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Abstract The performance of the sequential metamodel
based optimization procedure depends strongly on the cho-
sen building blocks for the algorithm, such as the used meta-
modeling method and sequential improvement criterion. In
this study, the effect of these choices on the efficiency of
the robust optimization procedure is investigated. A novel
sequential improvement criterion for robust optimization
is proposed, as well as an improved implementation of
radial basis function interpolation suitable for sequential
optimization. The leave-one-out cross-validation measure is
used to estimate the uncertainty of the radial basis func-
tion metamodel. The metamodeling methods and sequential
improvement criteria are compared, based on a test with
Gaussian random fields as well as on the optimization of
a strip bending process with five design variables and two
noise variables. For this process, better results are obtained
in the runs with the novel sequential improvement criterion
as well as with the novel radial basis function implemen-
tation, compared to the runs with conventional sequential
improvement criteria and kriging interpolation.
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1 Introduction

Engineering can be seen as a sequence of making choices,
from fundamental design choices to defining design details.
In the last century, many empirical and theoretical models
have been developed to help with these decisions. Nowa-
days engineers frequently use computational models to
assess the effects of design choices and determine optimal
designs.

In many engineering problems, it is infeasible to find
an optimal design through trial and error due to a large
number of interacting parameters. Therefore, many opti-
mization methods have been developed to automate this
process, each method being suitable to solve a specific type
of problem in an efficient way. With these methods an
optimal configuration of the design may be found. How-
ever, such a design may malfunction in real-life due to
variability of the model parameters. A specific branch of
optimization research focuses on these problems: within
robust optimization the goal is to find a design which ful-
fills the requirements even under the influence of parameter
variations.

When dealing with expensive computational models, it
is desired to acquire insight into the problem at hand with-
out performing an excessive amount of model evaluations.
One approach is to replace the model with an easy to evalu-
ate metamodel, also known as surrogate or response surface
model. The metamodel is built based on a moderate number
of evaluations of the computational model, and thereafter
used for optimization. Some researchers developed methods
to iteratively enrich the metamodels with new evaluations
of the computational model. This is known as sequential
optimization or sequential improvement.
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Within this research the computational efficiency of
sequential metamodel based robust optimization with
expensive computational models is studied. The optimiza-
tion flowchart is shown in Fig. 1. Robust optimization,
metamodeling and sequential improvement have been com-
bined in several studies, such as for the designs of an
ordering policy of an inventory system (Huang et al. 2006),
a loaded framework (Jurecka et al. 2007) and an indus-
trial V-bending process (Wiebenga et al. 2012), as well as
for the optimization of the crashworthiness of a foam-filled
thin-walled structure (Sun et al. 2014), the blankholder
force trajectory for springback reduction of an U-shaped
high strength steel strip (Kitayama and Yamazaki 2014)
and many mathematical benchmark problems (Huang et al.
2006; Wiebenga et al. 2012; Marzat et al. 2013; Janusevskis
and Le Riche 2013; Ur Rehman et al. 2014).

The robust optimization procedure consists of several
steps (Fig. 1). For some steps a choice has to be made
between different methods to perform a prescribed task.
For example, latin hypercube sampling, fractional factorial
sampling, random sampling or a combination of these may
be chosen as sampling strategy for the initial Design Of
Experiments (DOE). To fit a set of data points, many meth-
ods have been developed, such as polynomial regression,
neural networks, kriging, Radial Basis Functions (RBF),
moving least squares and many others. Even within these
methods many choices can be made on the exact configu-
ration of the method. Hence, these methods can be seen as

Fig. 1 Sequential robust optimization flowchart. The building blocks
of the optimization procedure are written in bold letters. The gray
boxes are investigated in this work

building blocks of the optimization algorithm. Every build-
ing block may be replaced with any other building block
which is capable of performing the prescribed task. Clearly,
the choice for a certain building block may severely affect
the efficiency of the optimization algorithm.

In the present work, the efficiency of the robust opti-
mization algorithm is studied. More specifically, the effects
of the metamodeling method and the sequential improve-
ment criterion on the optimization are examined. A widely
used metamodeling method is kriging, as observed by sev-
eral researchers (Wang and Shan 2007; Kleijnen 2009;
Forrester and Keane 2009). One advantage of kriging is
that it includes a prediction of the metamodel uncertainty.
However, clustering of DOE points adversely affects the
predictive capability of kriging methods (Zimmerman et al.
1999; Havinga et al. 2013). This is of interest because
point clusters are formed during optimization due to the
sequential improvement procedure. An interpolating meta-
modeling method which may be adapted to account for
clustering of DOE points is RBF interpolation. Good fit-
ting capabilities for nonlinear functions have been reported
for RBF interpolation in several studies (Franke 1982; Jin
et al. 2001). However, the uncertainty measures which have
been developed for RBF are not suitable for sequential
optimization. Therefore, an improved configuration of the
RBF metamodel is proposed, taking into account the local
DOE density and including a prediction of the metamodel
uncertainty based on the Leave-One-Out Cross-Validation
(LOOCV) measure.

Sequential improvement in robust optimization has been
scarcely investigated up to now. For deterministic optimiza-
tion, the Expected Improvement (EI) criterion was proposed
by Jones et al. (1998). This criterion can be used for robust
optimization, but does not take into account the uncertainty
of the objective function value at the sampled design points.
Jurecka (2007) adapted the expected improvement criterion
of Jones for robust optimization. However, this criterion
has some disadvantages which will be shown in this work.
Therefore, a new expected improvement criterion for robust
optimization is proposed.

The sequential robust optimization procedure is generic
and, therefore, not limited to specific research fields. How-
ever, our interest goes to robust optimization of metal form-
ing processes. The aim is to design metal forming processes
with a low sensitivity to variations of material properties and
process parameters such as friction and tool wear. Our back-
ground may be noticed in the examples given throughout
this work, without violating the genericity of the approach.

This paper is structured as follows: in Section 2 a selec-
tive overview of the state of the art of robust optimization
is given: the metamodeling methods including error predic-
tion (Section 2.1) and the sequential improvement criterion
(Section 2.2) are discussed. The RBF metamodel with
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uncertainty measure is proposed in Section 3. The novel
robust expected improvement formulation is introduced in
Section 4. The efficiency of the expected improvement cri-
teria and metamodeling methods are compared in Section 5
based on mathematical functions. In Section 6 a demon-
stration problem is presented: a V-bending process with
two noise variables, five design variables and two nonlin-
ear constraints. The robust optimization results are given in
Section 7 and the conclusion is given in Section 8.

2 State of the art in robust optimization

The famous paper of Jones et al. (1998) in which the
expected improvement criterion was introduced, is titled
Efficient Global Optimization of Expensive Black-Box
Functions. The term black-box function denotes that it is not
of interest how the function works. The only requirement is
that the function is able to process a set of input variables
and return one or multiple output values. Therefore, the
optimization procedure is suitable for optimization with any
kind of numerical model. Unlike experiments, trials with
the same input variable values always give the same output
value. Therefore, there is no need to perform multiple tests
of the same variable set. The adjective expensive empha-
sizes the computational cost of the function and stresses the
need to keep the number of function evaluations as low as
possible.

In the case of deterministic optimization, both the black-
box function as well as the optimization problem are defined
in the design variable space x. In contrary, in robust opti-
mization the black-box function is defined in the combined
space of the design variable x and the noise variable z, while
the optimization problem is stated in the design variable
space x. At a certain point in the design space x′, the objec-
tive function is defined by the behavior of the black-box
function throughout subspace (x′, z). Given an assump-
tion on the probability distribution of the noise variable z,
the probability distribution for the output of the black-box
function may be determined at x′, and subsequently this
probability is used in the objective function.

Mathematically, the robust optimization problem can be
stated as follows. As mentioned above, the black-box func-
tion f is a function of the design variable x and the noise
variable z:

x ⊂ R
n (1)

z ⊂ R
m (2)

y = f (x, z) (3)

The noise variable z is a realization of the random variable
Z with probability pZ(z):

Z ∼ pZ(z) (4)

Therefore, the random variable Y (x) is defined by
f (x, z) and pZ(z):

Y (x) ∼ pY (f (x,Z)) (5)

The same holds for the inequality constraint func-
tions gi(x, z) and the equality constraint functions hi(x, z).
Hence, the general form of a robust optimization problem
can be stated as follows:

min Obj(Y (x))
s.t. LB ≤ x ≤ UB

Ci (Gi(x)) ≤ 0 i = 1 . . . ng

Ceq
i (Hi(x)) = 0 i = 1 . . . nh

Y (x) ∼ pY (f (x,Z))

Gi(x) ∼ pGi
(gi(x,Z)) i = 1 . . . ng

Hi(x) ∼ pHi
(hi(x,Z)) i = 1 . . . nh

Z ∼ pZ(z)

(6)

The objective function Obj(Y (x)) determines which
property of the probability distribution Y (x) should be min-
imized. The robustness of a production process can be
defined in several ways, such as the average error of the
production process or the percentage of the products that
meet the product requirements. The most straightforward
way to quantify these measures is to determine the statis-
tical parameters of the process output Y (x), such as the
mean μY , standard deviation σY or median. Two different
ways to improve the accuracy of the process are by shift-
ing the mean μY or decreasing the standard deviation σY

(Koch et al. 2004). In some cases, these may be conflict-
ing objectives (Beyer and Sendhoff 2007). Some researchers
choose to combine these measures in a single objective, for
example by minimizing μY + kσY , as is done in this study.
Many other robust optimization objectives can be found in
literature, such as Pareto front determination (Coelho and
Bouillard 2011; Nishida et al. 2013), quantile optimization
(Rhein et al. 2014), minimization of the worst case scenario
(Marzat et al. 2013) and minimization of the signal-to-noise
ratio (Taguchi and Phadke 1984; Leon et al. 1987).

The lower bound and upper bound of the design vari-
ables x are defined by LB and UB. The constraint functions
Ci (Gi(x)) and Ceq

i (Hi(x)) determine the constraints for the
distributions Gi(x) and Hi(x).

Usually, every simulation yields the values of the func-
tions f , gi and hi for one variable set (x, z). However,
the whole subspace (x,Z) must be known to exactly eval-
uate the objective function Obj(Y (x)) and the constraint
functions Ci (Gi(x)) and Ceq

i (Hi(x)) for one value of the
design variable x. Clearly, it is not desired to spend too
many simulations for just one point in the design variable
space. Therefore, the optimization algorithm should be able
to handle uncertainty in the objective and constraint function
values, and efficiently select whether to sample multiple
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points in the noise space or explore other regions of the
design space.

When defining a robust optimization problem, one of the
first problems is to determine the distribution pZ(z) of the
noise variable z. In the optimization of a production process,
these may be properties such as material variation, fric-
tion variation or sheet thickness variation. These variations
can be characterized by min-max values or by statistical
properties such as mean and standard deviation. In some
cases, knowledge of the correlations between the different
noise variables is required for a correct estimation of the
robustness of the process (Wiebenga et al. 2014).

In the following sections the different components used
to solve the optimization problem of (6) are discussed (see
Fig. 1).

2.1 Metamodeling methods

A major component of the optimization algorithm is the
metamodeling method which is used to fit the objective
function f and the constraint functions gi and hi using
a set of observations D = {(x(i), y(i))|i = 1 . . . n}. The
sequential improvement strategies discussed in this study
(Section 2.2) do not only need the estimate of the func-
tions f̂ , ĝi and ĥi at untried points x but also require
an estimate of the prediction uncertainty at these points.
Therefore, only methods that provide this estimate will be
discussed.

As a basis for interpolating simulation data, it is good
practice to normalize the inputs and to use a regression
model as underlying model. Often, a simple polynomial
model is used to capture the major trends of the observa-
tions y. Hence, the metamodeling methods are used to fit the
residue y − f̂regr(x) of the polynomial fit. In the following
text, fitting of the residue is assumed. For clarity, y is used
in the equations instead of y − f̂regr(x).

2.1.1 Kriging

A popular method for metamodeling with simulation data is
kriging. It has been developed by Krige (1951) and became
popular in engineering design after the work of Sacks et al.
(1989). The data is assumed to be a realization of a Gaussian
random field. The spatial correlation between two points
x(i) and x(j) is assumed to be:

φi,j = exp

(
−

k∑
d=1

θd

∣∣∣x(i)
d − x(j)

d

∣∣∣pd

)
(7)

The number of dimensions is k. For any correlation
function, the prediction f̂ and Mean Squared Error (MSE)

estimate ŝ2 at any point x can be derived (Forrester et al.
2008):

f̂ (x) = φT �−1y (8)

ŝ2(x) = σ̂ 2
[
1 − φT �−1φ

]
(9)

σ̂ 2 = yT �−1y
n

(10)

In these equations φ is a vector with the correlation
between point x and all observations x(i). The n × n matrix
� contains the correlations between all observation points
x(i). The model parameters θ and p are found through max-
imization of the likelihood function L(θ ,p) (Forrester and
Keane 2009):

L(θ ,p) = −n

2
ln(σ̂ 2) − 1

2
ln(det(�))) (11)

The exponents p are related to the smoothness of the
function (Jones et al. 1998). Under assumption that the
underlying function f is smooth, the values of p can be
set to 2 and only the θ parameters have to be optimized.
The ability to fit complex nonlinear models and to esti-
mate the prediction uncertainty attracted many researchers
in the field of sequential optimization to the use of kriging
interpolation.

2.1.2 Radial basis functions

In RBF interpolation a set of n axisymmetrical basis func-
tions ψ are placed at the location of each observation point
x(i). The function ψ(i) is a function of the Euclidean dis-
tance between the points x(i) and x and may have additional
parameters.

f̂ (x) =
n∑

i=1

wiψ
(i)

(
‖x(i) − x‖

)
(12)

The n weight factors wi can be solved with the n inter-
polation equations f̂ (x(i)) = y(i), leading to w = �−1y.
Hence, the prediction becomes:

f̂ (x) = ψT �−1y (13)

The resemblance to the kriging prediction (8) is clear.
The procedure for construction of ψ and � is identical to the
procedure for φ and �. Choosing the Gaussian basis func-
tion (7) with the same model parameters obviously yields
the same prediction. However, kriging is constrained to
functions which are decaying from the center point, whereas
any function may be used in the more general RBF for-
mulation. Several basis functions have been proposed in
literature, such as Gaussian, thin plate spline, multiquadric,
inverse multiquadric and others (Fornberg and Zuev 2007).
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The Gaussian basis function is most frequently used, but
the multiquadric basis function (Hardy 1971) has proven
to have good predictive capability in several comparative
studies (Franke 1982; Jin et al. 2001):

ψ(i)(x) =
√

c2
i + x2 (14)

The shape of the Gaussian and the multiquadric basis
function with varying model parameters is shown in Fig. 2.
A major advantage of RBF over kriging is the possibility to
use different shape parameter values ci at each observation
point x(i). This is especially desired in the case of unevenly
distributed DOE’s, such as the ones obtained by sequential
optimization (Fornberg and Zuev 2007).

As stated before, an estimate of the prediction uncer-
tainty is required for sequential sampling. Some researchers
derived formulations for the prediction uncertainty for RBF.
Li et al. (2010) fit a RBF with Gaussian basis functions
with a single parameter for the kernel width using LOOCV.
They assume the prediction f̂ (x) to be a realization of a
stochastic process and assume the variance of the stochastic
process to be ψ(0)−ψT �−1ψ (Gibbs 1997; Sóbester et al.
2004; Ji and Kim 2013). This uncertainty measure is appli-
cable for basis functions which are decaying from the center
point. A more general uncertainty measure is given by Yao
et al. (2014), which derive the relation between the unknown
weight factor w at an untried point x with the error of the
prediction f (x)− f̂ (x). They predict the weight factor ŵ(x)
by interpolating the weight factors with a RBF model with
the same model parameters as the underlying model for the
prediction f̂ (x). The disadvantage of this measure is that
the prediction uncertainty reduces to zero for points which
are far away from all DOE points. Nikitin et al. (2012)
propose to directly interpolate the LOOCV values at all
observation points. However, it is not clear how this uncer-
tainty measure should be used for sequential optimization,
since the uncertainty value at the DOE points is not equal to
zero. Therefore, we propose a new uncertainty measure in
Section 3 with two parameters which is determined with the
LOOCV values and a likelihood function.

(a) (b)

Fig. 2 Shape of the Gaussian (a) and multiquadric (b) basis functions
with varying shape parameter value

2.2 Sequential improvement

Due to the computational cost of the simulations, efficient
exploration of the design space is required. This can be
achieved with sequential improvement strategies. The con-
cepts of sequential improvement will be first explained for
the deterministic case with the objective to minimize f and
thereafter the robust optimization case will be discussed.

An important question is whether to search in the neigh-
bourhood of the optimum of the predictor f̂ or to search
in a region with high prediction uncertainty. The former is
denoted as local search and can be achieved by sampling
minx f̂ (x) whereas the latter is denoted as global search and
can be achieved by sampling maxx ŝ2(x).

Jones et al. (1998) proposed a sequential improvement
criterion that combines local and global search in a sin-
gle measure. The lowest value of y in the current dataset
D is ymin = min(y). An improvement function is defined
as max{ymin − y, 0}. The predicted value at an unknown
point x has the probability py ∼ N (f̂ (x), ŝ2(x)). Hence,
the expected value of the improvement at x is:

EI =
∫ ymin

−∞
(ymin − y)py dy =

(ymin − f̂ )�

(
ymin − f̂

ŝ

)
+ ŝφ

(
ymin − f̂

ŝ

)
(15)

with φ and � the Probability Density Function (PDF) and
the Cumulative Distribution Function (CDF) of a standard
normal distribution. The term with � relates to local search
and the term with φ relates to global search. Therefore,
Sóbester et al. (2004) proposed to include a weight factor
w ∈ [0, 1] to be able to adapt the inclination towards local
or global search:

EI = w(ymin−f̂ )�

(
ymin − f̂

ŝ

)
+(1−w)ŝφ

(
ymin − f̂

ŝ

)

(16)

When constraints are included in the optimization prob-
lem, it is unwise to sample new points at locations with high
probability of not fulfilling the constraints. Therefore, it is
proposed to multiply the expected improvement with the
probability of fulfilling the constraints (Lehman et al. 2004;
Forrester and Keane 2009):

CEI (x) = EI (x) P [C(x) ≤ 0] (17)

In the case of robust optimization a clear distinction
should be made between uncertainty over the predictor
f̂ (x, z) which is defined in (x, z) and uncertainty over the
objective function value Obj(Ŷ (x)) which is defined in x.
Estimating the latter enables the use of an improvement cri-
terion similar to (15). In the case of using μY + kσY as
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objective function the mean MSE can be used as an esti-
mate of the objective function MSE (Jurecka et al. 2007;
Wiebenga 2014):

ŝ2
Obj(x) =

∫
z
ŝ2(x, z)pZ(z)dz (18)

The sequential improvement procedure for robust opti-
mization is split in two steps: first a location in the design
space x is selected based on expected improvement, there-
after the location in the noise space z is selected. At any
point in the design space x an estimate of the objective
function value Obj(Ŷ (x)) and an estimate of its uncertainty
ŝObj(x) can be determined. In contrast to the deterministic
optimization case, there is not a clearly defined best point
ymin in the design space, since the prediction error ŝObj(x) is
larger than zero for any x. Some authors propose to define
the best point xb as the point {xb ∈ x(i) : i = 1 . . . n}
with the lowest value for the objective function prediction
(Jurecka 2007; Wiebenga et al. 2012). In this work a differ-
ent criterion is used. The criterion and the reasoning behind
it are discussed in Section 6.2.

Now a criterion is needed to quantify whether a can-
didate infill point x can potentially yield an improvement
over the current best solution xb, given Obj(Ŷ (x)), ŝObj(x),
Obj(Ŷ (xb)) and ŝObj(xb). One approach is to ignore the pre-
diction error at the best point ŝObj(xb) and use the criterion
of (15) (Jurecka et al. 2007). Note that selecting the current
best point as candidate infill point x = xb yields a nonzero
value of the expected improvement. Clearly it is desired to
sample more points at xb to decrease the prediction error of
the current best estimate.

To our knowledge there has been only one criterion pro-
posed which includes the prediction uncertainty ŝObj(xb)

and is suitable for metamodel based sequential robust opti-
mization. Jurecka (2007) proposed to replace the probability
py in (15) with max{pObj(x) − pObj(xb), 0}. A graphical rep-
resentation of the new probability is shown in Fig. 3. Note
that

∫
py ≤ 1. The reasoning behind this approach is that

the probability for a certain objective function value at x
should only be taken into account if it is higher than the
probability of the same outcome at xb. However, a new

Fig. 3 Probability of the objective function value for xb and x. The
expected improvement criterion of Jurecka (2007) is calculated with
the probability given by the hatched area

DOE point will never be picked at xb because the expected
improvement value at x = xb is zero.

The last step of the sequential improvement procedure
is to select a location in the noise space z at the selected
location in the design space x′. The purpose of the new sim-
ulation is to improve the prediction of Obj(Ŷ (x′)). Hence
criteria such as argmaxz ŝ2(x′, z) (Jurecka et al. 2007) or
argmaxz(ŝ2(x′, z)pZ(z)) (Jurecka 2007; Wiebenga et al.
2012) can be used for this purpose.

The abovementioned sequential improvement criteria can
be regarded as global improvement criteria, in the sense that
a criterion which is defined in the complete function domain
is to be minimized to obtain a new infill point. A different
class of sequential improvement methods is given by trust
region strategies. Trust region strategies work with meta-
models (also referred to as approximation models) which
can be trusted within a certain trust region. The size and
position of the trust region and the metamodel itself are
updated based on evaluations of a high-fidelity model in a
local search procedure. Hence, the choice of a new infill
point is determined by the search path of the algorithm. The
algorithm has been extended from local quadratic approx-
imation models to any kind of approximation models by
Alexandrov et al. (1998). One specific application of trust
region strategies is to solve optimization problems using
variable fidelity models which are coupled through map-
ping functions. Gano et al. (2006) used kriging interpolation
functions to map variable fidelity models in a trust region
optimization procedure. For further reading we refer to the
application of trust region strategies to different engineering
problems, such as the design of an autonomous hovercraft
(Rodrı́guez et al. 2001) and the weight minimization of a
fiber-reinforced cantilever beam (Zadeh et al. 2009).

This concludes the overview of the building blocks of the
robust sequential optimization algorithm. In Section 3 an
implementation of a RBF model is proposed, including esti-
mation of the prediction error. In Section 4 a novel expected
improvement criterion for robust optimization is proposed,
including a discussion on the several criteria available for
robust optimization. The effectiveness of these building
blocks will be compared with other methods in Section 7.

3 RBF with uncertainty measure

As discussed in Section 2.1.2, there is a lot of freedom for
the user on the exact implementation of the RBF method.
Therefore, a proposal is made for an implementation for
efficient sequential optimization. The procedure is elabo-
rated in this section and the implementation choices are
discussed.

As mentioned in Section 2.1, the first step is to normalize
the dataset D and capture the global trend with a polynomial
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model. The residue of the polynomial model is fit with the
RBF model. The basis functions ψ(i) (12) are a function of
the Euclidean distance ||x(i) − x|| in the normalized space.
However, the sensitivities of the function f to the different
normalized variables are expected to be strongly varying.
Hence it is inefficient to let the basis functions have an equal
influence in each normalized direction. Therefore, it is pro-
posed to scale the effect of the basis functions into each
dimension with a scaling parameter θ , which is similar to
what is done in kriging (7):

f̂ (x) =
n∑

i=1

wiψ
(i)

(
‖θ ◦ (x(i) − x)‖

)
(19)

The symbol ◦ is the Hadamard product and denotes
pointwise multiplication. The vector θ has the same size as
the vector x and scales each dimension of x. It is proposed
to use the multiquadric (14) basis function or the following
form of the Gaussian basis function:

ψ(i)(x) = exp

(
−x2

c2
i

)
(20)

After several iterations of the sequential optimization
algorithm, the dataset D starts to become unevenly dis-
tributed over the input space: the algorithm adds sampling
points in the region with high probability of improvement
and ignores regions with low probability of improvement.
The shape parameter ci determines the range of influence
of basis function ψ(i) (see Fig. 2). For unevenly distributed
DOE’s, it is unwise to use the same shape parameter for both
dense and sparse sampled regions of the dataset D. How-
ever, optimizing all shape parameters ci is computationally
too expensive. Therefore, it is chosen to couple the local
shape parameters ci to the distance to its nearest neighbor:

di = min
i 
=j

‖θ ◦ (x(i) − x(j))‖ (21)

ci = di

maxj dj

(22)

First, the scaled distance to the nearest neighbor di is
determined with (21). Thereafter, the distance to the near-
est neighbor is normalized with (22), such that ci ≤ 1 ∀ci

holds. The latter operation is needed, to ensure that each
value for the scaling parameter θ results in a unique meta-
model. Note that the scaling parameter θ has not yet been
selected and can be freely chosen. When the scaling param-
eter θ is multiplied with a constant C, the scaled distance
to the nearest neighbors di changes accordingly (di(Cθ) =
Cdi(θ)). If the local shape parameters are set to the dis-
tance to the nearest neighbor (ci = di), the relative effect
of basis function ψ(i) throughout the scaled model space
(θ ◦ x) will remain the same when multiplying the scaling

parameter θ with a constant. Hence, all models with param-
eter sets Cθ ∀C > 0 will be equal. To avoid this effect, the
normalization from (22) is used.

In Fig. 4 the effect of this approach is illustrated. With
constant shape parameters either a bad prediction in sparse
sampled areas or severe oscillations in dense sampled areas
and a badly conditioned matrix � are obtained. However,
scaling the shape factors ci based on the local point density
yields a good fit in all regions the model. Note that chang-
ing the shape parameters ci changes the width of the basis
function and the effect of the scaling parameter θ .

The optimal values for the scaling parameters θ (19)
are determined based on the LOOCV value. Rippa (1999)
derived that the cross-validation values can be determined
with minimal computational cost:

εi = f̂ (−i)(x(i)) − y(i) = wi(
�−1

)
ii

(23)

The optimal scaling parameters θ are determined by min-
imization of the L2 norm of the error ||ε||2. The number of
components of θ equals the number of dimensions of the
metamodel.

The last step of the fitting procedure is the estimation
of the fitting error. The proposed approach is to assume
a certain function for the uncertainty and fit the function
parameters based on the LOOCV values. It is assumed that
the prediction uncertainty at point x is a function of the dis-
tance in the scaled model space (θ ◦ x) between point x
and all observations x(i). As with kriging interpolation and
as required with the discussed sequential improvement cri-
teria, the uncertainty at any point x is characterized with a
standard deviation. It is assumed that the model uncertainty
is zero at the DOE points and saturates to ŝmax at points
far from the DOE points. A straightforward assumption for
the uncertainty function ψŝ is the Gaussian basis function,
which is also commonly used as uncertainty (and fitting)
function in kriging interpolation. With one model parameter
θs , the uncertainty function becomes:

ŝ(x) = ŝmax

n∏
i=1

(
1 − ψŝ

(
θs‖θ ◦ (x(i) − x)‖

))
(24)

Fig. 4 Interpolation of dataset with varying point density using Gaus-
sian RBF, with constant shape parameters and θ = 0.1 ( ) or
θ = 0.3 ( ) and with varying shape parameters and θ = 1 ( )
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Note that other assumptions may be made for the uncer-
tainty function ψŝ . Such an assumption may depend on the
available data and on the chosen RBF basis function for
fitting the metamodel. In this work, satisfying results have
been obtained with the chosen uncertainty function. The
model parameters θs and ŝmax are determined by maximiz-
ing the ln-likelihood of the LOOCV values:

L =
n∑

i=1

ln

(
1

ŝ(i)
φ

( εi

ŝ(i)

))
(25)

with:

ŝ(i) = ŝmax

n∏
j=1|j 
=i

(
1 − ψŝ

(
θs‖θ ◦ (x(i) − x(j))‖

))
(26)

with φ being the PDF of a standard normal distribution.

4 Robust expected improvement

The novel expected improvement criterion for robust opti-
mization is based on the criterion for deterministic optimiza-
tion of Jones et al. (1998) (15). As stated in Section 2.2, the
problem with robust optimization is that the best objective
function value up to a certain iteration of the optimization
procedure is just an estimation and therefore not exactly
known. Hence, both objective function values at the best
point xb and the candidate point x are characterized by
the probabilities pObjb ∼ N (Obj(Ŷ (xb)), ŝ

2
Obj(xb)) and

pObj ∼ N (Obj(Ŷ (x)), ŝ2
Obj(x)) respectively. Equivalently

to the deterministic approach, an improvement function is
defined based on the real - but still unknown - objective
function values at xb and x:

I = max{Obj(xb) − Obj(x), 0} (27)

Given the probabilities pObjb and pObj and the improve-
ment function, an expected value of the improvement can
be determined. For clarity, Obj is renamed to μ and ŝObj is
renamed to ŝ:

EI =
∫ ∞

−∞
pμb

(x)

∫ x

−∞
(x − y)pμ(y) dydx (28)

which is derived to be:

EI = (μ̂b − μ̂) �

⎛
⎜⎝ μ̂b − μ̂√

ŝ2
b + ŝ2

⎞
⎟⎠ +

√
ŝ2
b + ŝ2 φ

⎛
⎜⎝ μ̂b − μ̂√

ŝ2
b + ŝ2

⎞
⎟⎠ (29)

The full derivation can be found in the Appendix. With
zero uncertainty ŝb of the objective at xb the equation
reduces to (15).

In Sections 5 and 7 the efficiency of the novel criterion
for sequential improvement is compared with the efficiency
of the criteria of Jones et al. (1998) and Jurecka (2007).
Some observations on the differences between these criteria
can be made when investigating the functions. At first, the
three criteria are identical when the objective uncertainty at
the best point is zero. In Fig. 5 the expected improvement
functions are shown for the case that the uncertainty at the
best point xb is found to be ŝb = 0.4. Obviously, point xb is
a candidate infill point because it can be sampled at a new
location in the noise space z. Therefore, a candidate point
x should have an expected value of at least EI (xb) to be
selected as the new infill point. In the figures, the value of
EI (xb) is marked with a circle ◦◦◦◦◦◦◦◦◦. Looking at the difference
between the Jones citerion (Fig. 5a) and the novel crite-
rion (Fig. 5c), it is clear that the differences in the region
with EI (x) < EI (xb) are unimportant since the new infill
point will never be selected from this region. In the region
with EI (x) > EI (xb) the differences between both crite-
ria are small. In Section 7 it will be shown whether these
differences affect the efficiency of the criteria.

When observing the criterion of Jurecka (2007) (Fig. 5b)
some remarkable characteristics are seen. First observation
is that the expected improvement value at xb equals zero.
Therefore, the current best point will never be selected as
the new infill point. Also a large region has an EI value
close to zero, which makes it difficult for the algorithm to
distinct between regions with high and low probability of
improvement. Furthermore it is seen that in some regions
the EI value decreases with increasing uncertainty ŝ, such as
around (μ̂b−μ̂ = 0.2, ŝ = 0). However if two points would
have the same expected value μ̂, the point with the highest
uncertainty ŝ should be preferred. In the Sections 5 and 7
it is examined how these properties of the Jurecka criterion
influence its efficiency.

5 Demonstration: Gaussian random fields

The efficiency of the sequential improvement criteria and
metamodeling methods for robust optimization have been
compared based on a robust optimization test with a large
set of Gaussian random fields. The approach and results
are presented in Section 5.1 for the sequential improvement
criterion and in Section 5.2 for the metamodeling methods.

5.1 Sequential improvement criterion

The efficiency of the three sequential improvement crite-
ria for robust optimization have been compared based on
an optimization test with mathematical functions. To elim-
inate the influence of the metamodeling technique a set
of 15000 Gaussian random fields f (x, z) with predefined

1352



Sequential improvement for robust optimization using an uncertainty measure for radial basis functions

(a) (b) (c)

Fig. 5 Expected improvement criteria for robust optimization: Jones (a), Jurecka (b) and novel criterion (c) with ŝb = 0.4. The expected
improvement value of x = xb is marked with a circle ◦◦◦◦◦◦◦◦◦

statistical parameters has been generated. Therefore, the
kriging predictor can be used to obtain the best predic-
tion and uncertainty measure given any set of observations
D = {((x, z)(i), f (x, z)(i))|i = 1 . . . n}. The random fields
have one design parameter x and one noise parameter z
in the range [0, 1]. The correlation function of the ran-
dom fields is Gaussian (7) with model parameters px = 2
and pz = 2. The model parameters θx and θz are selected
randomly from the respective sets {30, 40, 50 . . . 300} and
{30, 40, 50 . . . 100}. The probability distribution of the ran-
dom field f (x, z) is pf ∼ N (0, 12). The probability of the
noise parameter z is given by a truncated normal distribution
with mean 0.5, standard deviation 0.1, truncated outside the
range [0, 1]. During the optimization the selection of new
infill points is restricted to an equidistant grid of 25 points in
x-direction and 21 points in z-direction. As an initial DOE
the center point of the field (x, z) = (0.5, 0.5) is taken and a
total of 50 sequential improvement iterations are performed.

The sequential optimization procedure has been per-
formed for all 15000 random fields with the three optimiza-
tion algorithms. Selection of z is done with the criterion

argmaxz(ŝ
2(x′, z)pz(z)). The results are shown in Fig. 6.

The correct robust optimum was found after 50 iterations
in 92.1 %, 61.3 % and 93.1 % of the cases for the Jones,
Jurecka and novel criterion respectively. The novel cri-
terion (Fig. 6c) is slightly more efficient than the Jones
criterion (Fig. 6a). It should be noted that the extra com-
putational cost of the novel criterion is negligible since
the only difference is that the objective uncertainty ŝObj at
the current best point xb has to be included. The statisti-
cal significance of the conclusion that the novel criterion
is more efficient than Jones’ criterion can be tested with
McNemar’s test for paired nominal data (McNemar 1947).
Table 1 shows the number of correct solutions after 50
iterations for both criteria. The null hypothesis states that
the probability that Jones’ criterion and the novel crite-
rion find the correct solution is the same. The test statistic
is χ2 = (513 − 367)2/(513 + 367). The statistic has a
chi-squared distribution and the null hypothesis is rejected
with a p-value of 8.6e-7. Hence, a statistically significant
improvement with the new criterion is found in the test with
2-D Gaussian random fields.

Fig. 6 RMSE evolution at
robust optimum during
optimization averaged over
15000 runs: Jones ( )
(a,d), Jurecka ( ) (b,d)
and novel criterion ( )
(c,d). RMSE of separate runs is
shown with thin gray lines

(a) (B)

(c) (d)
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Table 1 Contingency table for results of Jones’ criterion and the novel
criterion, stating whether the correct or wrong solution has been found
after 50 iterations

Novel criterion

correct wrong

Jones correct 13450 367

wrong 513 670

The convergence of the Jurecka criterion is shown in
Fig. 6b. During the first 10 iterations the average conver-
gence is similar to the average convergence of the other
methods but thereafter the convergence rate drops. Further-
more it is observed that the Jurecka criterion fails to select
the correct robust optimum after 50 iterations in 38.7 % of
the runs. One cause for the poor convergence is that the cur-
rent best optimum xb is never selected as an infill point since
the expected improvement value at xb equals zero (Fig. 5b).
Therefore, it may happen that an underestimated value of
the current best optimum xb is not verified by additional
samples, leading to erroneous results.

The mathematical test reveals performance differences
between the three expected improvement criteria. However
limited conclusions should be drawn since only one type
of function (2D Gaussian random field) with one meta-
modeling method (kriging) have been studied. Therefore,
all expected improvement criteria are included in the study
on the efficiency of the robust optimization procedure of a
V-bending process with a Finite Element (FE) model with
seven variables. The study is presented in Section 6.

5.2 Metamodeling method

As reported in the comparative studies of Franke (1982)
and Jin et al. (2001), different problems may require dif-
ferent types of metamodels. To reflect this, four different
sets of 2000 Gaussian random fields have been generated
for a study on the effect of metamodeling methods on the
efficiency of the optimization procedure. Each set has fixed
statistical parameters. Two of these sets have additional nor-
mal distributed white noise with standard deviation σn. The
parameters of the different sets are listen in Table 2.

Table 2 Overview of Gaussian random field parameters for the
metamodel test

set nr. 1 2 3 4

θx 40 40 40 40

θz 40 100 40 100

σn 0 0 0.2 0.2

For each Gaussian random field, the same optimization
procedure has been followed as in Section 5.1, except for
the details mentioned in this paragraph. The novel crite-
rion for sequential improvement has been used. A small
initial DOE is used, with a full factorial design (four points)
and six additional latin hypercube design points. Thereafter,
50 sequential optimization iterations have been performed.
During the optimization the selection of new infill points is
restricted to an equidistant grid of 101 points in x-direction
and 21 points in z-direction. As metamodeling methods,
kriging, RBF with Gaussian basis functions (RBFG) and
RBF with multiquadric basis functions (RBFMQ) have been
used. A constant value has been used to detrend the data for
all metamodeling methods. Note that fitting of the kriging
model requires determination of the statistical parameters
(11), whereas the kriging model in Section 5.1 was fit with
known statistical parameters.

It does not make sense to assess the quality of the meta-
models with the estimate of the metamodel uncertainty at
the real robust optimum, as done in Section 5.1, because
the uncertainty estimates of the metamodels are not exact,
whereas the best possible metamodel (wich exact uncer-
tainty estimate) was used in the previous section. Therefore,
another measure is used to assess the quality of the meta-
models. In each run, the optimum is determined after each
iteration and the difference between the real objective func-
tion value at this predicted optimum and the real objective
function value at the real optimum is defined as the potential
improvement PI:

PI = Obj(x̂opt) − Obj(xopt) (30)

The average potential improvement over all 2000 runs
in each set is shown in Fig. 7. With increasing number of
iterations, the potential improvement converges to zero. For
the runs without noise (σn = 0, Fig. 7a and b), the krig-
ing metamodel performs best. This is expected, because the
studied functions are Gaussian random fields, which are
built with the same assumptions as used for kriging inter-
polation. However, kriging performs worst for the case with
additional noise (σn = 0.2, Fig. 7c and d). The RBF meta-
models are less sensitive to additional noise because the
distance between DOE points is taken into account in the
implementation (22). Therefore, large differences in func-
tion value for nearby points due to noise do not have a large
effect on the metamodel quality. This example is relevant
for metamodel based optimization with numerical models,
because numerical models may suffer from numerical noise
(Wiebenga and van den Boogaard 2014).

A quantitative comparison between the effect of different
metamodels on the robust optimization procedure is given
in Table 3. For each run, the real objective function value
is determined at the predicted optimum. In a comparison
between two types of metamodels, it is listed how frequently
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Fig. 7 Potential improvement
PI (30) averaged over 2000 runs
for kriging ( ), RBFG
( ) and RBFMQ
( ): set 1 (a), set 2 (b),
set 3 (c) and set 4 (d)

(a) (b)

(c) (d)

each metamodel yields a better solution after 50 iterations.
Based on McNemar’s statistical test for paired data, the sta-
tistical relevance of each comparison is listed (the procedure
for determining the p-value with McNemar’s test has been
discussed in Section 5.1). The results with a p-value lower
than 0.001 are regarded as statistically significant. It can be
concluded for this test that kriging has a higher chance of
finding a lower objective function value in the case without
noise, whereas RBFMQ has a higher chance than kriging of
finding a better optimum when noise is present.

The comparison of the effect of metamodeling meth-
ods on the efficiency of the robust optimization procedure

shows that the choice for the best metamodel depends on the
problem at hand. To assess the effect of the discussed meta-
modeling methods in a real engineering problem, the robust
optimization problem of a V-bending metal forming process
is presented in the following section.

6 Demonstration process: V-bending

The effect of the use of different metamodeling methods
and sequential sampling criteria on the effectiveness of
the robust optimization procedure are investigated based

Table 3 Comparison between
metamodeling methods based
on the real objective function
values at the predicted optima
after 50 iterations. Statistical
significant results (p-value
smaller than 0.001) have a gray
background

1355



J. Havinga et al.

on the robust optimization of a steel strip bending process
(Fig. 8). This process has been optimized previously with
four design variables and two noise variables (Wiebenga
et al. 2012). In the present work the number of design vari-
ables is set to five and again two noise variables are used.
In Section 6.1 the used numerical model and the optimiza-
tion problem are explained. In Section 6.2 an overview of
the full optimization algorithm is given.

6.1 V-bending model

An impression of the V-bending process is given in Fig. 8.
The sheet is deformed during the downward movement
of the punch. After a prescribed depth is reached, the
punch moves upwards and the strip reaches its final angle
after elastic springback. For good performance of the prod-
uct the final geometry should meet certain specifications.
A main angle θM and a transition angle θT are defined
(Fig. 9). The main angle θM should be 90◦ and the transi-
tion angle θT should stay within the constraints 92◦ ≤ θT ≤
96◦.

It is assumed that the process suffers from two varia-
tion types: variation of the sheet thickness t with pt ∼
N (0.51, 0.012) and variation of the yield stress σy with
pσy ∼ N (350, 6.662). Five design variables are included
in the optimization: the tool angle α, the final depth of the
stroke D, the geometrical parameter L and two different
radii of the tooling R1 and R2 (see Fig. 10). Obviously the
process is strongly nonlinear and many interactions between
the variables are expected. The significance of the used
variables is discussed in Wiebenga et al. (2012). The full
optimization problem is stated as follows:

find α, D, L, R1, R2

min |μθM
− 90| + 3σθM

degrees
s.t. 92 ≤ μθT

− 2σθT
degrees

μθT
+ 2σθT

≤ 96 degrees
89 ≤ α ≤ 94 degrees
0.4 ≤ D ≤ 0.65 mm
3.92 ≤ L ≤ 5 mm
1.6 ≤ R1 ≤ 2.3 mm
1 ≤ R2 ≤ 1.5 mm
pt ∼ N (0.51, 0.012) mm
pσy ∼ N (350, 6.662) MPa

(31)

Fig. 8 Impression of the V-bending process

Fig. 9 Main angle θM and transition angle θT

A 2D FE model has been built for the optimization. The
implicit MSC.Marc solver has been used. Plane strain con-
dition is assumed in the model and the die and punch have
been modeled with elastic quadrilateral elements. A half
sheet has been modeled with 500 quadrilateral elements due
to symmetry. The elasticity of the tooling and the sheet is
set to 210 GPa. Isotropic hardening and Von Mises yield
criterion are used for the sheet. An experimentally obtained
hardening curve is implemented in the model with a tabular
input.

The numerical stability of the model is of utmost impor-
tance for the optimization procedure. The effect of numeri-
cal noise on metamodel based optimization has been studied
by Wiebenga and van den Boogaard (2014). The order
of variation due to numerical noise should be lower than
the order of variation caused by variation of noise vari-
ables. To ensure this, it is highly recommended to perform
a study on the numerical noise of the model before run-
ning the optimization. In our experience, optimizing contact
and convergence settings and using fixed time steps in the
simulation helped to decrease the numerical noise of the
model.

The average simulation time of the model is around 11
minutes. Even though the complexity of the model is limited

Fig. 10 Optimization variables of the V-bending process. The noise
variables are shown in red
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and the computational cost is reasonable, it is too expen-
sive to perform simulations in the full parameter space.
Therefore an efficient optimization scheme is required.

6.2 Optimization algorithm

In this section an overview of the full optimization algo-
rithm is given. The full procedure is implemented in MAT-
LAB. For the initial DOE a resolution IV 27−3 fractional
factorial design is used to have some DOE points on the
bounds of the domain, combined with a latin hypercube
design of 24 points (constructed with default MATLAB set-
tings, meaning that it is optimized with maximin criterion
in five iterations) to get a good distribution of the points
throughout the full domain. The combined DOE has 40
points, which is sparse for a seven-dimensional nonlinear
function but sufficient for starting a sequential optimization
procedure. Out of the 40 initial simulations, two simula-
tions failed. Hence, all runs start with the same set of 38
points.

The next choice is the metamodeling method with its
uncertainty measure (Section 2.1). It is chosen to use the
same metamodeling method for the main angle θM and
the transition angle θT . The used metamodels are listed in
Table 4. The used kriging toolbox has been developed by
Lophaven et al. (2002) and corresponds with the descrip-
tion given in Section 2.1.1. The RBF has been implemented
following the proposal given in Section 3.

The last step is the sequential improvement procedure
(Section 2.2). The objective function value and the uncer-
tainty on the objective function value for a candidate infill
point x are determined with Monte Carlo sampling:

μ̂f (x) = 1

nmc

nmc∑
i=1

f̂ (x, zi ) (32)

σ̂ 2
f (x) = 1

nmc

nmc∑
i=1

(
f̂ (x, zi ) − μ̂f (x)

)2
(33)

Obj(Ŷ (x)) = ∣∣μ̂f (x) − 90
∣∣ + 3σ̂f (x) (34)

ŝ2
Obj(x) = 1

nmc

nmc∑
i=1

ŝ2(x, zi ) (35)

A latin hypercube sample of nmc = 50 points with the
distribution pZ(z) is used. It is found by experience that
this is sufficient to estimate μ̂f , σ̂f and ŝObj with affordable
computational cost and reasonable accuracy.

The three sequential improvement criteria discussed in
this work (Jones, Jurecka and the novel criterion) have
been used for the V-bending optimization. At each itera-
tion of sequential improvement the expected improvement
is determined with respect to a point xb. Other researchers

in sequential robust optimization chose {xb ∈ x(i) : i =
1 . . . n} with the lowest value for the objective function pre-
diction (Jurecka 2007; Wiebenga et al. 2012). However, at
the end of the robust sequential optimization procedure,
the choice of an optimal design is based on a metamodel
with predictive uncertainty ŝObj(x). One could select the
design point with the lowest objective function value, but
that would probably be reconsidered if the predictive uncer-
tainty ŝObj(xopt) would be too high. Therefore, selecting an
optimal design can be seen as a multi-objective optimiza-
tion problem on a higher level. Both a low objective function
value as well as a low objective function uncertainty are
desired. We propose to select the best design by minimizing
Obj(Ŷ (x)) + 6ŝObj(x). During sequential improvement, this
criterion is used to select the best point xb from the set of
already sampled design points {xb ∈ x(i) : i = 1 . . . n}.

During the sequential optimization procedure some sim-
ulations fail to converge. Therefore, a constraint is applied
for the sequential improvement criterion that the normal-
ized distance to failed simulations should be higher than 0.1.
To examine the convergence behavior of the algorithm, no
termination criterion is selected and the runs are continued
until a total of 400 successful sequential improvement sim-
ulations is reached. Therefore, the final size of the DOE is
38 + 400 = 438, which is reasonably sparse for a strongly
nonlinear 7-dimensional space. A total of 18 runs are per-
formed: six metamodeling methods times three sequential
improvement criteria.

7 Results

All runs have been executed up to 400 iterations. The opti-
mal solutions have been determined after every 50 iterations
by minimizing Obj(Ŷ (x))+6ŝObj(x) with the constraint that
the probability of constraint violation should be less than
1 %. These values have been checked by performing a set of
49 simulations on a 7 by 7 grid in the noise space at every
design solution found. The solutions of all runs after 400
iterations are listed in Table 5.

At first, it can be seen by the characteristics of different
optima that the process is strongly nonlinear (Fig. 11e–h).
The influence of the thickness and the yield stress on the
main angle θM is strongly dependent on the design vari-
ables. A striking example of the nonlinearity is the local
minimum of the angle for the Jones criterion - RBFG0 run
at a thickness of 0.52 mm (Fig. 11e), whereas the Jurecka
criterion - RBFMQ0 optimum has a local maximum at the
same thickness (Fig. 11g). Hence, is should be clear that the
strip bending optimization problem has strong interactions
between noise variables and design variables. Therefore,
it is not surprising that the metamodel prediction of the
optimum is of fluctuating quality (Fig. 11a–d).
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Table 4 Overview of used
metamodels Name Metamodel type Basis function Polynomial regression

kriging0 kriging Gaussian 0th order

kriging1 kriging Gaussian 1st order

RBFG0 RBF Gaussian 0th order

RBFG1 RBF Gaussian 1st order

RBFMQ0 RBF multiquadric 0th order

RBFMQ1 RBF multiquadric 1st order

Obviously, it is not possible to know the global optimum
for sure without performing an excessive amount of FE
model runs. Therefore, it is not feasible to compare the con-
vergence of the global optimum for all runs. However, the
goal of a robust optimization run is to find a good solution
of the optimization problem with moderate computational
effort. Looking at the results in Table 5, it can be seen that
the found optima have a checked objective function value in
between 0.14◦ (novel criterion - RBFG0) and 0.72◦ (Jurecka
- RBFG0). The objective function value is underestimated
for 15 out of 18 runs. Only one run has constraint viola-
tions. Furthermore the RMSE (ŝObj) is underestimated in 17
out of 18 runs for both the θM metamodel as well as for

the θT metamodel. This is expected since the optimum is
selected based on Obj(Ŷ (x))+6ŝObj(x), which includes both
objective function value as well as RMSE value. Therefore,
it is more probable for the optimum to be selected from
regions where these values are underestimated. In general it
can be said that the robust sequential optimization algorithm
yields good results for the V-bending problem. Nearly all
results fulfill the constraints and satisfying objective func-
tion values have been found. The reference for the objective
function value is the best result found with the previous
study performed with the same model, where an objec-
tive function value of 0.85◦ was found using four design
variables (Wiebenga et al. 2012).

Table 5 Results of all runs after 400 iterations

Optimum Objective Constraint

α D L R1 R2 μθM
σθM

obj RMSE μθT
− 2σθT

μθT
+ 2σθT

RMSE

Jones krig0 93.6 0.53 4.38 2.27 1.15 90.0 (90.1) 0.13 (0.12) 0.40 (0.42) 0.13 (0.10) 94.0 (94.0) 95.4 (95.4) 0.07 (0.03)

krig1 91.3 0.55 5.00 1.86 1.28 90.0 (90.0) 0.06 (0.13) 0.18 (0.40) 0.05 (0.12) 92.3 (92.4) 95.6 (95.4) 0.07 (0.12)

RBFG0 91.7 0.52 5.00 2.14 1.49 90.0 (90.0) 0.04 (0.06) 0.12 (0.21) 0.01 (0.06) 92.9 (92.8) 95.3 (95.5) 0.00 (0.09)

RBFG1 91.3 0.55 5.00 1.87 1.28 90.0 (90.0) 0.05 (0.07) 0.14 (0.24) 0.02 (0.07) 92.1 (92.2) 95.3 (95.3) 0.04 (0.07)

RBFMQ0 93.8 0.55 4.46 2.03 1.11 90.0 (90.1) 0.11 (0.14) 0.34 (0.47) 0.04 (0.07) 92.4 (92.4) 94.4 (94.5) 0.03 (0.06)

RBFMQ1 93.6 0.54 4.98 2.03 1.22 90.0 (90.0) 0.08 (0.16) 0.24 (0.48) 0.05 (0.10) 92.2 (92.2) 94.9 (95.0) 0.05 (0.07)

Jurecka krig0 93.2 0.53 4.32 2.30 1.27 90.0 (90.0) 0.10 (0.17) 0.31 (0.54) 0.04 (0.10) 94.0 (94.0) 95.7 (95.8) 0.04 (0.07)

krig1 92.4 0.57 5.00 1.77 1.07 90.0 (90.0) 0.06 (0.08) 0.18 (0.29) 0.04 (0.06) 92.3 (92.3) 95.1 (95.1) 0.04 (0.04)

RBFG0 93.9 0.55 4.96 2.00 1.15 90.0 (89.8) 0.09 (0.17) 0.26 (0.72) 0.06 (0.26) 92.4 (92.3) 94.8 (94.6) 0.11 (0.22)

RBFG1 91.2 0.55 5.00 1.63 1.30 90.0 (90.0) 0.13 (0.14) 0.39 (0.46) 0.03 (0.06) 92.6 (92.6) 95.8 (95.7) 0.01 (0.05)

RBFMQ0 91.4 0.55 5.00 1.83 1.24 90.0 (90.0) 0.08 (0.10) 0.24 (0.31) 0.02 (0.08) 92.1 (92.2) 95.2 (95.2) 0.04 (0.08)

RBFMQ1 90.9 0.54 4.98 1.91 1.36 90.0 (90.0) 0.06 (0.06) 0.19 (0.18) 0.02 (0.07) 92.1 (92.2) 95.5 (95.4) 0.03 (0.07)

Novel krig0 92.6 0.58 5.00 1.77 1.03 90.0 (90.0) 0.10 (0.14) 0.30 (0.45) 0.04 (0.14) 92.5 (92.5) 95.3 (95.1) 0.01 (0.12)

criterion krig1 90.4 0.53 4.74 2.02 1.50 90.0 (90.1) 0.06 (0.08) 0.17 (0.30) 0.04 (0.10) 92.1 (92.0) 95.9 (96.1) 0.03 (0.12)

RBFG0 91.6 0.52 4.80 2.12 1.48 90.0 (90.0) 0.06 (0.04) 0.19 (0.14) 0.02 (0.04) 92.7 (92.7) 95.2 (95.2) 0.05 (0.06)

RBFG1 92.2 0.53 5.00 2.00 1.31 90.0 (90.0) 0.06 (0.05) 0.19 (0.19) 0.01 (0.06) 92.1 (92.1) 94.6 (94.6) 0.04 (0.05)

RBFMQ0 91.4 0.52 4.54 2.13 1.49 90.0 (90.0) 0.04 (0.05) 0.13 (0.15) 0.01 (0.01) 92.6 (92.6) 95.1 (95.1) 0.01 (0.02)

RBFMQ1 91.9 0.52 4.97 2.08 1.43 90.0 (90.1) 0.07 (0.05) 0.21 (0.21) 0.05 (0.08) 92.6 (92.8) 95.0 (95.1) 0.05 (0.15)

The checked objective and constraint values are given in between brackets. The predicted RMSE is the root of (35), the checked RMSE is the root
mean square of f̂ (xopt, z) − f (xopt, z)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11 Metamodel prediction of the main angle θM at optimum found
after 400 iterations for Jones criterion - RBFG0 (a), Jurecka criterion
- kriging0 (b), Jurecka criterion - RBFMQ0 (c) and novel criterion -

RBFMQ0 (d). Figures (e–f) show the checked surface corresponding
to figures (a–d) respectively. The black dots represent the 7 by 7 grid
where the simulations were performed

The number of sequential optimization runs is not suf-
ficient to assess the statistical relevance of the results.
Hence, it cannot be stated which metamodeling method or
sequential improvement criterion is most efficient for robust
optimization of the V-bending problem. For statistical rele-
vant results, we refer to the test with mathematical functions
in Section 5. However, the V-bending problem results give
one example for the performance of the building blocks
of the procedure. More general results may be obtained
through new studies on the efficiency of the building blocks
for other engineering problems. Furthermore, several other
conclusions can be drawn based on detailed observation of
the results.

Regarding the sequential improvement criteria, mean
objective function values of 0.37◦, 0.42◦ and 0.24◦ are
obtained for the Jones, Jurecka and novel criterion runs
respectively (Fig. 12). It is worth mentioning the run with
Jurecka criterion and RBFMQ1 metamodel. During the first
190 iterations, 183 iterations had an expected improvement
value smaller than 10−10 degrees. Hence, the algorithm
was not able to distinguish between regions with high
and low probability of improvement. During these itera-
tions new DOE points were added throughout the whole
domain, until the uncertainty in the best point ŝObj(xb)

decreased, enabling the algorithm to find regions with a
higher expected improvement value. This artifact clearly
influences the performance of the criterion, as discussed

in Section 4. However, it is noticeable that finally a good
objective function value of 0.18◦ was found with this run.

Looking at the metamodeling techniques, the RBF runs
outperformed the kriging runs with a small margin, with
final mean objective function values of 0.40◦, 0.33◦ and
0.30◦ for the kriging, Gaussian RBF and multiquadric RBF
runs respectively (Fig. 13). Another measure for the quality
of the metamodels is their R2 value. This has been estimated
for all iterations based on 5000 simulations, sampled with a
latin hypercube design (Fig. 14). The R2 value is a measure

Fig. 12 Checked objective function values averaged over all runs with
the same expected improvement criterion (markers). The averaged
metamodel prediction of the objective function value is bounded by
Obj(Ŷ (x)) ± ŝObj(x), for the Jones ( ), Jurecka ( ) and novel
criterion ( )
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Fig. 13 Checked objective function values averaged over all runs with
the same metamodeling method (markers). The averaged metamodel
prediction of the objective function value is bounded by Obj(Ŷ (x)) ±
ŝObj(x), for kriging ( ), RBFG ( ) and RBFMQ ( )

of the predictive quality of the metamodels throughout the
full domain, although it is only of interest how the regions
with low objective function value are predicted. However,
Fig. 14 is of interest because it gives an impression about

Fig. 14 Evolution of R2 values of metamodels, estimated based on
5000 simulations performed throughout the whole domain, for the
main angle θM (black line) and the transition angle θT (gray line)

the stability of the metamodeling methods. During some
iterations a strong drop in the R2 value is observed. Recall
that the fitting procedure for kriging and RBF includes the
optimization of model parameters based on a likelihood
measure. This measure can be strongly affected by the addi-
tion of an extra DOE point, yielding to a different set of
model parameters and a sudden drop in the R2 value of the
metamodel. It may be expected that these fluctuations in
the predictive capability of the metamodel negatively affect
the efficiency of the optimization. From Fig. 14 it can be
seen that the RBF metamodels suffer less from these strong
variations in global fitting accuracy.

In Fig. 15 the estimated and checked objective func-
tion values after every 50 iterations are shown. It would be
expected that the objective function value and the prediction

Fig. 15 Objective function value predictions and checked values (dia-
monds) for Jones ( ) (a,d,g,j,m,p), Jurecka ( ) (b,e,h,k,n,q)
and novel criterion ( ) (c,f,i,l,o,r) at optimum determined with
Obj(Ŷ (x))+6ŝObj(x), with constraint that the probability of constraint
violation should be less than 1 %. This constraint could not be ful-
filled for the Jones - kriging0 run at 50 iterations and for the Jurecka -
kriging0 run at 50, 150 and 200 iterations. The error bars represent the
±ŝObj(x) range
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uncertainty decrease with increasing number of iterations.
However, this is not always the case. Refitting the metamod-
els at every iteration leads to changing model parameters
and subsequently to a changing prediction of the optimum.
On average over all runs the predicted and checked objec-
tive function values and the prediction uncertainty decrease
with increasing number of iterations.

8 Conclusion

In this work the effect of the metamodeling method and the
sequential improvement criterion on the efficiency of the
robust optimization procedure is investigated.

The only available criterion for sequential improvement
in robust optimization was the Jurecka criterion. However,
this criterion has some artifacts, such as that, when two
points have the same prediction for the objective function
value, the point with the largest prediction uncertainty is not
always preferred as new sampling point. Furthermore, the
current estimate of the best design point has an expected
improvement value of zero by definition. Therefore, an erro-
neously underpredicted objective function value will not be
verified with additional simulations, even when the pre-
diction uncertainty is large. Therefore, we propose a new
criterion for sequential improvement in robust optimization,
which is derived from the deterministic expected improve-
ment criterion of Jones et al. (1998). This criterion shows
better performance than the Jurecka criterion and than the
deterministic Jones criterion, both in a test with mathemat-
ical test functions (Section 5) as well as in a V-bending
optimization problem (Section 7). Whereas the validity of
this conclusion is shown to be statistically significant for
the test with mathematical test functions, no statistical test
could be performed based on the small number of opti-
mization runs in the V-bending test. It is recommended to
verify the presented observations with new studies on robust
optimization in engineering.

Regarding the metamodeling method, kriging has been
used by many researchers for sequential optimization. We
propose an improved implementation of RBF suitable for
sequential optimization, including an estimation of the
metamodel uncertainty. In a robust optimization test with
mathematical test functions it was shown with statistical
significance that kriging metamodels perform best when
no noise is present on the black-box function, whereas the
proposed implementation of the RBF interpolation func-
tion with multiquadric basis functions performs best when
noise is present. Hence, it is shown that the choice for the
best metamodeling method for robust optimization should
depend on the investigated optimization problem. In the
test with the optimization of a strongly nonlinear V-bending
process the RBF metamodels outperformed the kriging

metamodels with a small margin. Furthermore the RBF
metamodels proved to suffer less from fluctuations in their
global predictive capability throughout the optimization
procedure.

Given these observations, we believe that the novel robust
sequential improvement criterion as well as the proposed
implementation of RBF may be successfully used for other
applications in the field of robust optimization and meta-
model based optimization respectively. Obviously, the effect
on the optimization efficiency may be strongly dependent
on the optimization problem at hand. Therefore, we believe
that there is no general solution for an optimal sequen-
tial optimization algorithm. However, knowing the pros
and cons of the available building blocks may significantly
improve the chances of success in robust optimization.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

Appendix: expected improvement for robust
optimization

The derivation of (29) is given in this section. Starting point
is the definition of the expected improvement (28):

EI =
∫ ∞

−∞
pμb

(x)

∫ x

−∞
(x − y)pμ(y) dydx (36)

with probability distributions:

pμb
(x) = 1

ŝb
φ

(
x − μ̂b

ŝb

)
(37)

pμ(x) = 1

ŝ
φ

(
x − μ̂

ŝ

)
(38)

φ (x) = 1√
2π

exp

(
−x2

2

)
(39)

The solution for the deterministic expected improvement
is given by Jones et al. (1998) (15):∫ x

−∞
(x − y)pμ (y) dy =

(x − μ̂)�

(
x − μ̂

ŝ

)
+ ŝφ

(
x − μ̂

ŝ

)
(40)

using (39) and:

�(x) = 1

2

(
1 + erf

(
x√
2

))
(41)
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Equations (36) to (41) can be combined and rearranged to:

EI = 1

ŝb
√

2π

[∫ ∞

−∞
x − μ̂

2
exp

(
− (x − μ̂b)

2

2ŝ2
b

)
dx+

∫ ∞

−∞
x − μ̂

2
erf

(
x − μ̂

ŝ
√

2

)
exp

(
− (x − μ̂b)

2

2ŝ2
b

)
dx +

ŝ√
2π

∫ ∞

−∞
exp

(
− (x − μ̂)2

2ŝ2
− (x − μ̂b)

2

2ŝ2
b

)
dx

]
(42)

The three integrals are solved separately. The first inte-
gral of (42) results in:

ŝb(μ̂b − μ̂)
√

π√
2

(43)

The second integral of (42) can be rewritten using y =
x − μ̂b:∫ ∞

−∞

[
y + μ̂b − μ̂

2
erf

(
y + μ̂b − μ̂

ŝ
√

2

)

exp

(
− y2

2ŝ2
b

)]
dy (44)

and split into two integrals:∫ ∞

−∞
x

2
erf

(
x + μ̂b − μ̂

ŝ
√

2

)
exp

(
− x2

2ŝ2
b

)
dx +

μ̂b − μ̂

2

∫ ∞

−∞
erf

(
x + μ̂b − μ̂

ŝ
√

2

)
exp

(
− x2

2ŝ2
b

)
dx (45)

The first integral of (45) can be solved with integration
by parts

∫
u dv = uv − ∫

v du:

∫ ∞

−∞
erf

(
x + μ̂b − μ̂

ŝ
√

2

)
x

2
exp

(
− x2

2ŝ2
b

)
dx =

[
erf

(
x + μ̂b − μ̂

ŝ
√

2

)(
− ŝ2

b

2
exp

(
− x2

2ŝ2
b

))]∞

−∞
+

ŝ2
b

ŝ
√

2

∫ ∞

−∞
exp

(
− x2

2ŝ2
b

− (x + μ̂b − μ̂)2

2ŝ2

)
dx (46)

The first part of (46) equals zero and the second part
equals:

ŝ3
b√

ŝ2
b + ŝ2

exp

(
− (μ̂b − μ̂)2

2(ŝ2
b + ŝ2)

)
(47)

Which is the solution of the first integral of (45). The
second integral of (45) can be rewritten using y = x + μ̂b −
μ̂:

μ̂b − μ̂

2

∫ ∞

−∞
erf

(
y

ŝ
√

2

)
exp

(
− (y − μ̂b + μ̂)2

2ŝ2
b

)
dy (48)

Using the substitution rule and u = y/(ŝ
√

2) one gets:

ŝ(μ̂b − μ̂)√
2

∫ ∞

−∞
erf (u) exp

(
− (ŝ

√
2u − μ̂b + μ̂)2

2ŝ2
b

)
du

(49)

The solution for this integral can be found in Ng and
Geller (1969), resulting in:

ŝb(μ̂b − μ̂)
√

π√
2

erf

⎛
⎜⎝ μ̂b − μ̂√

2(ŝ2
b + ŝ2)

⎞
⎟⎠ (50)

Hence, the sum of (47) and (50) give the solution of the
second integral of (42). The solution of the third integral of
(42) is:

ŝbŝ
2√

ŝ2
b + ŝ2

exp

(
− (μ̂ − μ̂b)

2

2(ŝ2
b + ŝ2)

)
(51)

Therefore, the solution of (36) is given by replacing the
integrals of (42) with (43), (47), (50) and (51):

EI = 1

ŝb
√

2π

[
ŝb(μ̂b − μ̂)

√
π√

2
+

ŝ3
b√

ŝ2
b + ŝ2

exp

(
− (μ̂b − μ̂)2

2(ŝ2
b + ŝ2)

)
+

ŝb(μ̂b − μ̂)
√

π√
2

erf

⎛
⎜⎝ μ̂b − μ̂√

2(ŝ2
b + ŝ2)

⎞
⎟⎠ +

ŝbŝ
2√

ŝ2
b + ŝ2

exp

(
− (μ̂ − μ̂b)

2

2(ŝ2
b + ŝ2)

)⎤
⎥⎦ (52)

Rearranging and rewriting using (39) and (41) gives the
expected improvement for robust optimization:

EI = (μ̂b − μ̂)�

⎛
⎜⎝ μ̂b − μ̂√

ŝ2
b + ŝ2

⎞
⎟⎠ +

√
ŝ2
b + ŝ2φ

⎛
⎜⎝ μ̂b − μ̂√

ŝ2
b + ŝ2

⎞
⎟⎠ (53)
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