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Abstract

The aim of this study is to test whether spectra of crown canopy leaves of various tropical mangrove species measured under
laboratory conditions contain sufficient spectral information for discriminating mangroves at the species level. This laboratory-level
study is one of the most important prerequisites to the future use of airborne and satellite hyperspectral sensors for mangrove
studies. First, spectral responses of 16 Thai tropical mangrove species (2151 spectral bands between 350 nm and 2500 nm) were
recorded from the leaves, using a spectrometer under laboratory conditions. Next, the mangrove spectra were statistically tested
using one-way ANOVA to see whether they significantly differ at every spectral location. Finally, the spectral separability between
each pair of mangrove species was quantified using the Jeffries—Matusita (J—M) distance measure. It turned out that the 16
mangrove species under study were statistically different at most spectral locations, with a 95% confidence level (p < 0.05). The
total number of spectral bands that had p-values less than 0.05 was 1941, of which 477 bands had a 99% confidence level (p < 0.01).
Moreover, the J—M distance indices calculated for all pairs of the mangrove species illustrated that the mangroves were spectrally
separable except the pairs that comprised the members of Rhizophoraceae. Although the difficulties of discriminating the members
of Rhizophoraceae are expected, the overall result encourages further investigations into the use of on-board hyperspectral sensors
to see whether mangrove species can be separated when the difficulties of the field conditions are taken into account.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Remote sensing has become a standard tool for large-
scale tropical mangrove management (Blasco et al.,
1998), mainly because remote sensing technology allows

* Corresponding author. Natural Resources Department, Interna-
tional Institute for Geo-Information Science and Earth Observation
(ITC), P.O. Box 6, 7500 AA Enschede, The Netherlands.

E-mail address: vaiphasa@itc.nl (C. Vaiphasa).

0272-7714/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ecss.2005.06.014

information to be gathered from areas that would
otherwise be, logistically and practically, very difficult to
survey. Since the early use of aerial photography for
exploring the mangrove-covered Biscayne Bay, Florida
in the 1920s (Florida State Photo Archive), there has
been mounting evidence — as the record of UNESCO
shows (Green et al., 2000) — that remote sensing can
be successfully applied to three aspects of mangrove
management: (1) resource inventory, (2) change de-
tection, and (3) selection and inventory of aquaculture
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sites. These applications are based on a number of
instruments on both airplane and satellite platforms,
including visible and infrared photographic cameras
(Sulong et al., 2002; Verheyden et al., 2002), video
recorders (Everitt et al., 1996), synthetic aperture radar
(Aschbacher et al., 1995; Held et al., 2003), and
multispectral and hyperspectral sensors (Ramsey and
Jensen, 1996; Gao, 1999; Green et al., 2000; Demuro
and Chisholm, 2003; Held et al., 2003).

Multispectral sensors on satellite platforms, including
synthetic aperture radar (SAR), Landsat TM, and
SPOT XS, are most popularly used for mangrove ap-
plications because of their cost-effective advantages
(Aschbacher et al., 1995; Ramsey and Jensen, 1996;
Gao, 1999; Green et al., 2000; Sulong et al., 2002; Held
et al., 2003), but they are mainly limited to the regional
scale, owing to their relatively coarse spatial and spectral
resolutions. Improvements are needed in both these
major problem areas in order to enable mangroves to be
studied at a finer level (Gao, 1999; Green et al., 2000;
Sulong et al., 2002).

With respect to the lack of spectral details of
multispectral sensors, the limited number of spectral
bands of Landsat TM (seven bands in total), in which
each band covers only a broad wavelength region of
several tens of nanometers, offers a clear example of how
opportunities to exploit spectral responses linked to the
physio-chemical properties of plants are lost. The broad
spectral information of Landsat TM cannot be used to
resolve several key absorption pits as well as reflectance
characteristics including the red edge (the unique feature
of plant spectral responses between the wavelength of
690 nm and 720 nm that can be used for extracting
important physio-chemical characteristics of plants in-
cluding chlorophyll contents) (Elvidge, 1987; Himmels-
bach et al., 1988; Curran, 1989; Elvidge, 1990; Kumar
et al., 2001; Williams and Norris, 2001). In contrast, the
report of Demuro and Chisholm (2003) demonstrates an
example of how more delicate tools such as the satellite-
mounted HYPERION sensor (USGS EROS Data
Center (EDC), USA) that possesses 220 bands between
400 nm and 2500 nm handles the task of discriminating
eight-class mangrove communities (i.e. broad mangrove
classes) in Australia — a task considered difficult for any
multispectral sensor (Green et al., 2000). Similarly, the
224-band Airborne Visible/Infrared Imaging Spectro-
meter (AVIRIS) sensor with an approximately 9.6-nm
band width ranging between 400 nm and 2450 nm
performs just as well in mapping the mangrove commu-
nities of the Everglades, Florida (Hirano et al., 2003).
Since both HYPERION and AVIRIS sensors collect
a contiguous range of narrow-band spectral data, they
are technically termed hyperspectral sensors.

The potential of hyperspectral technology has already
been successfully established in the field of vegetation
research (Green et al., 1998, 2000; Asner et al., 2000;

Cochrane, 2000; Kruse et al., 2000; Curran et al., 2001;
Soukupova et al., 2002; Goel et al., 2003; Hirano et al.,
2003; Mutanga et al., 2003; Schmidt and Skidmore,
2003; Schuerger et al., 2003; Zarco-Tejada et al., 2004).
This is because hyperspectral data contain information
that relates to important biochemical properties of
plants (Gates et al., 1965; Hoffer, 1978; Peterson and
Hubbard, 1992; Kokaly, 2001; McDonald, 2003). To
highlight just a few, the recent applications of hyper-
spectral technology include the study of the quality of
tropical pastures for animal grazing (Mutanga et al.,
2003); the use of hyperspectral sensors to detect zinc
stress in plants (Schuerger et al., 2003); a revised method
for lignin detection (Soukupova et al., 2002); and the
extraction of crop biophysical parameters (Goel et al.,
2003). More importantly, recent reports confirm that
hyperspectral data have potential for discriminating
terrestrial plants at the species level (Cochrane, 2000;
Schmidt and Skidmore, 2003).

Although hyperspectral data look promising in the
arena of vegetation applications including species level
discrimination, the already-published hyperspectral re-
search on mangroves (Green et al., 2000; Demuro and
Chisholm, 2003; Held et al., 2003; Hirano et al., 2003) is
inconclusive as to the use for tropical mangrove species
discrimination. The most unfortunate case of all is the
multi-sensor study done by Held et al. (2003). The author
should have been the first to conclude whether the on-
board hyperspectral sensor could be used for mangrove
species classification if the quality of the hyperspectral
images in use were not distorted by the high percentage
of cloud cover. On the other hand, the other researchers
(Green et al., 2000; Demuro and Chisholm, 2003; Hirano
et al., 2003) could not explore thoroughly the capability
of hyperspectral data for discriminating mangroves at
the species level because their study sites were dominated
by only a few mangrove species.

Consequently, this study is intended to move one step
closer to the conclusion whether hyperspectral technol-
ogy could be used for tropical mangrove species
discrimination. Specifically, laboratory spectra of top
canopy leaves of 16 tropical mangrove species are used
for the spectral separability analysis to see whether they
adequately contain useful spectral information for
discriminating mangroves at the species level. Using
laboratory data that leave out the difficulties of field
conditions (e.g. the fluctuation of light source energy,
the change of daily atmospheric states, the effect of
canopy formations, the cost of accessibility, the coarser
spatial and spectral resolutions of on-board hyper-
spectral sensors, the effect of seasonal changes, the effect
of background soils and water, the difference between
the energy of artificial lamps used in the laboratory and
the sun, etc.) means that the result of this study cannot
be used to make any conclusion whether real-life
hyperspectral sensors (e.g. HYPERION, AVIRIS, etc.)
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could be used for discriminating tropical mangrove
species. Instead, this laboratory study is intended to be
a cost-effective test to focus only on one of the most
important prerequisites to the future application of on-
board hyperspectral sensors: if the laboratory spectra of
the mangrove species contain insufficient spectral in-
formation for discriminating mangroves at the species
level, it is then not worthwhile to invest a lot of time and
money to investigate further into the potential of the on-
board hyperspectral sensors.

2. Methods
2.1. Acquisition of hyperspectral data

2.1.1. Mangrove leaf preparation

In the morning of February 6, 2001, top tree canopies
of 16 tropical mangrove species (Table 1) were collected
using a line-transect method in the natural mangrove
forest of Ao Sawi (Sawi Bay), Chumporn province, the
south of Thailand (10° 15'N, 99° 7'E) (Fig. 1). There
were 10 transects randomly placed throughout the areca
so as to collect tree samples from every mangrove zone
(e.g. pioneer, intermediate, and upper zones). Only the
trees that are higher than 2.5 m were considered for the
sampling campaign. The canopies of the sampled trees
were cut off and transported to the laboratory where
leaves were picked off for the spectral measurement. The
whole process was done within 4 h so as to preserve the
quality of the leaves.

2.1.2. Leaf spectral measurements
Freshly-picked leaves were randomly divided into 30
piles of the same size (20—30 leaves) per mangrove

Table 1

Sixteen tropical mangrove species of different zonations collected from
Sawi Bay, Chumporn province, Thailand used for the laboratory
reflectance measurement

Mangrove species Species code

Avicennia alba AVA
Acrostichum aureum ACA
Bruguiera cylindrica BC
Bruguiera gymnorrhiza BG
Bruguiera parviflora BP
Ceriops tagal CT
Excoecaria agallocha EA
Heritiera littoralis HL
Lumnitzera littorea LL
Lumnitzera racemosa LR
Nypa fruticans NF
Pluchea indica PI
Rhizophora apiculata RA
Rhizophora mucronata RM
Sonneratia ovata SO
Xylocarpus granatum XG

Chumporn Province
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20 KM

Fig. 1. Sawi Bay, Chumporn province, Thailand (10° 15'N, 99° 7'E).

species. First, each pile of leaves was spread on top of
a black metal plate painted with ultra-flat black paint
until the background metal plate could not be seen.
Second, the spectral response of each leaf plate was
recorded 20 times. Each plate was rotated 45° horizon-
tally after every fifth record in order to correct for the bi-
directional reflectance distribution function (BRDF).
Third, the 20 records were averaged to construct
a radiance curve. Fourth, the radiance was converted
to a reflectance curve, using a Spectralon reference panel
as well as the correction of the spectrometer internal
current (dark current). The steps above were repeated
for all the leaf plates. As a result, 30 reflectance curves
were constructed for each mangrove species (Table 1).
Please note that the whole operation was conducted
under laboratory conditions (i.e. dark room, 25 °C) in
order to avoid ambient light sources unrelated to the
true spectral signal of the leaves.

The whole process was conducted using a spectror-
adiometer (FieldSpec Pro FR, Analytical Spectral De-
vice, Inc.). This spectroradiometer was equipped with
three spectrometers (i.e. VNIR, SWIRI1, and SWIR?2),
covering 350 nm—2500 nm, with sampling intervals of
1.4 nm between 350 nm and 1000 nm, and 2 nm between
1000 nm and 2500 nm. The spectral resolution of the
spectrometers was 3 nm for the wavelength interval
350 nm—1000 nm, and 10 nm for the wavelength interval
1000 nm—2500 nm. The sensor, equipped with a field of
view of 25°, was mounted on a tripod and positioned
0.5 m above the leaf plate at the nadir position.

Since this laboratory study was intended to be
a prerequisite to the future use of real hyperspectral
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sensors, the energy source in use should at least provide
the same energy range that real hyperspectral sensors
capture. In this study, a halogen lamp was selected to
provide stable electro-magnetic energy between 400 nm
and 1800 nm. This energy range was reconciled with
most of the hyperspectral sensors (Lillesand and Kiefer,
2000). As a result, a halogen lamp fixed on the tripod at
the same position as the sensor of the spectrometer was
used to illuminate the sample plate.

2.2. Data treatments

2.2.1. Statistical test

A statistical test was used to compare between the
spectral responses of the 16 individual tropical mangrove
species (Table 1) whether at least one pair of them was
statistically different at every spectral band, that is to say,
the null hypothesis Hy: u; = up,...,u16 versus the
alternative hypothesis H,: uy # uo,...,u16, Where u; was
the mean reflectance value of the ith species (i = 1, 2,...,
16). Before conducting the test, the distribution of the
spectral responses at every spectral band was assumed to be
normal under the central limit theorem (N spectra >
30) as well as the equality of statistical variances
(homoscedasticity) was verified for every spectral loca-
tion. Then, the hypothesis test was carried out using one-
way ANOVA at every spectral location between 350 nm
and 2500 nm (a total of 2151 spectral bands) with 95%
and 99% confidence limits (« = 0.05 and 0.01).

The aim of the ANOVA test was mainly to visualize
the spectral differences between the 16 mangrove
species. The test was chosen as a replacement for the
direct graphical presentation of the mangrove spectral
responses because the direct visualization was not an
effective visualization tool for comparing as many as 16
mangrove species. In other words, the spectral varia-
tions within an individual species (i.e. intra-species
spectral variations) caused spectral overlaps that made
it very difficult to spot the spectral differences between
the 16 mangrove species (i.e. inter-species variations)
with the naked eye. The reader is recommended to find
more details on the direct visualization versus spectral
variations in Landgrebe (1997, p. 8). Unlike the direct
display, applying the ANOVA test helped to highlight
poor spectral locations at which p-values were greater
than « (e.g. « = 0.05 or « = 0.01). p-Values higher than
« at some spectral locations indicated that the spectra of
different mangrove species were very similar as none
of them was statistically separable from the group. On
the other hand, the p-value less than the « threshold
indicated that there was at least one pair of mangrove
spectra that was statistically different. The ANOVA test
was therefore a rapid way to visualize spectral differ-
ences. It helped to demonstrate that separating spectral
responses of 16 different mangrove species was likely at
certain spectral positions.

2.2.2. Spectral separability

Even though the ANOVA test was a practical data
exploration tool, the result of the test may not be
independently interpreted without additional treat-
ments. One of the major reasons was the increasing
chance of the TYPE I error that usually happened when
conducting multiple hypothesis testing (Rothman, 1990;
Hsu, 1996; Perneger, 1998; Feise, 2002). In this case, the
TYPE I error could lead the reader to feel too positive
about the capability of hyperspectral technology for
separating mangroves at the species level. As a result,
the spectral separability index of every mangrove pair
needed to be calculated to guarantee the actual differ-
ences between the mangrove spectra. The quantification
of spectral separability indices for every mangrove pair
did not only minimize the chance of the TYPE I error
found in the ANOVA test, but it also was the main
contribution of this study (i.e. proving whether the
laboratory spectra adequately contain useful spectral
information for discriminating mangroves at the species
level).

The separability index used in this study was the
square of Jeffries—Matusita (J—M) distance analysis.
The J—M distance method delivers a value between
0 and 2 (=1.414), so the squared distance gives
a number between 0 and 2. We follow the common
practice in remote sensing (Thomas et al., 2003; ENVI
software’s user guide, RSI Inc.) of using a squared J—M
distance threshold of >1.90 to indicate whether any two
mangrove species were spectrally separable. The calcu-
lation of the J—M distance in this study was based on
Eq. (1). The reader was recommended to consult
Richards, (1993) for further details in separability
analyses:

J—Mi/*: \/ 2(1 — e_”)
Ci+C;

1
where a=§(,ui—uj)r< 5

>1 (1 = ;)

L [alcg)

2\ Jlalx|c

Note i and j are the spectral responses of two mangrove
species being compared; C is the covariance matrix of
the spectral response; u is the mean vector of the spectral
response; In is the natural logarithm function; 7 is the
transposition function; and |C| is the determinant of C.

Because the J—M distance measure in use was
a parametric method, it was necessary to reduce the
number of spectral features (bands) prior to the
calculation. In other words, it was not possible to
calculate the J—M distance using all 2151 bands because
of the singularity problem of matrix inversion (i.e. the
number of spectral samples per mangrove species was

(1)
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too small). A wrapper feature selection approach
(Siedlecki and Sklansky, 1989; John et al., 1994; Kohavi
and John, 1997; Kavzoglu and Mather, 2002; Yu et al.,
2002; Vaiphasa, 2003) was therefore applied in this
study to reduce the number of spectral features. The
wrapper approach is generally a kind of feature selection
algorithms that combines the strength of a traditional
search algorithm (e.g. sequential forward selection,
branch and bound technique, genetic search, etc.) with
the capability of a classifier (e.g. nearest neighbor
classifier, maximum likelihood classifier, etc.). In this
case study, the search mechanism of the wrapper tool
was based on a genetic algorithm, and its classifier was
a nearest neighbor classifier. The algorithm was applied
to select the best band combination out of the total
of 2151 bands. The algorithm was initialized with the
following genetic search parameters: crossover
rate = 50%; mutation rate = 1%; and the maximum
number of iterations = 1000. The estimated classifica-
tion accuracy was chosen at an 80% level as an
optimizing criterion. Following the USGS guideline
(Anderson et al., 1976), the optimizing criterion chosen
at the 80% level was adequate for the difficulties of

discriminating mangroves at the species level (i.e. Level
IIT or IV of the USGS classification standard).

3. Results
3.1. ANOV A test

The results of 2151 ANOVA tests (p-values) for all
spectral bands were plotted in Fig. 2. A reflectance of
Rhizophora apiculata measured in the laboratory was
also drawn in the figure to give an impression of the
actual mangrove spectral continuum collected by the
spectrometer. The 16 mangrove species under study
were statistically different at most spectral locations,
with a 95% confidence level (p < 0.05). The total
number of spectral bands that had p-values less than
0.05 was 1941, of which 477 bands had a 99%
confidence level (p < 0.01). The exceptions were at the
ultraviolet region (350—400 nm) and shortwave infrared
region (1800—2500 nm), where the halogen lamp did not
radiate strong energy.

ANOVA test
0.35 ~ — 0.75
0.30 -
1 - 0.60
0.25
1i— 0.45
0.20 - g
) J
> Y
o 1 >
0.15 - 8
1 0.30
0.10
0.15
A 95% confidence limit

I
0.05 Il wqmr Il |‘|| \“lnl““
) IJQ/MEM et M .\..'&.A.!l.m‘imn’M Ul “ﬂ

T

0.00 1 W w T

350 550 750 950 11 50 1 350

1550 1750 1950 2150 2350

Wavelength (nm)

Fig. 2. The plot of p-values of the ANOVA test (black line) showing against a laboratory reflectance of Rhizophora apiculata (gray line).
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3.2. Wrapper feature selection

The feature selection algorithm was applied to search
for the sub-optimal spectral band combination out of
the total of 2151 bands. The best combination found by
the wrapper tool comprised four spectral members at
720 nm, 1277 nm, 1415 nm, and 1644 nm. These four
spectral bands guaranteed an 80% level of estimated
classification accuracy. In Fig. 3, the selected bands were
shown against a reflectance of Rhizophora apiculata.
These four selected bands were then used for the
calculation of J—M distances in the next section.

3.3. J—M distance

The J—M distance measure was applied to reveal the
spectral separability between each pair of mangrove
species (Table 2), using the four spectral bands selected
in Section 3.2. Please note that the mangrove species of
Table 2 were grouped by their family names. The overall
spectral separability between the pairs of mangrove
species was high, since most of them acquired levels of
separability higher than the selected threshold (e.g.
1.90). Only 10 instances where the J—M distances were
lower than 1.90 were found. These instances are
highlighted in Table 2. One should, however, note that
the members of the Rhizophoraceae family (Bruguiera

cylindrica, Bruguiera gymnorrhiza, Bruguiera parviflora,
Ceriops tagal, Rhizophora apiculata, and Rhizophora
mucronata) were spectrally similar as 5 out of 10
highlighted instances were found among them. More-
over, the Rhizophoraceae family was also similar to
other mangrove families as each of the other five
highlighted pairs contained at least one mangrove
species of Rhizophoraceae.

4. Discussion

A laboratory-scale test of spectral separability
between various tropical mangrove species, which is
one of the most important prerequisites to the future use
of airborne and satellite hyperspectral sensors, has been
completed in this study. Overall, the results confirmed
that discriminating spectral responses of different
tropical mangroves at the species level was possible in
the laboratory. First, the result of the ANOVA test in
Fig. 2 helped visualize the possibility of separating the
mangrove species at many spectral locations. Then, the
report on pair-wise spectral separability between the 16
mangrove species in Table 2 guaranteed the result of the
ANOVA test as most mangrove pairs possessed high
separability indices (=2.00). The results therefore
encourage further investigation into the capability of

Feature Selection
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0.90

0.80

0.70

0.60

0.50

Reflectance

0.40
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0.20
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0.00 T T T T
350 550 750 950 1150

1350 1550 1750 1950 2150 2350
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Fig. 3. Four locations of spectral bands selected by the feature selection tool at 720 nm, 1277 nm, 1415 nm, and 1644 nm, respectively.



Table 2

The J—M distances between all pairs of 16 mangrove species (120 pairs in total). The species names are coded in Table 1. The pairs that possess lower than 1.90 separability levels are highlighted in

gray color. Mangrove species were grouped by their family names

Avicennia- Pterida- . Euphorbia- Sterculia- Combreta- Astera- Sonneratia- | Melia-
Rhizophoraceae Wurmb
ceae ceae ceae ceae ceae ceae ceae ceae
AVA ACA BC BG BP CT RA RM |EA HL LL LR | NF PI SO XG
Avicennia-
ceae AVA
Pterida-
ceae ACA 1.99
BC 1.99 2.00
Rhizophora- BP 1.99 1.99 1.99 -
ceae
ot 2.00 1.99 197 199 190
RA 1.99 1.99 193 199 199 1.99
RM 2.00 1.99 1.99
Euphorbia- 1.94 1.99 200 199 199 200 199  2.00
ceae EA
Sterculia- 1.99 1.99 200 194 199 199 199 199 | 1.98
ceae HL
Combreta. L 2.00 2.00 200 200 200 200 200 200 | 200 2.00
ceae IR 2.00 2.00 200 200 200 200 199 200 |2.00 2.00 1.99
Wurmb NE 1.99 1.99 200 199 199 200 199 199 | 1.99 1.99 200  2.00
Astera- 2.00 2.00 1.98 2.00 2.00 199 200 | 2.00
ceae PI
Sonneratia- 1.99 1.99 1.99 1.99 1.99 199 200 | 1.99 1.99
ceae SO
Melia- 1.97 1.99 1.99 1.98 1.99 200 200 | 1.99 2.00 1.99
ceae XG

6LE—1LE (§00T) §9 2212128 fjoys pup [pispo) “aulpnmiss | “[p 12 vsvydivg D

LLE
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using airborne and satellite hyperspectral sensors for
mapping mangrove species when taking field conditions
into account (e.g. the fluctuation of solar energy, the
change of daily atmospheric states, the effect of canopy
formations, the cost of accessibility, the coarser spatial and
spectral resolutions of on-board hyperspectral sensors, the
effect of seasonal changes, the effect of background soils
and water, the difference between the energy of artificial
lamps used in the laboratory and the sun, etc.).

Despite the optimism of the overall outcome, one
should not ignore the minority (10 instances) of Table 2
where the separability indices were lower than 1.90. The
locations of these instances in the table implied that the
members of the Rhizophoraceae family were probably
the most problematic: the members of this mangrove
family were spectrally similar to the other mangroves
as well as among themselves. This result reflected the
similarity between their spectral responses; hence the
closeness between the leaf physio-chemical properties of
these mangroves. Since the mangroves of Rhizophor-
aceaec dominated the study area, the difficulties of
discriminating these mangroves are expected when
implementing the on-board hyperspectral sensors. This
statement could also be true for other areas that shared
similar floristic conditions (i.e. dominated by the
Rhizophoraceae family).

Lastly, the result of the wrapper tool may not be
overlooked. Even if the four bands selected by the
wrapper tool guaranteed an 80% level of estimate
classification accuracy (i.e. complied with the USGS
standard; Anderson et al., 1976), only one out of four
was reconciled with the locations of the spectral
responses of mangrove leaf pigments (e.g. chlorophylls,
carotenoids, etc.) between 380 nm and 750 nm (Menon
and Neelakantan, 1992; Basak et al., 1996; Das et al.,
2002). This could lead us to hypothesize that the spectral
responses of mangrove pigments may contain less
important spectral information for mangrove species
discrimination than the information from the spectral
responses of the other leaf components that interacted
with electro-magnetic energy at longer wavelengths. This
may be because mangroves generally possessed similar
amounts of pigment substances across the species but the
differences in other leaf components (salt, sugar, water,
protein, oil, lignin, starch, cellulose, and leaf structure)
that normally interacted with energy at longer wave-
lengths were more marked. Even if a number of studies
on the physio-chemical properties of leaves of different
mangrove species were available (Menon and Neelakan-
tan, 1992; Tomlinson, 1994; Basak et al., 1996; Daset al.,
2002), it was unfortunate that they could not be readily
compared so as to draw any conclusion. This was mainly
because these studies were not standardized (i.e. the
mangrove leaves used in different reports were collected
from different field conditions). A non-bias comparative
study was therefore recommended so as to confirm this

part of the findings. Then, the four spectral locations
selected by the wrapper tool could be seen as a guideline
for selecting appropriate spectral locations for the future
use of the on-board hyperspectral sensor.

In summary, one of the most important prerequisites
to the future investment of the airborne and satellite
hyperspectral sensors for mangrove studies was in-
vestigated in this study. Specifically, laboratory spectra
of top canopy leaves of 16 tropical mangrove species
were analyzed to see whether they adequately contain
useful spectral information for discriminating man-
groves at the species level. The results from the statistical
test and the spectral distance analysis provided optimis-
tic evidence that encouraged a full-scale investigation
into the capability of on-board hyperspectral sensors
for mangrove species discrimination, but the doubt of
discriminating some members of the Rhizophoraceae
family still remains.

References

Anderson, J.R., Hardy, E.E., Roach, J.T., Witmer, R.E., 1976. A land
use and land cover classification system for use with remote sensor
data. U.S. Geological Survey Professional Paper 964, 41.

Aschbacher, J., Tiangco, P., Giri, C.P., Ofren, R.S., Paudyal, D.R.,
Ang, Y.K., 1995. Comparison of different sensors and analysis
techniques for tropical mangrove forest mapping. In: Proceedings
of the International Conference IGARSS, pp. 2109—2111.

Asner, G.P., Wessman, C.A., Bateson, C.A., Privette, J.L., 2000.
Impact of tissue, canopy, and landscape factors on the hyper-
spectral reflectance variability of arid ecosystems. Remote Sensing
of Environment 74, 69—84.

Basak, U.C., Das, A.B., Das, P., 1996. Chlorophyll, carotenoids,
proteins and secondary metabolites in leaves of 14 species of
mangroves. Bulletin of Marine Science 58, 645—659.

Blasco, F., Gauquelin, T., Rasolofoharinoro, M., Denis, J.,
Aizpuru, M., Caldairou, V., 1998. Recent advances in mangrove
studies using remote sensing data. Marine and Freshwater
Research 49, 287—296.

Cochrane, M.A., 2000. Using vegetation reflectance variability for
species level classification of hyperspectral data. International
Journal of Remote Sensing 21, 2075—2087.

Curran, P.J., 1989. Remote sensing of foliar chemistry. Remote
Sensing of Environment 30, 271—278.

Curran, P.J., Dungan, J.L., Peterson, D.L., 2001. Estimating the foliar
biochemical concentration of leaves with reflectance spectrometry:
testing the Kokaly and Clark methodologies. Remote Sensing of
Environment 76, 349—359.

Das, A.B., Parida, A., Basak, U.C., Das, P., 2002. Studies on
pigments, proteins and photosynthetic rates in some mangroves
and mangrove associates from Bhitarkanika, Orissa. Marine
Biology 141, 415—422.

Demuro, M., Chisholm, L., 2003. Assessment of Hyperion for
characterizing mangrove communities. In: Proceedings of the
International Conference the AVIRIS 2003 Workshop, pp. 18—23.

Elvidge, C.D., 1987. Reflectance characteristics of dry plant materials.
In: Proceeding of the International Conference Remote Sensing of
Environment, pp. 721—733.

Elvidge, C.D., 1990. Visible and near infrared reflectance character-
istics of dry plant materials. International Journal of Remote
Sensing 11, 1775—1795.



C. Vaiphasa et al. | Estuarine, Coastal and Shelf Science 65 (2005) 371—379 379

Everitt, J.H., Judd, F.W., Escobar, D.E., Davis, M.R., 1996.
Integration of remote sensing and spatial information technologies
for mapping black mangrove on the Texas gulf coast. Journal of
Coastal Research 12, 64—69.

Feise, R.J., 2002. Do multiple outcome measures require p-value
adjustment? BMC Medical Research Methodology 2, 8.

Gao, J., 1999. A comparative study on spatial and spectral resolutions
of satellite data in mapping mangrove forests. International
Journal of Remote Sensing 20, 2823—2833.

Gates, D.M., Keegan, H.J., Schleter, J.C., Weidner, V.R., 1965.
Spectral properties of plants. Applied Optics 9, 545—552.

Goel, P.K., Prasher, S.O., Landry, J.A., Patel, R.M., Viau, A.A.,
Miller, J.R., 2003. Estimation of crop biophysical parameters
through airborne and field hyperspectral remote Sensing. Trans-
actions of the American Society of Agricultural Engineers 46,
1235—1246.

Green, R.O., Eastwood, M.L., Sarture, C.M., Chrien, T.G.,
Aronsson, M., Chippendale, B.J., Faust, J.A., Pavri, B.E.,
Chovit, C.J., Solis, M., Olah, M.R., Williams, O., 1998. Imaging
spectroscopy and the Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS). Remote Sensing of Environment 65,
227-248.

Green, E.P., Clark, C.D., Edwards, A.J., 2000. Image classification
and habitat mapping. In: Edwards, A.J. (Ed.), Remote Sensing
Handbook for Tropical Coastal Management. UNESCO, Paris,
pp. 141—154.

Held, A., Ticehurst, C., Lymburner, L., Williams, N., 2003. High
resolution mapping of tropical mangrove ecosystems using hyper-
spectral and radar remote sensing. International Journal of Remote
Sensing 24, 2739—2759.

Himmelsbach, D.S., Boer, J.D., Akin, D.E., Barton, E.E., 1988. Solid-
state carbon-13 NMR, FTIR, and NIR spectroscopic studies of
ruminant silage digestion. In: Creaser, C.S., Davies, A.M.C. (Eds.),
Analytical Applications of Spectroscopy. Royal Society of
Chemistry, London, pp. 410—413.

Hirano, A., Madden, M., Welch, R., 2003. Hyperspectral image data
for mapping wetland vegetation. Wetlands 23, 436—448.

Hoffer, R.M., 1978. Biological and physical considerations in applying
computer aided analysis techniques to the remote sensor data. In:
Swain, P.H., Davis, S.M. (Eds.), Remote Sensing: The Quantitative
Approach. McGraw-Hill, New York, pp. 227—289.

Hsu, J.C., 1996. Multiple Comparisons: Theory and Methods.
Chapman and Hall, London, 277 pp.

John, G.H., Kohavi, R., Pfleger, K., 1994. Irrelevant features and the
subset selection problem. In: Cohen, W.W., Hirsh, H. (Eds.),
Machine Learning. Morgan Kaufmann, San Francisco, pp. 121—129.

Kavzoglu, T., Mather, P.M., 2002. The role of feature selection in
artificial neural network applications. International Journal of
Remote Sensing 23, 2919—2937.

Kohavi, R., John, G.H., 1997. Wrappers for feature subset selection.
Artificial Intelligence 97, 273—324.

Kokaly, R.F., 2001. Investigating a physical basis for spectroscopic
estimates of leaf nitrogen concentration. Remote Sensing of
Environment 75, 267—287.

Kruse, F.A., Boardman, J.W., Lefkoff, A.B., Young, J.M., Kierein-
Young, K.S., Cocks, T.D., Jenssen, R., Cocks, P.A., 2000. HyMap:
an Australian hyperspectral sensor solving global problems —
results from USA HyMap data acquisitions. In: Proceeding of
the International Conference Australasian Remote Sensing and
Photogrammetry, pp. 18—23.

Kumar, L., Schmidt, K., Dury, S., Skidmore, A.K., 2001. Imaging
spectrometry and vegetation science. In: van de Meer, F., de
Jong, S.M. (Eds.), Imaging Spectrometry. Kluwer Academic Press,
Dordrecht, pp. 111—155.

Landgrebe, D., 1997. On information extraction principles for
hyperspectral data. http://dynamo.ecn.purdue.edu/ ~landgreb/
whitepaper.pdf.

Lillesand, T.M., Kiefer, R.W., 2000. Remote Sensing and Image
Interpretation. Wiley, Chichester, 724 pp.

McDonald, M.S., 2003. Photobiology of Higher Plants. Wiley,
Chichester, 354 pp.

Menon, G.G., Neelakantan, B., 1992. Chlorophyll and light attenu-
ation from the leaves of mangrove species of Kali estuary. Indian
Journal of Marine Sciences 21, 13—16.

Mutanga, O., Skidmore, A.K., Van Wieren, S., 2003. Discriminating
tropical grass (Cenchrus ciliaris) canopies grown under different
nitrogen treatments using spectroradiometry. ISPRS Journal of
Photogrammetry and Remote Sensing 57, 263—272.

Perneger, T.V., 1998. What’s wrong with Bonferroni adjustments?
British Medical Journal 316, 1236—1238.

Peterson, D.L., Hubbard, G.S., 1992. Scientific issues and potential
remote sensing requirements for plant biochemical content. Journal
of Image Science and Technology 36, 446—456.

Ramsey, E.W., Jensen, J.R., 1996. Remote sensing of mangrove
wetlands: relating canopy spectra to site-specific data. Photogram-
metric Engineering and Remote Sensing 62, 939—948.

Richards, J.A., 1993. Remote Sensing Digital Image Analysis: An
Introduction. Springer-Verlag, Berlin, 340 pp.

Rothman, K.J., 1990. No adjustments are needed for multiple
comparisons. Epidemiology 1, 43—46.

Schmidt, K.S., Skidmore, A.K., 2003. Spectral discrimination of
vegetation types in a coastal wetland. Remote Sensing of
Environment 85, 92—108.

Schuerger, A.C., Capelle, G.A., Di Benedetto, J.A., Mao, C.,
Thai, C.N., Evans, M.D., Richards, J.T., Blank, T.A.,
Stryjewski, E.C., 2003. Comparison of two hyperspectral imaging
and two laser-induced fluorescence instruments for the detection
of zinc stress and chlorophyll concentration in bahia grass
(Paspalum notatum Flugge.). Remote Sensing of Environment 84,
572—588.

Siedlecki, W., Sklansky, J., 1989. A note on genetic algorithms for large-
scale feature selection. Pattern Recognition Letters 10, 335—347.
Soukupova, J., Rock, B.N., Albrechtova, J., 2002. Spectral character-
istics of lignin and soluble phenolics in the near infrared —
a comparative study. International Journal of Remote Sensing

23, 3039—-3055.

Sulong, 1., Mohd-Lokman, H., Mohd-Tarmizi, K., Ismail, A., 2002.
Mangrove mapping using Landsat imagery and aerial photo-
graphs: Kemaman District, Terengganu. Malaysia Environment,
Development and Sustainability 4, 135—152.

Thomas, V., Treitz, P., Jelinski, D., Miller, J., Lafleur, P.,
McCaughey, J.H., 2003. Image classification of a northern peat-
land complex using spectral and plant community data. Remote
Sensing of Environment 84, 83—99.

Tomlinson, P.B., 1994. The Botany of Mangroves. Cambridge
University Press, Cambridge, 419 pp.

Vaiphasa, C., 2003. Innovative genetic algorithm for hyperspectral
image classification. In: Proceedings of the International Confer-
ence MAP ASIA. http://www.gisdevelopment.net/technology/ip/
ma03071abs.htm.

Verheyden, A., Dahdouh-Guebas, F., Thomaes, K., De Genst, W.,
Hettiarachchi, S., Koedam, N., 2002. High-resolution vegetation
data for mangrove research as obtained from aerial photography.
Environment, Development and Sustainability 4, 113—133.

Williams, P., Norris, K., 2001. Near-infrared Technology in the
Agricultural and Food Industries. American Association of Cereal
Chemists Press, Minnesota, 296 pp.

Yu, S., De Backer, S., Scheunders, P., 2002. Genetic feature selection
combined with composite fuzzy nearest neighbor classifiers for hyper-
spectral satellite imagery. Pattern Recognition Letters 23, 183—190.

Zarco-Tejada, P.J., Miller, J.R., Morales, A., Berjon, A., Agiiera, J.,
2004. Hyperspectral indices and model simulation for chlorophyll
estimation in open-canopy tree crops. Remote Sensing of
Environment 90, 463—476.


http://dynamo.ecn.purdue.edu/~landgreb/whitepaper.pdf
http://dynamo.ecn.purdue.edu/~landgreb/whitepaper.pdf
http://www.gisdevelopment.net/technology/ip/ma03071abs.htm
http://www.gisdevelopment.net/technology/ip/ma03071abs.htm

	Tropical mangrove species discrimination using hyperspectral data: A laboratory study
	Introduction
	Methods
	Acquisition of hyperspectral data
	Mangrove leaf preparation
	Leaf spectral measurements

	Data treatments
	Statistical test
	Spectral separability


	Results
	ANOVA test
	Wrapper feature selection
	J-M distance

	Discussion
	References


