordin

implemented in MATLAB), visualized at the top. (B) An expanded view of the top-left part

clusters involve default mode [13] and language areas. (C) The second of these clusters

nodes and edges derived from the thresholded (jZj > 10) group-level partial correlatio

(connection line thickness) and sign (colour; positive connections shown in red). Netw

fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets), with (C) created using Graphviz (http://www.grap
The 3T rfMRI data is currently represented using about
90,000 grayordinates with �2 mm spacing.

As discussed above, if intersubject alignment of rfMRI
data is driven only by information from high-resolution
structural images, it is expected that alignment of cortical
functional areas across subjects will be imperfect in many
regions, given the variable relationship between cortical
areas and structural features such as tissue intensities and
cortical folding patterns [69]. The smaller the individual
parcels (nodemaps), themore crucial it becomes to address
this problem. As a result, the HCP has developed a method
for multimodal intersubject alignment, capable of using
many sources of spatial localisation information, including
geometric structural features, myelin-weighted images,
task fMRImaps, and connectivity information (from rfMRI
and diffusion MRI) [70]. By appropriate alignment of
multiple sources of information across subjects, we can
hope to achieve much more accurate alignment of func-
tional regions (see below).
onnectome Project (HCP) subjects’ resting-state functional MRI (rfMRI) data using

ODIC tool). (A) Full and partial correlation matrices. Full correlation is shown below

he Multimodal Surface Matching (MSM) method (Figure 5). Small images at the top

g to a hierarchical clustering of the full correlation matrix (using Ward’s method as

of (A). The individual nodes’ spatial maps can now be more clearly seen; these two

– covering the default mode network – is shown in an alternative representation of

n matrix. The partial correlation values are displayed in terms of their strength

ork analysis and visualization are conducted using the FSLNets package (http://

hviz.org).
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Following image preprocessing (primarily using the
FMRIB Software Library [FSL] [71], FreeSurfer [72],
and Connectome Workbench [73] software packages), the
HCP applies data-driven artefact removal to rfMRI time
series. First, ICA is applied to each 15-min rfMRI dataset
separately, to identify both structured artefact and non-
artefact components. These components are then automat-
ically classified into artefact versus non-artefact, using
machine learning – a hand-trained hierarchical classifier
(FMRIB’s ICA-based X-noisifier [FIX]) [44]. FIX achieves
classification accuracy on HCP data of over 99%. Removal
of the artefact components from the data is then conducted,
improving data quality. Further additional clean-up
approaches may be of value and are under continuing
investigation.

The HCP is already disseminating both raw and pre-
processed rfMRI time series data, with group-level parcel-
lations to follow, from which the associated subject-wise
parcellated connectome matrices can be estimated. At this
point, no single parcellation technique has emerged as the
best approach and investigations are ongoing. In the fol-
lowing sets of results, parcellations were generated using
high-dimensional ICA. We now present several analyses
designed to illustrate the potential of the HCP rfMRI data
and some relevant methodological issues.

Figure 4 shows full and partial correlation matrices
derived from the first 131 subjects’ rfMRI data released
by the HCP – a dataset aggregating over 600,000 time
points. Group ICA was run at a dimensionality of 100 and
two components were discarded as artefactual, leaving 98
network nodes. (Although FIX clean up is applied to each
separate time series dataset, some artefactual components

[(Figure_5)TD$FIG]

Figure 5. Example analyses showing the effects of improved surface alignment acros

pairings of nonrelated subjects in the HCP data were used, after application of thre

statistically significantly different from each other. (B) Group-level analyses of two tasks

shown the group maps when subjects are aligned with each other using just the folding

(MSM) utilizes multimodal information, including resting-state networks. The arrows m
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can still emerge at the group level. For example, low-level
artefactual processes that are too weak to be identified by
single-session ICA may be consistent across subjects and
hence appear more strongly at the group level.) Each row
and column represents one of the 98 nodes; small images at
the top of each column summarize each node’s spatial map.
Because correlation matrices are symmetrical, both full
and partial correlation can be shown on the same matrix,
with full correlation below the diagonal and partial above.
We estimate the correlation matrices separately for each
subject (converting from correlation coefficients to z-statis-
tics), conduct a one-group t-test across all 131 subjects
(separately for each element in the matrix), and display
the results as z-statistics. As a result, the values in the
matrices shown reflect both the group-average correlation
strength and the consistency across subjects. The colour
scale is the same for both full and partial correlations.
Notably, the overall range of values is similar for the two
matrices. For the partial correlation matrices to be as
strong and consistent across subjects as the full correlation
is unusual and is indicative of the high quality of the data
and large number of time points in each subject’s rfMRI
dataset. The nodes have been reordered according to a
hierarchical clustering driven by the full correlation ma-
trix, which brings groups of correlated nodes together into
clusters (seen as blocks on the diagonal of the full correla-
tionmatrix); the hierarchical clustering is visualized at the
top, where distinct clusters and subclusters can be seen
(and are annotated by the dominant brain regions).

Different methods for aligning data across subjects can
be partially evaluated by estimating how similar the
resulting network matrices are to each other. The
s subjects. (A) Similarities between pairs of subjects’ network matrices. All 8417

e different cross-subject surface-alignment methods. All three group means are

from 120 Human Connectome Project (HCP) subjects’ task fMRI datasets. Above is

information. Below is shown the group maps when Multimodal Surface Matching

ark example regions showing improved spatial localization of task activation.
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cross-subject alignments are conducted before creating a
group-level parcellation, propagating that parcellation to
individual subjects, and estimating subject-wise network
matrices. Therefore, better alignments should yield more
accurate network matrices, because the functional parcels
defined at the group level should be more accurately
aligned to the true subject-specific versions of those same
parcels. Once each subject’s cortical surface has been esti-
mated from the structural data using FreeSurfer, Free-
Surfer also provides one way to improve intersubject
alignment of features on the surface. It uses folding (shape)
features tomovemesh points around the surface, aiming to
better align multiple subjects’ functional data on the basis
of this structural information. We have recently developed
an alternative surface-warping approach, Multimodal Sur-
faceMatching (MSM) [70].WhenMSM is given only folding
information to drive the alignment (MSMfolding), the overall
degree of alignment is similar to that achieved by Free-
Surfer. However, if MSM is also fed cortical myelin-weight-
ed maps [74], as well as low-dimensional resting-state
network maps, it can utilise this richer structural and

[(Figure_6)TD$FIG]

Figure 6. Illustration of how multiple subjects’ network matrices can be combined and m

matrix from each subject are reordered into a single row to prepare for combining all n

represents all parcellated connectomes from all subjects, which can be used to relate

measures.
connectional information and further improve the inter-
subject alignment (MSMmultimodal) [70].

By correlating pairs of subjects’ network matrices with
each other, we quantified between-subject network simi-
larity. We found the following average correlation
values for the three alignment methods: FreeSur-
fer = 0.613, MSMfolding = 0.618, and MSMmultimodal = 0.649
(Figure 5A). However, although this is encouraging, an
increase in cross-subject network similarity is not conclu-
sive proof of a better alignment method; for example, it
might indicate over-strong application of prior information
(e.g., in the extreme, setting all subjects to a constant
network), which would reduce sensitivity when attempting
to relate the network matrices to other measures. There-
fore, we evaluated the quality of alignment for task fMRI
data as an independent modality (each subject’s alignment
warps were estimated from their resting-state fMRI data
and applied to task fMRI data). Significant improvements
in the alignment of task activation regions were found,
both quantitatively and qualitatively (E. Robinson, unpub-
lished); for example, Figure 5B shows stronger and more
odelled against other subject variables. (A) The elements of the partial correlation

etwork matrix estimates across subjects. (B) The resultant Nsubjects � Nedges matrix

the parcellated connectome to subjects’ behaviour, genotype, and other personal
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sharply defined activation patterns from a group-level
analysis of two different tasks (‘maths versus story’ and
a social-interaction task) when MSMmultimodal is utilised
(lower panels) compared with MSMfolding (upper panels),
especially in parts of the prefrontal cortex (blue arrows).

Figure 6 illustrates how the elements of the partial
correlation matrix from each subject can be reordered into
a single row and then combined with network matrix
estimates from all subjects to form a matrix that repre-
sents all connectomes from all subjects. We can use this as
a set of regressors in a large multiple regression that seeks
to model (across subjects) a given behavioural variable[(Figure_7)TD$FIG]
Figure 7. A significant association was found between network matrices and fluid intel

variables tested). The 4753 edges were reduced using a Bayesian feature-selection meth

regression (L2) shrinkage on the kept features (Box 2); over-fitting was avoided by con

significance was estimated using subject-wise permutation testing to derive p-values o

cross-subject correlations were correctly handled. (A) The 24 edges (node pairs) that (on

connecting the two nodes in each pair reflect the overall group-average connection stre

node pair that contributes most strongly to the regression against FI is shown in more de

frontal regions (generally associated with cognitive control). (C) Predicted versus measu

her network matrix, where the linear regression model was trained excluding the data

676
(e.g., intelligence quotient [IQ]). This approach represents
a reversal of the regression analysis that is typically
performed in task fMRI, in which one independently anal-
yses each voxel to determine how much a given temporal
regressor explains that voxel’s time course, resulting in a
spatial map of explanatory power. In that type of analysis,
one aims to explain the data (fMRI time series) in terms of
a set of model regressors that are derived from the study
design (task time course). Our goal here is different; we
wish to find a set of edge weights that is able to explain the
behaviour of interest (e.g., IQ). Hence, the network edges
are the model regressors in this analysis. If the number of
ligence (FI) ( p < 0.05, corrected for multiple comparisons across all 91 behavioural

od [83] that kept only the 98 edges most strongly predictive of FI and applied ridge

ducting the feature selection and shrinkage inside a leave-one-out loop. Statistical

n the model fitting, taking into account the family structure in the data, such that

average) had the strongest weights in the regression are shown. The coloured bars

ngth. Each edge’s weight in the multiple regression is noted as the ‘value’. (B) The

tail; left hippocampus (generally associated with memory/recall) and medial/lateral

red FI, with one data point per subject; each subject’s FI was predicted using his or

from that subject (and all of his or her family members).
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subjects is small relative to the number of edges, the
dimensionality of this problem is such that the network
matrix cannot be used directly, but rather must first be
reduced (e.g., see Figure 7 legend). If the overall model fit is
found to be significant, it provides evidence for a link
between the functional connectome and a specific beha-
vioural characteristic. More specifically, the regression
coefficients (one weight per network edge) indicate the
relative contributions from the edges to the overall beha-
vioural modelling. This kind of analysis has previously
been used (albeit from full correlation network matrices)
to predict subjects’ psychiatric condition [75] and cognitive
state [76]; for additional discussions on cross-subject net-
work modelling, see also [77,78].

In Figure 7, we utilise the above approach to show a
significant associationbetween individual subjects’ network
matrices and fluid intelligence (a component of IQ). The
[(Figure_8)TD$FIG]

Figure 8. Relationship between edge strength and sex. We discarded the second subject

case of sex prediction) or confounding the statistical inference (when conducting the un

24 edges that are most different in connection strength between males and females are

multiple comparisons using the FSL randomise tool). The coloured bars connecting the

subjects of both sexes. (B) The two nodes whose connection (edge) is most different

frontal pole. (C) For this edge, the connection strengths in the two groups are shown a
24 edges (node pairs) having the strongest weights in the
regression are shown; the coloured bars connecting the two
nodes in each pair reflect group-average connection
strength. There is not necessarily a relationship between
the strength (or even sign) of the population average con-
nectionbetweentwonodesand theextent towhich the cross-
subject variability in the connectionstrengthcorrelateswith
a given behavioural measure. Indeed, the node pair that
contributes most strongly to the regression against fluid
intelligence (shown in more detail in Figure 7B) has only a
weak connection on average in the population, but it varies
across subjects in a way that correlates with fluid intelli-
gence.

In Figure 8, we show results relating subjects’ network
matrices to their sex. In the first analysis we applied a two-
group t-test (between the two sexes) separately for every
edge in the partial correlation network matrix. It is
of any pair of twins (leaving 104 subjects) to avoid the danger of over-fitting (in the

ivariate t-tests), given that twins are likely to have similar network matrices. (A) The

shown; the first nine are significantly different ( p < 0.05, two-tailed, corrected for

two nodes in each pair reflect the overall connection strength, averaged across all

between the sexes are shown in greater detail: posterior cingulate/precuneus and

s separate cross-subject distributions.
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Box 2. Advances in multivariate modelling and statistics

Recent advances in multivariate modelling and statistics are likely to

be useful in relating connectomes to behavioural and genetic data.

Feature selection may aid the sensitivity of multivariate regres-

sions or classifications. For example, if network edges that do not

contribute to a prediction of a specific behaviour are rejected from

consideration, multivariate modelling may be better conditioned

and hence more sensitive [84]. To validate hypotheses such as the

predictability of a certain behavioural measure from the networks,

care must be taken to avoid bias when feature selection is involved.

For example, in a standard permutation analysis we shuffle the data

(subject ordering) with respect to the behavioural measures

(respecting the structural characteristics of the data, such as the

presence of twins) and compute some statistic for each permuta-

tion. A natural choice for this test statistic is the leave-one-out

prediction error, the null distribution of which will be compared with

the corresponding leave-one-out error from the non-permuted data.

The feature-selection process must be rerun for each permutation.

Sparse estimation techniques, where feature selection is a

consequence of regularisation in the estimation process, are a

popular alternative to ‘hard’ feature selection. Well-known examples

are L1 regularisation and the elastic net (which combines an L1-

norm penalty with an L2 penalty over the regression coefficients).

Whereas pure L1 regularisation discards the redundant edges, the

elastic net selects all of the relevant features in a balanced fashion

and is particularly convenient for interpretation purposes [85]. If

cross-validation is used to optimise the regularisation parameters,

this must be done separately for each permutation. Bayesian

inference, which naturally estimates the distribution of the regular-

isation parameters within the learning process, is a valuable

alternative to classical selection of the regularisation parameters

[86,87].

Finally, methods that co-model two (or more) multivariate

datasets are of great potential value. For example, instead of

relating each of the many behavioural variables to the Nsub-

jects � Nedges population network matrix one at a time, we can form

the Nsubjects � Nbehavioural-variables population behavioural matrix and

directly attempt to co-model this with the connectomes matrix.

Approaches such as canonical correlation analysis (CCA) [88] and

partial least squares (PLS) [89] use a set of latent variables to model

the relation between the two matrices. Such approaches can

provide great gains in sensitivity by increasing the signal-to-noise

ratio and reducing problems of multiple comparisons.
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important to correct the resulting p-values for the multiple
comparisons across all of the network edges; however,
Bonferroni correction would probably be conservative, be-
cause we do not expect the subject-wise variations of all
edges to be fully independent of each other. A preferable
way to correct for multiple comparisons is to utilise per-
mutation testing and build up a null distribution (over
thousands of random permutations of the subject ordering)
of the maximum t-value across all edges. Comparing all
edges’ group-difference t-values against the 97.5th percen-
tile of this null distribution provides accurate control of the
family-wise error rate at 5% (for a two-sided test) and
enables identification of edges that are significantly differ-
ent between the groups. This identified nine edges that
were significantly different in strength between the two
sexes.

We then conducted multivariate analyses, attempting
to predict subjects’ sex, utilising all network edges simul-
taneously. The Nsubjects � Nedges connectomes matrix and
the sex of all subjects were fed into a linear classifier
(simple linear discriminant analysis, assuming equal
group covariances). Using leave-one-out training and test-
ing, sex was successfully predicted in 87% of subjects (see
Box 2 for further discussion of multivariate modelling and
statistics). The three alignment methods described above
gave classification accuracies of: FreeSurfer = 78%;
MSMfolding = 82%; andMSMmultimodal = 87%. This suggests
that multimodal MSM improves the alignment of function
across subjects (because it improves the accuracy with
which the derived network matrices can predict sex) and
also supports the hypothesis that this sex prediction is
indeed primarily being driven by network connection
strength and not (for example) by systematic functional
misalignments across (groups of) subjects.

The fact that some connections are stronger in females
than in males, and some are weaker, suggests that the
discrimination is not driven primarily by uninteresting
gross effects such as group biases in head size or within-
scan head motion. Indeed, the histogram of edge-strength
mean group differences is centred at zero, with no gross
asymmetry. When we used the full correlation network
matrices instead of partial correlation, the sex classifica-
tion accuracy was reduced from 87% to 70%. This supports
the hypothesis that partial correlation matrices provide a
better estimate of the true macroscopic functional connec-
tome than full correlation.

Another area of high current interest is the investiga-
tion of connectivity changes over time (‘nonstationarities’).
For example, nonstationarities in correlation have been
studied utilising either wavelet decompositions or sliding-
window correlation [79]. In the latter approach, a win-
dowed subset of time points (e.g., taking all images from
the first minute of the data) is used to estimate the full
correlation between two or more nodes, and the time
window is shifted to different temporal positions to yield
a ‘time series’ of correlation values (or matrices). One
important issue is to distinguish between changes in cor-
relation due to some nodes being part of multiple over-
lapping functional networks versus the internal
connections within any given network being non-constant.
Both possibilities are neurobiologically interesting and it is
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not trivial to determine which of these factors dominates in
practice for the apparent nonstationarities seen in typical
rfMRI data. In addition, a problem can arisewhen applying
a window length that does not encompass (at least) several
cycles of the resting fluctuations, because the rfMRI signal
is dominated by low frequencies (�0.015 Hz), and a sliding
window containing a fraction of a cycle is expected to show
correlations appearing to fluctuate wildly over time, even if
the underlying network structure is stationary. Recent
evidence [47] indicates that resting-state network signals
occur up to at least 0.2 Hz in good-quality data; hence,
aggressive high-pass filtering might ameliorate this prob-
lem (although the data signal-to-noise ratio may impose a
practical limitation on this, implying a minimum practical
window length).

Once a ‘time series of correlation matrices’ has been
generated through sliding-window correlation, clustering
analysis can be used to identify distinct correlation pat-
terns that repeatedly reappear over an extended period
[79]. This has the potential to be a useful exploratory tool
for identifying multiple modes of correlation. A limitation,
however, is that multiple distinct functional networks
might overlap each other in space and also vary over time
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in how they interact with each other. If that is the case,
windowed correlation patterns may not be very informa-
tive, because distinct overlapping and coactivating net-
works’ varying amplitudes will be a large factor in the
apparent correlation pattern, confounding estimation of
their true distinct internal connectivities. An alternative
model for multiple, spatially overlapping networks is to
feed the node time series themselves (as opposed to corre-
lations derived from them) into a clustering approach that
separates distinct networks from each other on the basis of
being temporally distinct, while allowing for spatial over-
lap (allowing nodes to be members of multiple functional
networks). For example, feeding node time series into
temporal ICA (as opposed to spatial ICA that may be used
to generate the parcellation), the resulting ICA compo-
nents can be considered as distinct ‘temporal functional
modes’, where there is very little restriction on the spatial
overlap between distinct modes; [42] showed several such
modes, with plausible functional interpretability and large
amounts of spatial overlap – for example, the patterns of
average correlation and anticorrelation associatedwith the
default mode network can be decomposed into several
modes of distinct but overlapping spatial layout (and hence
presumably distinct function). The hypothesis is that[(Figure_9)TD$FIG]
Figure 9. Two Temporal Functional Modes (TFMs) [42] estimated from 131 subjects’ da

multimodal Multimodal Surface Matching (MSMmultimodal). Ninety-eight nodes’ time s

components were estimated. Split-half reproducibility testing [90] (running temporal

assigned to one group or the other) indicated that 29 of the estimated TFMs were signif

each node’s voxel-wise spatial map (obtained by the original 100-dimensional group-le

TFM and summing across all such weighted node maps. (A) Split-half reproducibility for

show the set of node weights for this TFM; this is the temporal ICA ‘mixing matrix’ and

surfaces. (C) An activation contrast map from the HCP task functional MRI (fMRI) dataset

data. This TFM closely matches the 2-back versus 0-back contrast in the HCP working m

cases and placed to be centred on TFM 12 patches. (D) Split-half reproducibility for TFM

versus maths’ contrast, comparing listening to stories with answering spoken arithm

showing great similarity to language function. Black dots in (E) and (F) are centred on TF

the corresponding task fMRI activations. It is clear that, although sharing several nodes,

the two sets of distinct subjects. See also a movie that shows TFM brain dynamics from 1

dynamics is shown, at �4 real time. Different colours are different TFMs; for a given T
without such decomposition, the patterns seen through
time-averaged correlations tell a cruder story that only
reflects multiple distinct processes all averaged together.

A major challenge for temporal ICA, however, is the
need for a large number of time points to perform robustly.
This technique thus benefits greatly from long rfMRI ses-
sions and accelerated acquisition, such as that obtained by
the HCP. Figure 9 shows two example results from feeding
98 nodes’ time series into temporal ICA, where we ana-
lysed the high-quality HCP rfMRI data containing more
time points (>600,000, concatenating data from 131 sub-
jects) than spatial points (�90,000 grayordinates). In both
cases we show strong spatial correspondence to specific
task-activation maps from the HCP task fMRI datasets,
thus helping to interpret the functional modes identified
from the resting-state data.

One limitation of temporal ICA is that all modes are
forced to be fully independent of each other over time; this
is unfortunate insofar as we would prefer to identify func-
tionally distinct modes that may have some temporal
dependence. For example, two distinct functional modes
might in reality be mutually exclusive, if they share one
node that strongly participates in only one function at any
given time; this would imply a negative correlation
ta from the Human Connectome Project (HCP), with cross-subject alignment using

eries were fed into temporal independent-component analysis (ICA) and 98 ICA

ICA separately on two halves of the complete dataset, with subjects randomly

icantly spatially reproducible. Each TFM spatial map was generated by multiplying

vel spatial ICA) by the weight identified by the temporal ICA for that node for that

TFM 12. The two plots (differently coloured for the different subgroups of subjects)

determines the TFM’s spatial map. (B) Spatial map of TFM 12 on inflated cortical

s, with a specific task chosen that matches spatially the TFM found from the resting

emory task. Black dots in (B) and (C) are in the same anatomical location in the two

36. (E) Spatial map of TFM 36. (F) Task fMRI activation contrast map for the ‘story

etic questions; in this case the TFM analysis has identified a functional network

M 36 regions. Green arrows indicate TFM patches that are spatially more focal than

these two TFMs have differing overall spatial make ups and are reproducible across

0 subjects, one after another (see supplementary movie). For each subject, 1 min of

FM, darker clusters are anticorrelated with brighter clusters.
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between the modes’ time series, a situation that would not
be well identified through the application of temporal ICA.
A promising area of future research is thus to developmore
sophisticated, dynamic network modelling approaches
that are able to identify such scenarios and improve our
understanding of dynamic and overlapping functional
modes in the brain. Another limitation with temporal
ICA is the assumption that the connections within a given
mode are not changing in strength over time; this is surely
an over-simplistic view of brain networks. A related chal-
lenge is raised by evidence that rfMRI signal includes
complex spatiotemporal patterns of spontaneous activity
that propagate across the brain [80] and are therefore not
at all well modelled by spatially fixed network modelling
approaches. There clearly remains much to be done in the
spatial and temporal modelling of functional brain net-
works.

Concluding remarks
The macroscopic functional connectome as elucidated
through rfMRI provides just one view on the ‘complete’
brain connectome. It does not tell us directly about the
microscopic, neuronal-level structural connectome or even
about the macroscopic-level structural connectome such as
is inferred from diffusionMRI. It does not provide themore
direct view of neuronal activity and information flow that
can be obtained from electrophysiological techniques or
inform us regarding the biochemistry of brain connectivity.
However, rfMRI does provide us with something valuable
and unique – the ability to create a richly detailedmapping
of the functional connectome, at the millimetre scale,
Box 3. Outstanding questions

� How can we better understand and model the relationship

between true biological brain connections and what is measured

by functional and structural neuroimaging? Put another way, how

can we bridge the gap between large-scale macroscopic network

modelling from connectomics neuroimaging data and low-level

biophysical measurements and modelling of neural connectivity?

� In the shorter term, how can we optimally generate functional and

structural connectome matrices from connectomics neuroima-

ging data (such as that being generated by the HCP)?

� Tied in with this, what are the most useful methods for generating

functional parcellations of the brain, in individuals as well as in

group averages, and how should these be supplemented by richer

models that account for the variation of connectivity and function

within parcels?

� More generally, how can we combine the information from

detailed spatial mapping (e.g., consideration of the full voxel-wise

or ‘dense’ connectome or from low-dimensional spatial ICA) with

the richer temporal network modelling that can be conducted after

parcellation?

� How should we identify and model subjects’ datasets where the

connectome is fundamentally different from population averages,

for example, where the parcellation or connectivity is topologi-

cally incompatible or otherwise fundamentally different from the

common group norm?

� What are the best models for identifying functional subnetworks

and studying how they dynamically evolve over time and interact

with each other?

� Ultimately, what are the structural connections in the brain, how

do these connections and their electrochemical modulation of

each other give rise to functional dynamics, behaviour, and

consciousness, and how are these altered in early development,

disease, and ageing?
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covering the whole brain, with in vivo, non-invasive imag-
ing across thousands of subjects. In coming years we
can expect to learn much regarding the topologies and
functions of the brain’s networks and how they relate to
behaviour, genotype, and pathologies, as acquisition and
modelling methods for rfMRI connectomics continue to
make exciting advances (Box 3).
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