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We study the spatial distribution of supercurrent circulated around an Abrikosov vortex in an SF bilayer in
perpendicular magnetic field. Within the dirty limit regime and circular cell approximation for the vortex lat-
tice, we derive the conditions when the Usadel equations the F-layer can be solved analytically. Using the
obtained solutions, we demonstrate the possibility of reversal of direction of proximity induced supercurrents
around the vortex in the F-layer compared to that in the S-layer. The direction of currents can be controlled
either by varying transparency of the SF interface or by changing an exchange field in a ferromagnet. We argue
that the origin of this effect is due the phase shift between singlet and triplet order parameter components
induced in the F-layer. Possible ways of experimental detection of the predicted effect are discussed.
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It is well known that the critical temperature, , of
superconductor–ferromagnet (SF) sandwiches and
critical current, , of SFS Josephson junctions are
nonmonotonic functions of thickness,  of the ferro-
magnetic layer [1–3]. This nonmonotonic behavior
can be used for developing superconducting spin
valves. Adding another ferromagnetic layer allows one
to control  or  by changing mutual orientation of
magnetic moments of the F films in SFF or SFFS spin
valve devices (see recent reviews [4–6] and references
therein). It should be noted that these theoretical pre-
dictions [7–13], as well as their experimental confir-
mations [4–6] were obtained in structures, which are
homogeneous along SF interfaces.

However, it was recently demonstrated [14] that in-
plane inhomogeneity of the S-layers in S/F/F spin
valves causing the suppression of the superconducting
spin valve effect (SSVE). Such inhomogeneity signifi-
cantly increases when morphology of the S-layer
changes from the form of overlapping islands to a
smooth case. Another type of inhomogeneity of super-
conducting state in superconductor can be provided by
Abrikosov vortices. Superconducting correlations in
an SF bilayer in a vortex state monotonously increase
with increasing distance from the vortex core in both S
and F films.

Despite large number of studies devoted to f lux
pinning and flux dynamics in superconductor/ferro-
magnet bilayers and multilayers, it is so far an open
question, should one (by analogy with the oscillations
of   and ) expect non-monotonic alterations in
the structure of Abrikosov vortex in SF sandwich. The
purpose of this paper is to show that it is indeed possi-
ble. We demonstrate that by varying the exchange field
in an F-layer or by varying S/F interface transparency
one can achieve vortex current reversal in the F-layer.

We consider an SF bilayer in an external magnetic
field  perpendicular to the plane of the bilayer. We
assume that the conditions of dirty limit are valid for
both films and pair potential  is zero in the F film.
The F-layer is supposed to be a single domain ferro-
magnet with out-of-plane direction of its easy axis. We
direct the  axis along the magnetic field and place the
coordinate origin at the interface between S and F
metals located at  and  respec-
tively. To define the coordinate dependence of the
Green’s function it is convenient to use the Wigner–
Seitz approximation [15, 16] for elementary vortex
cell. This approximation has been previously used in
study of Abrikosov vortex lattice and flux f low regimes
in superconducting films, as well as in theoretical
analysis of influence of trapped Abrikosov vortices on
properties of tunnel Josephson junctions [17–25].1 The article is published in the original.
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According to the Wigner–Seitz approximation, the
hexagonal unit cell of the vortex lattice is replaced by
a circular one with the radius

(1)

For a single S film, the second critical field,  and,
hence,  are determined by the well-known relation
[15]

(2)

Here,  is the psi-function,  is the magnetic f lux
quantum,  is the superconductor
decay length,  is the diffusion coefficient,

  is the temperature of the bilayer, and  is
normalized on . Below, we will define the radius of
the circular cell, , using Eqs. (1) and (2), thus
neglecting the magnetic field generated by the ferro-
magnetic film as compared to the external magnetic
field .

Under the above assumptions the system of Usadel
equations [26] describing the behavior of SF sandwich
in magnetic field in the polar coordinates has the form
[1–3, 22, 23]

(3)

(4)

(5)

(6)

Here,   are the Matsubara
frequencies, E is the exchange energy, 

  is the diffusion coefficient in the F
film,  is the component of the vector potential

 normalized on ,  is the thick-
ness of the S film, the order parameter,  and
exchange energy in (3)–(6) are normalized on 
coordinates  and  are normalized on  
and Re  is the real part of the function .

To write the solution of the Maxwell equation,
curlcurl  for the vector potential  in the
form of Eq. (5), we have supposed that the Ginzburg–
Landau parameter . This condition
allows neglecting the magnetic field produced by cur-
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rent in comparison with the applied external field .
The external field is constant inside a circular vortex
cell provided that the cell radius  is less than

, where  is the London pen-
etration depth.

Equations (3)–(6) should be supplemented by the
boundary conditions [27] at SF interface 

(7)

(8)

where  and  are the suppression parameters

(9)

Here,  and  are the resistance and area of the
FS interface, respectively, and  are the normal
state resistivities of the metals. At free interfaces the
boundary conditions has the form

(10)

(11)

and at  we have

(12)

The boundary-value problem given by Eqs. (3)–
(12) can be simplified in the limit of small F-layer
thickness.

If  then in the first approxima-
tion  is independent on , and in the next
approximation we have

(13)
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where   This equation
reduces to the derived earlier in [28] at  At

 in a vicinity of  both  and spatial
derivatives on  are small and from (14) it follows that
at  Usadel functions in the F film asymptoti-
cally approach to the solution obtained earlier for SF
sandwich in the limit of the small F-layer thickness
[29]:

(16)

Substitution of this solution into (15) gives that at
:

(17)

It follows from (17) that for sufficiently small
 one can neglect the sup-

pression of superconductivity in the S-layer and con-
sider  as known function describing Abrikosov
vortex in the individual S film. Thus the boundary
value problem is reduced to solution of Eq. (14), in
which  and  are the solutions for the vortex
state in a superconducting film as functions of coordi-
nate  There are two characteristic lengths in Eq. (14).
The first one is , at which the variation of   takes

place. The second one,  is
characteristic scale in Eq. (14).

As a rule, in ferromagnetic materials Re  is much
smaller than  In the limit  at 
functions  and Eq. (14) for the case of a
single vortex  transforms to

(18)

Substitution  into (18) gives

(19)

For  all derivatives and the item proportional to
 in (14) are of order of  and

, respectively, and can be dropped lead-
ing to

(20)
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The substitution of this solution into the expression
for the supercurrent density in the F-film

(21)

results in

(22)

where

(23)

(24)

It follows from the above expression that with an
increase in  or  the transformation takes place
when proximity induced vortex supercurrent around
the core in the F-layer changes its direction compared
to the current in the S-layer.

To illustrate this effect, we performed numerical
calculations of the supercurrent within the vortex unit
cell in the F-layer. The results for the spatial depen-
dence of the supercurrent are shown in figure for dif-
ferent values of  and fixed exchange energy

. We have chosen , which
corresponds to  (the regime of single vor-
tex). It is seen that for , the proximity-induced
circulating supercurrent f lows in the F-layer. The cur-
rent density achieves its maximum value at 
and then goes to zero at . Increase in 
results first in gradual suppression of this current and
at  (the dashed line in figure) two regions
are formed inside the cell with currents f low in oppo-
site directions. Further increase in  leads to rever-
sal of the supercurrent direction in the F-layer com-
pared to that in the S-layer.

The physical mechanism of this transformation is
the same as discussed previously for the formation of
so-called -junctions in SFS Josephson devices, for
the non-monotonic dependence of the effective mag-
netic field penetration depth on the thickness of
F-layer [30–33] as well as for the peculiarities of sur-
face impedance in SF bilayers [34, 35] and the para-
magnetic Meissner effect [36]. The superconducting
correlations nucleated at SF interface consist of two
parts. They are singlet and triplet pairings. There is

 phase shift between anomalous Green’s function
describing the pairings. As a result, the superconduct-
ing current in the SF structures has two contributions.
The first one, defined by the singlet superconducting
correlations, is always positive. The second, negative,
contribution to the current is due to the triplet order
parameter component. Such separation of the current
into two components is realized in the present case, as
follows from Eqs. (22) and (23). In a certain range of
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parameters of the studied SF structures, the negative
contribution to the current may prevail over the posi-
tive one thus resulting to the vortex current reversal
discussed above. Similar effect is responsible for the
change of sign of the critical current in SFS junctions
( -junctions), as well as for the change of the direction
of shielding supercurrents in the problem of penetra-
tion of the magnetic field in the SF bilayers.

It is necessary to mention again (see discussion
after Eq. (6)) that in our model we neglect the mag-
netic field produced by supercurrent in comparison
with the applied external field  In this
approximation, the magnetic field is independent of 
and its integration over circular unit cell results in
magnetic f lux inside the cell exactly equal to  inde-
pendently on a direction of supercurrent circulating
around the vortex core. In the next approximation
with respect to the Ginzburg–Landau parameter

 there should be corrections to spatial distribu-
tion of the magnetic field inside the unit cell propor-
tional to . In the case of an SN bilayer  or
for  and  (see figure) the correc-
tion has maximum in the center of the vortex core and
decreases monotonically with an increase in . There-
fore, the net magnetic field should exhibit small spatial
modulation typical for an Abrikosov vortex: there is
maximum of  in the core region  and
monotonous decay to a constant value at 

Contrary to that, for  and 
the correction to magnetic field generated by circulat-
ing supercurrent in the area  should have direc-
tion opposite to that of external field . As a result,

π

= Φ π .0/ SH r
r

Φ ,0

κ � 1

−κ 2 =( 0)E
γ .BM 0 7& = π C2E T

r

H ξ&( )Sr
= .Sr r

γ .BM 0 75) = π C2E T
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H

the net magnetic field should have a minimum in the
core region and should increase with .

Note that magnetic f lux per unit cell exactly equals
to  in both cases considered above. At the same
time, the difference between magnetic field distribu-
tions can be detected by means of magnetic force
microscopy [37], by muon scattering experiments [38]
or by means of nano-SQUID [39–41].

It is worth to note that near the SF interface there
are also triplet components induced into the S part of
the bilayer. It means that transformations of spatial
distribution of circulating supercurrent should also
occur on the superconducting side of the SF bilayer.
This problem will be analyzed elsewhere.
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