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Influence of charge fluctuations on the critical behavior of electrolyte solutions

V. L. Koulinskii, N. P. Malomuzh, and V. A. Tolpekin
Department of Theoretical Physics, Odessa State University, 2 Petra Velikogo, 270100 Odessa, Ukraine

~Received 21 September 1998; revised manuscript received 16 June 1999!

The effective Hamiltonian of electrolyte solution near its critical point is constructed. The vapor-liquid
critical point is investigated in detail. The strong dependence of the Landau-Ginsburg number on the concen-
tration of electrolyte is demonstrated. It is shown that the charge fluctuations in electrolytes essentially sup-
press the fluctuation of the order parameter and broaden the region of classical behavior.
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PACS number~s!: 05.70.Jk, 64.60.Fr, 82.60.Lf
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I. INTRODUCTION

In recent years critical phenomena in systems with C
lombic interaction between particles have been the objec
great interest of many experimental@1–6# and theoretical
@7–9# works. In @7# it was noted that the infinite range o
Coulombic interaction may lead either to mean-field beh
ior with classical exponents or to Ising-like behavior. A
other type of critical behavior seems to be unrealistic b
from theoretical grounds and experimental evidence@7#. At
first, the conclusion that the Coulombic interaction su
presses the fluctuations of an order parameter in solution
the electrolytes is confirmed by the experimental data
Refs.@1,10#. At the same time some electrolyte solutions@6#
show crossover from mean field to Ising behavior.

It is difficult to solve the problem of the type of critica
behavior of a system in experiments. The main question h
is the estimation of the Ginsburg number Gi, which contr
the width of the asymptotic regiont3 . Its magnitude de-
pends on the microscopic parameters of a system an
follows from experiments it varies in a wide range. In@2# the
crossover from classical to Ising-like behavior was clea
observed att3'1022. In @1,3,4# the data were fitted by clas
sical asymptotics up tot3'1024 near the critical point. The
molecular-dynamics simulations of molten salt@5# also show
classical behavior of an order parameter fort'1022,t5(T
2Tc)/Tc , although the influence of finite-size effects do
not allow us to say exactly whether the crossover does
place or not. In all cases, the width of the fluctuation reg
is smaller than the one for molecular liquids. In@6#, the de-
pendence of the width of the crossover region on the die
tric permittivity e of a solvent was investigated. It was o
served that the crossover region becomes smaller ase is
decreased. There are no physical reasons for the existen
suche* that Gi(e)→0 ase→e* .1. In case ofe* 51, we
deal with the plasma phase transitions@11#. Here we should
note that liquid metals show Ising-class critical behav
@12#, although they are the systems with pure Coulom
interaction. It is possible that this interaction is a precon
tion for the strong asymmetry of a binodal both for elect
lytes and liquid metals. The shape of a binodal in the c
sidered system is much more asymmetric than in the cas
molecular liquids. This circumstance is connected with
choice of an appropriate order parameter, which restores
symmetrical shape of a binodal. Otherwise, the;t2b term,
PRE 601063-651X/99/60~6!/6897~9!/$15.00
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which is absent in standard variants of the asymptotic eq
tion of state@13#, should be introduced to fit the experiment
data in laboratory variables@14#.

In such a situation it is necessary to construct the effec
Landau-Ginsburg Hamiltonian~LGH! of electrolyte solution
in such a way that it takes into account~a! the long-range
Coulombic interaction and~b! the short-range character o
the charge-charge correlation functions. The first attemp
this direction was undertaken in@15#. In that work the initial
Hamiltonian had the form

H@h~rW !,q~rW !#5Hs@h~rW !#1Hch@q~rW !#1H int@h~rW !,q~rW !#,
~1!

where the first two terms describe the Landau-Ginsb
Hamiltonian for a solvent and the Hamiltonian for the Co
lombic subsystem, respectively. The third term describes
interaction between the order parameterh(rW) and fluctua-
tions of charge densityq(rW). Near the vapor-liquid critical
point h(rW)5n(rW)2nc , wheren is the density of a solvent
nc is its critical value, and

Hs@h~rW !#5E dVF1

2
c0@¹W h~rW !#2

1
1

2
a2

(0)h~rW !21
1

4
a4

(0)h~rW !4G , ~2!

wherea2
(0)5a0(T2Tc)/Tc[a0t. The second termHch was

modeled by the expression

Hch@h~rW !#5E q~rW1!q~rW2!

e0urW12rW2u
drW1drW2 , ~3!

wheree0 is the dielectric permittivity of a solvent. The con
tact form forH int ,

H int52gE drWh~rW !q~rW !, ~4!

is least evident. As a result, the predictions made in@15#
have not been confirmed experimentally@7#.

A new attempt to construct the LGH and to calculate t
Ginsburg number for a system with Coulombic interacti
was undertaken quite recently in@16,17#. However, the fluc-
6897 © 1999 The American Physical Society
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tuations of dielectric permittivity which is directly connecte
with density fluctuations were ignored. As we will see fu
ther, the account of this coupling leads to essential renorm
ization of the coefficients in the effective LGH and should
taken into account.

In the present work we construct the effective LGH f
electrolyte solution near its vapor-liquid critical point sta
ing from a modernized form of the initial Hamiltonian~1!–
~4!. First of all, we ignoreH int in the form ~4! and take into
account the spatial inhomogeneity of dielectric permittiv
near the critical point, which is caused by its dependence
an order parameter:

e→e~rW !5e1
]e

]h
h~rW !1•••, ~5!

wheree is the equilibrium value for the dielectric permittiv
ity of a solvent. Due to Eq.~5!, the expression~3! for Hch is
only the first term in a series one8(rW)5e(rW)2e. The terms
of higher orders describing the most essential polariza
effects have the form

Hch@q~rW !,e8~rW !#5E U„rW1 ,rW2ue~rW !…q~rW1!q~rW2!drW1drW2 ,

~6!

where

U„rW1 ,rW2ue~rW !…

5 (
p>0

E dxW1•••dxW pKp~rW1 ,rW2uxW1 , . . . ,xW p!

3e8~xW1!•••e8~xW p! ~7!

and

K0~rW1 ,rW2!5
1

e0urW12rW2u
.

In Sec. II we determine the explicit form of kernelsKp ,p
.1 and the corresponding coefficients of the LGH. In S
III we analyze the dependence of the Ginsburg number
critical exponents on electrolyte concentration. A compa
son with experiments is also given. In Secs. IV and V
propose theoretical explanations for the concentration de
dence of the shift of the critical point and the degree
asymmetry of the equation of state. Some new problems
outlined in the Conclusion.

II. EFFECTIVE LANDAU-GINSBURG HAMILTONIAN

The electrolyte solution near its vapor-liquid critical poi
is characterized by two independent scales:~a! the screening
length r scr, which in the Debye approximation is

r scr'r D5A ekBT

( 4pea
2zana

, ~8!

wheree is the electronic charge,za and na are the valence
and the number density for the ions of type ‘‘a, ’’ T is the
l-

n

n

.
d

i-

n-
f
re

temperature, andkB is the Boltzmann constant;~b! the cor-
relation lengthr c for density fluctuations in a solvent,

r c5r 0t2n, n5H 0.5 classical region,

0.63 fluctuation region.
~9!

The critical behavior of a solution depends on the interp
of these scales. For experiments where

r scr@r c ,

the interionic electric field acts as the additional press
which changes the position of the critical point. The char
ter of the fluctuations of an order parameter for a syst
does not change and the range for the crossover of cri
exponents is determined by the Ginsburg number for a
vent. In the more important second case when

r scr,~! !r c , ~10!

the electric field of charge fluctuations polarizes a solv
and as a result leads to a variation of interaction constan
the LGH and also to the appearance of additional terms in

This consideration is based on the important fact that
screening length remains finite while approaching the liqu
gas critical point. Such a conclusion is a direct conseque
of the isomorphism principle for the critical phenomena
multicomponent mixtures and simple liquids. In accordan
with it, the only extensive variable of state is strongly flu
tuating in the vicinity of the critical point~see Appendix A!.
The level of fluctuations for others, which are orthogonal
it, is bounded. ‘‘Switching on’’ the Coulombic interactio
for the electroneutral system additionally suppresses
long-range fluctuations of the variable connected with
charge fluctuations.

The lower bound for the concentration range where D
bye screening is not destroyed by the thermal fluctuation

xmin5v eS kBT

e2 D 3

'1026, ~11!

wherev is the volume per molecule of a solvent.
The electric field of charge fluctuations polarizes the s

vent. Because of this, the local electrostatic energy is fluc
ating on the scales of density-density correlation length. T
account of this contribution renormalizes the interaction c
stants in the LGH. To construct the corresponding LGH,
will use the interrelation~5! between fluctuations of densit
and dielectric permittivity,

e→e~rW !5e@11l1h~rW !1l2h2~rW !1•••#, ~12!

lk5
rc

k

e~rc!

]ke

]rkU
r5rc

, h5r/rc21. ~13!

Here,e is the equilibrium value for the dielectric permittiv
ity. We can obtain the effective LGH as follows. For a h
mogeneous system, the density of energy is a sum of
non-Coulombic contributionhnC and that for the Coulombic
subsystemhC . Far away from the critical point, the latter ha
the structure
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hC52
1

8p
Gc

3 1

~e/ec!
3/2

, ~14!

where n is the particle density,G is the inverse screenin
length, and the index ‘‘c’’ indicates that the values are take
in the critical point. To take into account the large-scale
homogeneity of a system, we assume that the condition

r c.r scr

is fulfilled, wherer c is the correlation length for the fluctua
tions of an order parameter. We can use the analogous
pressions forhnC andhC in which local values ofe andn,

n→n@11h̃~r !#,
~15!

e→e@11 ẽ~r !#,

should be substituted. As a result the fluctuational contri
tion of the Coulombic subsystem into the energy of a sys
is equal to

bhC~x!52
Gc

3

8p F 1

@11 ẽ~xW !#3/2
21G . ~16!

The formal derivation of the quasilocal approximatio
~16! from the microscopic point of view is given in Appen
dix A. Adding the quasilocal term

bh(ql)5
b2

2
@¹h~r !#2, ~17!

we assume that the value ofb can be evaluated with the hel
of results@16,18#.

Using the dimensionless form of the coefficients of t
LGH, the formulas~15! and ~16! yield the following:

bHeff@h~xW !#5E dxW S b

2
@¹W h~xW !#21 (

m51

`
am

m
hm~xW !D ,

~18!

where

am5am
(0)1am

(el)x3/2, m>1, am
(0)50,m>5, ~19!

b5~c01c!s, ~20!

and according to Eq.~2!,

a1
(0)5a3

(0)50.

Heres is the diameter of a molecule in a solvent. The valu
of am

(el) are determined from Eq.~16! and are equal to

am
(el)5

~21!m11

16p

~2m11!!!

~2m22!!!
~G* s!3, G* 5

G

Ax
. ~21!

The calculation of the LGH without taking into accou
polarization effects was done in@16,17# based on different
models. The obtained Ginsburg criterion did not show
existence of crossover (Gi.10).
-

x-

-
m

s

e

Now it is desirable to reduce the initial Hamiltonian of a
electrolyte~18! in the vicinity of the critical point (r D!r c)
to the Landau-Ginsburg form. Usually such a reduction
performed by omitting all local terms;hn,n>5. However,
this step is connected with the loss of important informat
about corrections to the leading asymptotic terms@19#. A
more suitable way is connected with the attraction of cat
trophe theory@20#, which states that the nonlinear transfo
mation of the order parameter

h→f̃5h1g2h21g3h31•••[ P̂th ~22!

and the shift transformation

f̃→f5f̃2f0[ P̂sf̃ ~23!

reduce the infinite series

h5 (
n51

1

n
Anhn ~24!

to the canonical form

h„h~f!…5A1
(c)f1

1

2
A2

(c)f21
1

4
A4

(c)f4[h(c)~f!.

~25!

The coefficientsAk
(c) are the definite nonlinear functions o

the initial ones~see@19,21#!:

A(c)5 P̂cA, P̂c5 P̂sP̂t . ~26!

In the fluctuation region the situation is more complex sin
the behavior of a system is described by a configuration
tegral:

Q5E exp$2bHeff@h~xW !#%Dh~xW !. ~27!

In this case the transformation~22! has a local character an
is accompanied by Jacobian terms. The Landau-Ginsb
Hamiltonian of a system is a result of the iterative proced
generated by the elementary transformations~22!:

bHcan@c~xW !#5
b

2E „¹W c~xW !…2dxW1E dxW S 2a1
(c)c~xW !

1
1

2
a2

(c)c21
1

4
a4

(c)c4D . ~28!

Here

c5Tch5g01h1
1

2
g2h21•••, a(c)5T̂cA. ~29!

The details of these transformations can be found in@19,21#.

III. GINSBURG CRITERION FOR ELECTROLYTE
SOLUTIONS

It is well known @13# that the crossover from classical t
Ising-like critical behavior of a system occurs at the tempe
ture
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t'Gi, ~30!

where

Gi5
a4

(c)2
Tc

2

ab3
, a5

da2
(c)

dt U
T5Tc

. ~31!

Valuesa0 (a2
(0)5a0t) and a4

(0) for the initial Hamiltonian
can be extracted from the van der Waals equation~see@19#!:

a0.bcFd2, a4
(0).d4, ~32!

whered5ncs
3 is the dimensionless density and2F is the

minimum value of the interparticle potential for a solven
Using Eqs.~21! yields

a4
(c)

a4
(0)

512ã4x3/21o~x3/2!,

a

a0
511ãx3/21o~x3/2!, ~33!

b

c0
511l1x1/21o~x1/2!,

where

ã4.
1

a4
(0) ~G* s!3d4S ] ln e

] ln r D 4

.0.1–1,

T̃5
Tc2Tc

(0)

Tc
(0)

.0.01,

~34!

ã.
1

a0
~G* s!3d2S ] ln e

] ln r D 2

.1,

l1.
1

c0
~sG* !.0.1.

The numerical estimations forã4 , T̃, ã, andl1 are obtained
for the following values of the parameters:

d.0.33, bcF.1.

We assume that] ln e/] ln r can be approximated by the fo
mula

] ln e

] ln r
5

Ar

e
~35!

and the coefficientA is equal to 280 cm3/g for water in ac-
cordance with@22#, at least by the order of magnitudeG* s
,1. Using Eqs.~31! and ~33!, we obtain the following
renormalized value of the Ginsburg number:

Gi~x!'Gi(0)
~12ã4x3/2!2

~11ãx3/2!~11l1x1/2!3
, ~36!
.

where Gi(0) is the Ginsburg number for a solvent. In fact, th
Ginsburg number essentially depends on the ratio of the
plitude of correlation lengthr 0 and the Debye screenin
length. In accordance with what was said above, the G
burg number is a monotone decreasing function of conc
tration. Besides this, it also depends on the temperature
parameter. Summarizing our arguments for the regionsr D
,(.)r c , we can write

Gi~xut!5H Gi(0), x!xD~t!,

Gi~x!, xD~t!!~, !x,
~37!

where

xD~t!5S 1

G* r 0
D 2

t2n ~38!

is the limit concentration of an electrolyte, which determin
the applicability region of our polarization model. The co
centration dependences of Gi at some fixedt and different
values of the dielectric permittivity are presented in Fig.
Note that the greater the value of the dielectric permittiv
is, the greater is Gi. This fact was noted experimentally
@6#. Figure 2 shows the concentration dependence of Gi

FIG. 1. The relative value Gi/Gi0 of the Ginsburg number as
function of concentration (x axis! and dielectric permittivity (y
axis! calculated by formula~36!. The scales on thex and y axes
equal to 1:0.0002 and 1:2, respectively.

FIG. 2. Concentration dependence of the Ginsburg number
parameters given in the text.
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electrolyte solution withe580 andG* s50.5. The qualita-
tive behavior of Gi(x) nearxD is shown by a dashed line
Essentially, the value ofa4 vanishes and the system loses
stability at the concentration of an electrolyte:

x* 5ã4
22/3. ~39!

Obviously this possibility is realized only ifã4.1 @see Eq.
~33!#. In this case one can expect the multicritical behav
of a system@7#.

Using the formula~37! is not convenient since usuall
experiments are carried out at fixed concentration. Let
illustrate this situation considering the values of the criti
exponent. According to Eq.~37! we have

n55
0.5 for

Gi(0) , tD~x! , t ~a!

Gi , t , tD~x! ~b!,

0.625 for
t ! Gi(0) , tD~x! ~c!

t ! Gi , tD~x! ~d!,

~40!

where

tD5~r 0G*
Ax!1/n;x. ~41!

At the end of this section, let us complete the obtain
results with qualitative arguments. By order of magnitu
@13#

Gi5S r s

r 0
D 6

, ~42!

wherer s is the interparticle spacing. The addition of an ele
trolyte leads to the augmentation of the correlation len
amplitude because of its renormalization by charge-cha
fluctuations. It is clear that the behavior of strongly conce
trated electrolytes is expected to be similar to that of sim
liquids or liquid metals.

IV. FLUCTUATION-INDUCED SHIFT OF THE CRITICAL
POINT IN A SOLUTION OF ELECTROLYTES

An anomalous curvature of theT-x and P-x projections
of the critical line of electrolyte solution at very small mo
fractions of an electrolyte NaCl1H2O was observed in man
experimental works@23–25#. But the nature of very big val-
ues ofdTc(x)/dx was not clarified.

We will show that the shift of the critical point of a hig
diluted solution from the locus of a pure solvent is govern
predominantly by the charge-charge fluctuations. T
‘‘square root’’ concentration law for such a shift is a dire
consequence of the polarizational charge-density coup
theory proposed in previous sections. The dependence o
coefficients of the effective LGH at low concentrations
given by Eq.~33!. In the mean-field approximation, the sh
of the critical temperature as it follows from Eq.~33! is

D (mean)Tc.x3/2. ~43!
r

s
l

d
e

-
h
e
-
e

d
e

g
he

But the fluctuations change slightly the value of the critic
temperature. This fluctuation-induced shift of the critic
temperature~the locus of the critical point in general! is pro-
portional to

D (fl)Tc.Ax. ~44!

Indeed, let us define the renormalized order parameter so
the coefficient at the gradient term is equal to unity:

f~r !5Ac~x!h~r !. ~45!

The LGH for the new order parameter reads as follows:

bHeff@f#5E dVS 1

2
@¹f~r !#21ã1~T,x!f~r !

1
1

2
ã2~T,x!f2~r !1

1

4
ã4~T,x!f4~r ! D ,

~46!

where

ãk~T,x!5@c~x!#2k/2ak~T,x!. ~47!

In the first order of perturbation theory on fluctuation co
pling constantã4 @27#, we have

ã2
R~T,x!5ã2~T,x!13ã4~T,x!

d

dLE
0

L

G0~q!dqU
L51

,

G0~q!5
1

ã2~T,x!1q2
. ~48!

From Eq.~44! it follows that

dTc~x!

dx
.

1

Ax
, ~49!

which explains the anomalously big values ofdTc(x)/dx
observed in@23–25#. Note that such a term was used pure
empirically in @26# to process the experimental data. T
same conclusion on the existence ofAx terms is valid for
other coordinates of the critical point, such as pressure
density.

V. ASYMMETRY OF A BINODAL FOR ELECTROLYTE
SOLUTIONS

In this section we will show that the addition of electr
lyte leads to essential additional asymmetry of the vap
liquid coexistence curve. We establish this fact in an evid
form within the framework of the canonical formalism
@19,21#, which gives a clear motivation for all standar
asymptotic terms of the equation of state as well as for th
of form tnb introduced in@14#.

As follows from the scale-invariant theory of critical phe
nomena, the singular part of the equation of state is given
the expression
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^P&5uh2ubgsS h1

uh2ub1gD . ~50!

The order parameterP and conjugated fieldsh1 ,h2 within
the canonical formalism should be identified withc and the
coefficientsa1

(c) ,a2
(c) of the Hamiltonian~28!. As a result,

Eq. ~50! takes the form

^c&5ua2
(c)ubgsS a1

(c)

ua2
(c)ub1gD . ~51!

Here the bracketŝ& designate the averaging on the volum
of the correlation sphere (}r c

3). In particular, the equation o
a binodal including the additional Wegner’s term@28# is as
follows:

^c&bin56ua2* ubgs~0!~11b2ua2* uD1••• !, ~52!

wherea2* 5a2
(c)ua

1
(c)50. Its ‘‘liquid’’ and ‘‘gas’’ branches in

variables (c,a2* ), as is clear from Eq.~51!, are absolutely
symmetric. But this symmetry disappears if we return to
initial ~‘‘laboratory’’ ! variables (h,t) @19,21#. Indeed, using
Eqs.~22! and ~23! one can get

^h&5C1^c&1
1

2
G2^c

2&1•••. ~53!

Since~see@13#!

^c2&5^c&21uh2u12al sS h1

uh2ub1gD ,

where the functionl s(x) is inverse togs(x), Eq. ~53! in the
asymptotic region transforms to

1
2 ~^h&bin

1 2^h&bin
2 !5gs~0!ua2* ub~11b2ua2* uD1••• !1•••,

~54!

1
2 ~^h&bin

1 1^h&bin
2 !5C1 1

2 G2@gs
2~0!ua2* u2b1 l s~0!ua2* u12a#

1•••.

Note that Eq.~54! besides standard terms@13# includes an
additional contribution }utu2b ~as well as other terms
}utunb,n.2). The latter was introduced in works@14# due
to empirical reasons. This new term withb50.5 appears in
the mean-field approximation@29# as well. Essentially, the
asymmetry of the coexistence curve is determined by a p
uct of universal multipliersgs(0) and l s(0) and the coeffi-
cient G2 describing the individual properties of liquids an
solutions. The temperature and concentration dependenc
coefficientsC,G2 ,a2* are determined by the expressions~21!
and

C.C01C1t1•••,

Ci.Ci
(0)1Ci

(el) , i 50,1,
~55!

G2.G2
(0)1G2

(el) ,

a2* .a2
(0)1a2

(el) ,
e

d-

of

whereCi
(0) ,G2

(0) ,a2
(0) are the values of the respective coef

cients in the absence of electrolyte. The values of the te
induced by electrolyte impurity in Eqs.~55! are of }x3/2

order and strongly depend on the parameterG* s. If G* s
,(!)0.1, they can be omitted. In the opposite cases,
account of additional terms is rather essential. It occurs
to the decrease of the value ofa4 ~see the formulas below!.
The coefficientC1 is equal to the tangent of the slope ang
of the rectilinear diameter with respect to the temperat
axis in the mean-field approximation. Approximate valu
for C0 andC1 as well as forG2

0 andG2
(el) can be calculated

with the help of formulas

C'2
Ã3

4Ã4

,

~56!

G2
(0)'2

2a5
(0)

5a4
(0)

, G2
(el)'0.4

a5
(el)a4

(0)2a4
ela5

(0)

a4
(0)~a4

(0)1a4
(el)!

.

Here Ãn are the coefficients of the Hamiltonian

h4~f̃ !5Pt@h„h~f̃!…#5Ã1f̃1
1

2
Ã1f̃21

1

3
Ã1f̃31

1

4
Ã4f̃4

obtained from Eq.~24! with the help of transformation~22!.
The results of numerical calculations of the concentrat

dependences for the coefficientsG2 and C1 are shown in
Figs. 3 and 4, respectively. Figure 4 indicates that the ad
tion of electrolyte leads to the increase of asymmetry of
coexistence curve, which is in qualitative agreement w
experiments@5,10,30#.

VI. DISCUSSION

The main attention in this paper is focused on the deta
account of polarization effects in electrolyte solutions ne
their vapor-liquid critical points. It is shown that the essent
renormalization of coefficients of the Landau-Ginsbu
Hamiltonian takes place. The renormalization of coupli
constanta4

(c) is especially significant. For some solvents
definite concentration of an electrolyte, the coefficienta4

(c)

FIG. 3. The concentration dependence of coefficientG2 ~53!
determining the nonuniversal contribution to the amplitude of r
tilinear diameter singularity.
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can reach zero and further become negative. This means
respective systems can lose their stability. The decreas
a4

(c) at the addition of electrolyte also leads to the consid
able diminishing of the Ginsburg number. As a result,
applicability region of mean-field theory of fluctuations e
pands. Besides, it is shown that the addition of electroly
augments the asymmetry degree of the equation of state.
fortunately, the verification of these predictions is now im
possible since the needed experimental data are absent
literature.

The approach developed in this paper can be applie
solutions of electrolytes or dipole impurities in binary mi
tures near their consolute points. In fact, the respec
change of formalism is inessential. But reliable informati
about the coefficients of the initial Landau-Ginsburg Ham
tonian is also absent. However, one qualitative fact disc
ered in@31# attracts our attention. It was shown, in particula
that the critical exponentn of the correlation length near th
double critical point~DCP! takes the following value:

n52n0 , n050.5,

wheren0 is the respective exponent far away from the DC
The classical value ofn0 can be easily explained in our ap
proach. The systems investigated in@31,32# went beyond the
vicinity of the DCP under the influence of a small quantity
electrolyte or dipole impurity. Their addition leads to th
narrowing of the region where the fluctuations have sca
invariant character. Besides, these impurities lead to a
tional asymmetry of the equation of state. This is in quali
tive agreement with the results of@1#.

The essential focus from our point of view has detailed
account of polarizational effects within the restricted prim
tive model@7#. Besides, the use of collective variables@18#
allows us to analyze main screen effects in a more di
way. The results of our consideration of this question will
presented separately.

FIG. 4. Tangent of the slope of rectilinear diameter with resp
to temperature axis vs electrolyte concentration according to
~56! at e580 andGs50.5.
hat
of

r-
e

s
n-

-
the

to

e

-
-

,

.

-
i-
-

n

ct

ACKNOWLEDGMENTS

The authors are cordially grateful to Professor V.N. Bon
arev, Professor L.A. Bulavin, Professor A.V. Chaly, and P
fessor B.A. Veytsman for fruitful discussions of the resul

APPENDIX A

It is known @33# that the fluctuation partdF of the free
energy for a binary mixture in the quadratic approximati
has the structure

d f 5
1

2 S 2
1

bT
j0

21
]m2

]c
j1

2D1•••, ~A1!

where

j05
dn1

n1
(0)

1
dn2

n2
(0)

, j15
dn1

n1
(0)

2
dn2

n2
(0)

~A2!

describe the fluctuations of the density and the composi
in the system, andn1

(0) andn2
(0) are the equilibrium densities

of the components.
In a general case, according to Eq.~A1!, critical phenom-

ena in binary mixture can be of two types:~a! liquid-vapor
and~b! ‘‘decomposition.’’ The critical points of the first type
are located on the surface determined by the equation

bT
2150, ~A3!

and the second is located on the surface,

]m2

]c
50. ~A4!

Near the vapor-liquid critical point, the variablej0 is
strongly fluctuating while the fluctuations ofj1 are bounded.
We call such a variable weakly fluctuating. The case of m
ticomponent mixtures differs only in the number of weak
fluctuating variables. The boundness of fluctuations forj1

means that fluctuations ofn1
(0) and n2

(0) leading to strong
fluctuations ofj0 obey the condition

dn1

n1
(0)

2
dn2

n2
(0)

!minS dn1

n1
(0)

,
dn2

n2
(0)D . ~A5!

Near the consolution point, the situation is inverse.
An interesting example of a binary mixture is salt molte

in which neutral salt molecules are fully dissociated into io
of only two types. In this case,n1

(0) and n2
(0) satisfy the

electroneutrality condition

z1n1
(0)5z2n2

(0) , ~A6!

wherezi , i 51,2, is the valency of an ion. Strictly speakin
the latter are also connected with first variable.

Due to strong Coulombic interactions, only the vapo
liquid critical point is possible in such salt molten. For th
same reason, the inequality for fluctuationsj1 becomes
stronger. Therefore, it is expedient to move on to new va
ables

t
q.
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dr5z1n(0)j1 , ~A7!

df5
n(0)

j02j1
.

n1
(0)

2
j0 , ~A8!

which describe the fluctuations of charge and electroneu
density, respectively.

APPENDIX B

It is essential that due to Eq.~10! the corresponding po
larizational contributions to the LGH can be obtained by
averaging of Eq.~6! over the charge fluctuations. Collectin
in Eq. ~6! the contributions of different types of ions, we g

^bHch@q~rW !,ẽ~rW !#&

5
e2n0

2

2kBTe2 (
a,b

xaxb

3E dV1dV2f a,b„rWa ,rWbu ẽ~rW !…ua,b„rW1 ,rW2ue~rW !….

~B1!

Here

f a,b~rWa ,rWb!5^qa~rW1!qb~rW2!&5zazbe2D~rW1 ,rW2u ẽ ! ~B2!

is the pair correlation function of ions of types ‘‘a,b, ’’ n0 is
the particle density, and

ẽ~x!5
e8~x!

e
. ~B3!

The interionic potentialua,b can be extracted from the Pois
son equation

K̂xG~xW ,yW !524pd~xW2yW !, ua,b~rWa ,rWb!5zazbG~rWa ,rWb!,
~B4!

where

K̂x5@¹W •e~xW !#¹W . ~B5!

In accordance with@29#, the function f a,b(rWa ,rWb) can be
found from the equation

] f a,b

]rWb

52
1

kBT

]ua,b

]rWb

2
1

kBT (
d

xdE ]ub,d

]rWb

f a,b,ddVd .

~B6!

Here f a,b,d is the triple correlation function. Now differen
closures may be used. For small concentrations,x.xmin , of
electrolyte, Kirkwood’s superposition approximation@29# for
f a,b,d can be used. But this step needs a certain amoun
caution in the case of low concentrations for highly asy
metric electrolytes, for whichd1 /d2!(@)1, wheredi is
the diameter of thei th ion as follows from the results of@34#.

Multiplying Eq. ~B6! on @11 ẽ(xW )# and applying the op-
erator¹W with the help of Eq.~B4!, we get
al

e

of
-

KxD~xW ,yW u ẽ !2G loc
2 D~xW ,yW u ẽ !54pd~xW2yW !, ~B7!

where

G loc5
G

A11 ẽ~xW !

is the local value of inverse screening length andG is its
value in homogeneous media. In the Debye approximat
G is

G5
1

r D
.

Obviously bothf a,b andua,b are functionals of the dielectric
permittivity. So we can write Eq.~B1! as

^bH int&5
G4

32p2E dxW dyW G~xW ,yW u ẽ !D~xW ,yW u ẽ !. ~B8!

In a local approximation for Eq.~B8! we get

^bH int
( l )&52

G3

8pE dxW
1

@11 ẽ~xW !#3/2
. ~B9!

This result could be written down immediately since the
tegrand is the local energy in the Debye approximation.
the case of small gradients of the dielectric permittivity, t
quasilocal contribution to the energy of a system can be w
ten as

^bH int
(ql)&5

c

2E „¹W h~xW !…2dV. ~B10!

In this section we seth(xW )[ẽ(xW ). To obtain the value ofc,
we representG(xW ,yW ) and D(xW ,yW ) as the expansions o
(¹W ẽ)2:

G~xW ,yW !5G0~xW ,yW !1
@¹W ẽ~xW !#2

2
G2~xW ,yW !1•••,

~B11!

D~xW ,yW !5D0~xW ,yW !1
@¹W ẽ~xW !#2

2
D2~xW ,yW !1•••.

The functionsG0(xW ,yW ) and D0(xW ,yW ) are determined by the
local terms of the Poisson equation and can be represent
the form

G0~xW ,yW !55
1

11 ẽ~xW !

1

uxW2yW u
, uxW2yW u<r c ,

1

uxW2yW u
, uxW2yW u@r c ,

~B12!
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D0~xW ,yW !

55
1

uxW2yW u
exp~2G locuxW2yW u!

1

11 ẽ~xW !
, uxW2yW u<r c ,

1

uxW2yW u
exp~2GuxW2yW u!, uxW2yW u@r c .

FunctionsG2(xW ,yW ) andD2(xW ,yW ) are not equal to zero whe
uxW2yW u<r c . So we have

G2~xW ,yW !5H 2
uxW2yW u

2
, uxW2yW u<r c ,

0, uxW2yW u@r c ,

~B13!
lt,

.

nd

h.

f

D2~xW ,yW !5H 1

2uxW2yW u
exp~2GuxW2yW u!, uxW2yW u<r c ,

0, uxW2yW u@r c .

In Eqs. ~B12! and ~B13! it is taken into account that on

scales uxW2yW u@r c , the media are spatially homogeneou
Substituting Eqs.~B11!, ~B12!, and ~B13! in Eq. ~B8!, we
get

c5
3

16p
G. ~B14!
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