PHYSICAL REVIEW E VOLUME 60, NUMBER 6 DECEMBER 1999

Influence of charge fluctuations on the critical behavior of electrolyte solutions
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The effective Hamiltonian of electrolyte solution near its critical point is constructed. The vapor-liquid
critical point is investigated in detail. The strong dependence of the Landau-Ginsburg number on the concen-
tration of electrolyte is demonstrated. It is shown that the charge fluctuations in electrolytes essentially sup-
press the fluctuation of the order parameter and broaden the region of classical behavior.
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I. INTRODUCTION which is absent in standard variants of the asymptotic equa-
tion of statg13], should be introduced to fit the experimental
In recent years critical phenomena in systems with Coudata in laboratory variablgd4].

lombic interaction between particles have been the object of In such a situation it is necessary to construct the effective
great interest of many experimentdl—6] and theoretical Landau-Ginsburg HamiltoniaL.GH) of electrolyte solution
[7-9] works. In[7] it was noted that the infinite range of in such a way that it takes into accou@ the long-range
Coulombic interaction may lead either to mean-field behav-Coulombic interaction andb) the short-range character of
ior with classical exponents or to Ising-like behavior. An-the charge-charge correlation functions. The first attempt in
other type of critical behavior seems to be unrealistic bottthis direction was undertaken ja5|. In that work the initial
from theoretical grounds and experimental evidefie At ~ Hamiltonian had the form
first, the conclusion that the Coulombic interaction sup-
presses the fluctuations of an order parameter in solutions o[ 7(1),a(r)1=HJ 7()1+H A1) 1+ Hinl 7(r),a(N)]1,
the electrolytes is confirmed by the experimental data of (1)
Refs.[1,10]. At the same time some electrolyte solutid6$

show crossover from mean field to Ising behavior where the first two terms describe the Landau-Ginsburg

It is difficult to solve the problem of the type of critical Hamiltonian for a solvent and the Hamiltonian for the Cou-

behavior of a system in experiments. The main question heljé’mb'c subsystem, respectively. The third term describes the

is the estimation of the Ginsburg number Gi, which controlsinteraction between the order parametgfr) and fluctua-

the width of the asymptotic regioty, . Its magnitude de- tions of charge denS|ty|(r) Near the vapor-liquid critical

pends on the microscopic parameters of a system and g@®int n(r)—n(r) n., wheren is the density of a solvent,

follows from experiments it varies in a wide range[#jthe  n_ s its critical value, and

crossover from classical to Ising-like behavior was clearly

observed at,~10 2. In[1,3,4) the data were fitted by clas- - 1 - -,

sical asymptotics up tb, ~10 * near the critical point. The Hdl ”(r)]:f dV| 5ol V(1]

molecular-dynamics simulations of molten 4&lf also show

classical behavior of an order parameter for10 2, 7=(T
—T.)/T., although the influence of finite-size effects does

not allow us to say exactly whether the crossover does take

place or not. In all cases, the width of the fluctuation regionwhereal® = ao(T—T,)/T.=ao7. The second terrhl, was

is smaller than the one for molecular liquids.[®&], the de- modeled by the expression

pendence of the width of the crossover region on the dielec-

tric permittivity e of a solvent was investigated. It was ob- - q(r l)q(rz)

served that the crossover region becomes smalle¢ &s Hl n(N]=| —=——=—

decreased. There are no physical reasons for the existence of

suche” that Gi(e) ~0 ase—e*>1. In case ofe* =1, we  wheree, is the dielectric permittivity of a solvent. The con-

deal with the plasma phase transitidad]. Here we should  act form forH,,,

note that liquid metals show Ising-class critical behavior

[12], although they are the systems with pure Coulombic ..

interaction. It is possible that this interaction is a precondi- Hint= —gf dra(r)q(r), 4)

tion for the strong asymmetry of a binodal both for electro-

lytes and liquid metals. The shape of a binodal in the conis least evident. As a result, the predictions madd 1if]

sidered system is much more asymmetric than in the case ¢fave not been confirmed experimentdlIRj.

molecular liquids. This circumstance is connected with the A new attempt to construct the LGH and to calculate the

choice of an appropriate order parameter, which restores th@insburg number for a system with Coulombic interaction

symmetrical shape of a binodal. Otherwise, the®? term,  was undertaken quite recently ih6,17. However, the fluc-

1 -, 1 >
a8 n(N* zaPn(0Y, @)

dr 1d 2, (€]
50|r1_r2|
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tuations of dielectric permittivity which is directly connected temperature, an#lz is the Boltzmann constantb) the cor-
with density fluctuations were ignored. As we will see fur- relation lengthr for density fluctuations in a solvent,
ther, the account of this coupling leads to essential renormal- _ _
ization of the coefficients in the effective LGH and should be . 0.5 classical region,
taken into account. fe=fo7 % "1063 fluctuation region. ©
In the present work we construct the effective LGH for
electrolyte solution near its vapor-liquid critical point start- The critical behavior of a solution depends on the interplay
ing from a modernized form of the initial Hamiltonidt)— of these scales. For experiments where
(4). First of all, we ignoreH;,,; in the form(4) and take into
account the spatial inhomogeneity of dielectric permittivity Nse™lcs

near the critical point, which is caused by its dependence on | o o »
an order parameter: the interionic electric field acts as the additional pressure

which changes the position of the critical point. The charac-
- de . ter of the fluctuations of an order parameter for a system
e—e(r)=et %ﬂ(fH R (5 does not change and the range for the crossover of critical
exponents is determined by the Ginsburg number for a sol-
wheree is the equilibrium value for the dielectric permittiv- vent. In the more important second case when
ity of a solvent. Due to Eq(5), the expressiof3) for H, is

only the first term in a series o#l (r) = e(F)— €. The terms

of higher orders describing the most essential polarizatiogne gjectric field of charge fluctuations polarizes a solvent

effects have the form and as a result leads to a variation of interaction constants in
the LGH and also to the appearance of additional terms in it.
HCJQ(F),G’(F)]=j U(ry,roe()a(r)a(rp)dradr,, This consideration is based on the important fact that the
®) screening length remains finite while approaching the liquid-
gas critical point. Such a conclusion is a direct consequence
where of the isomorphism principle for the critical phenomena in
multicomponent mixtures and simple liquids. In accordance
U(ry,roe(r)) with it, the only extensive variable of state is strongly fluc-
tuating in the vicinity of the critical pointsee Appendix A
=S | ARy A% Ky (T1 ool X - e Xo) The level of fluctuations for others, which are orthogonal to
=0 ! pRpLT LT 21Ty - it, is bounded. “Switching on” the Coulombic interaction
R . for the electroneutral system additionally suppresses the
X €' (X)) - €(Xp) (7) long-range fluctuations of the variable connected with the
charge fluctuations.
and The lower bound for the concentration range where De-
1 bye screening is not destroyed by the thermal fluctuations is

Fser<(<)rc, (10)

KO(FLFZ): S > 3
colf1 =1 Xmin=V € kB—ZT) ~10°° (1)
e ’

In Sec. Il we determine the explicit form of kernefs, ,p

>1 and the corresponding coefficients of the LGH. In Secwherev is the volume per molecule of a solvent.

Il we analyze the dependence of the Ginsburg number and The electric field of charge fluctuations polarizes the sol-
critical exponents on electrolyte concentration. A compari-vent. Because of this, the local electrostatic energy is fluctu-
son with experiments is also given. In Secs. IV and V weating on the scales of density-density correlation length. The
propose theoretical explanations for the concentration depemccount of this contribution renormalizes the interaction con-
dence of the shift of the critical point and the degree ofstants in the LGH. To construct the corresponding LGH, we
asymmetry of the equation of state. Some new problems argill use the interrelatior(5) between fluctuations of density

outlined in the Conclusion. and dielectric permittivity,
Il. EFFECTIVE LANDAU-GINSBURG HAMILTONIAN e—e(N)=€e[1+Nyn(r)+Nom?(N)+ -1, (12
The electrolyte solution near its vapor-liquid critical point K gk
is characterized by two independent scalesthe screening = Pe 7€ n=plp.—1. (13)
lengthr,, which in the Debye approximation is €(pc) gpk s ¢
~FPc
o= ekgT ) Here, € is the equilibrium value for the dielectric permittiv-
ser D 5 ' ity. We can obtain the effective LGH as follows. For a ho-
> 4melzan, mogeneous system, the density of energy is a sum of the

non-Coulombic contributiot,c and that for the Coulombic
wheree is the electronic charge, andn, are the valence subsystenh.. Far away from the critical point, the latter has
and the number density for the ions of typa,” T is the the structure
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1 1 Now it is desirable to reduce the initial Hamiltonian of an
he=— 8_r°—3/2’ (14)  electrolyte(18) in the vicinity of the critical point (p<<r)
T “(elec) to the Landau-Ginsburg form. Usually such a reduction is

performed by omitting all local terms 7",n=5. However,
this step is connected with the loss of important information
about corrections to the leading asymptotic tefb8]. A
more suitable way is connected with the attraction of catas-
trophe theory[20], which states that the nonlinear transfor-
mation of the order parameter

wheren is the particle densityl” is the inverse screening
length, and the index ¢” indicates that the values are taken
in the critical point. To take into account the large-scale in-
homogeneity of a system, we assume that the condition

rC> rscr

: ' . . . 2 3 =B

is fulfilled, wherer . is the correlation length for the fluctua- n—¢=ntyn tysnt- =Py (22)
tions of an order parameter. We can use the analogous ®Xnd the shift transformation

pressions foh,c andh¢ in which local values of andn,

b p=dp— po=Psd (23)

(15  reduce the infinite series

n—n[1+7(r)],

e—e[1+e(n)],
1
should be substituted. As a result the fluctuational contribu- h= 21 ﬁAn 7" (24)
tion of the Coulombic subsystem into the energy of a system "
is equal to to the canonical form
h - Fg 1 (c) 1 () 42 1 (€) p2=h(©)
B C(X)__ﬁ [1+E()Z)]3/2_1 (16) h(n(¢))=A1" ¢+ EAz ¢ +ZA4 d"=h'"(¢).

(25)
The formal derivation of the quasilocal approximation
(16) from the microscopic point of view is given in Appen- The coefficientsA(kC) are the definite nonlinear functions of

dix A. Adding the quasilocal term the initial ones(see[19,21]):

2 C) — > = _ 5 F
Bh(q'):b?[V 7(N72, (17 AT=PA, Po=PPr. (20
In the fluctuation region the situation is more complex since
we assume that the value btan be evaluated with the help the behavior of a system is described by a configuration in-
of results[16,18. tegral:
Using the dimensionless form of the coefficients of the

LGH, the formulas(15) and(16) yield the following: Q:f expl — BHerl 7(X) 11D 7(X). (27)

g[ﬁ 7(X) ]2+ >, Gm 7(X) |, In this case the transformati@@2) has a local character and
m=1 M is accompanied by Jacobian terms. The Landau-Ginsburg
(18) Hamiltonian of a system is a result of the iterative procedure
generated by the elementary transformati(2®:

BHeﬁ[n<i>]=f dx

where
an=ad+alf m=1 al=om=5. (19 pH[ud]= 5 | Fueoroxt [ ox| e
b=(co+c)a, (20) 1w Lo
and according to Eq2), TR gy ) 8
a®=a®=0. Here
Hereo is the diameter of a molecule in a solvent. The values =Ten=yo+ 7+ %727;2+ o a(c’z'T'CA. (29)

of a(¢” are determined from Ed16) and are equal to

(=)™ (2m+ 1)1 The details of these transformations can be found $21].

r
16r 2m—zyn T+ Ti="r. (2D

\/; IIl. GINSBURG CRITERION FOR ELECTROLYTE
SOLUTIONS

a(e

The calculation of the LGH without taking into account
polarization effects was done {16,17] based on different It is well known[13] that the crossover from classical to
models. The obtained Ginsburg criterion did not show thdsing-like critical behavior of a system occurs at the tempera-
existence of crossover (&il0). ture
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~Gi, (30)
where
(c)?y2 (©)
a,’ T da
Gi= 4b30, a= di (31)
(04

T=T,

Values ag (2= aq7) andal® for the initial Hamiltonian
can be extracted from the van der Waals equatse®[19]):

ag=BD 8, al=s", (32)

where §=n.o? is the dimensionless density ardd is the

V. L. KOULINSKII, N. P. MALOMUZH, AND V. A. TOLPEKIN

PRE 60

W
S
I~ \\\\“\\ &:’:&’:"m"' NN, '.:..".4’*-
\”QQ’Q.Q.'."Q’%’O'.’#"'!'?’?#“'# R EER TR
.. g "O.' N e Ny v oy Ra e ey,
. Q’QQ’.Q'.Q.Q,Q,'.'t't.h""0,'0":"0":":"'
1y T {7
0, ' ydty
0.4— TN 'l' 0y eyt

5x10° X (concentration)

. . . : FIG. 1. The relative value Gi/Giof the Ginsburg number as a
minimum value of the interparticle potential for a solvent. fun

Using Eqs.(21) yields

al® 3
——=1-a,x%*+0(x%?),
200
4
o ~
— =1+ ax¥%+0(x%?), (33
ag
b / /
— =14\ xY2+0(x1?),
Co
where
~ 1 dlne\?
3 =~ —_
ay ago)(r*o) 54(&|np) 0.1-1,
- T—TO
T=— =001,
T
(34

1
)\12 *(O'F*)Zol
Co
The numerical estimations far,, T, @, and\; are obtained
for the following values of the parameters:
6=0.33, B.P=1.

We assume thatln €/dIn p can be approximated by the for-
mula

dlne Ap
dlnp €

(35

and the coefficienA is equal to 280 crAig for water in ac-
cordance wit22], at least by the order of magnitude, o
<1. Using Egs.(31) and (33), we obtain the following
renormalized value of the Ginsburg number:

( 1 _54)(3/2) 2

(1+ax¥)(1+\xH2)3

Gi(x)~Gi(® (36)

ction of concentration X axis) and dielectric permittivity ¥
axis) calculated by formula36). The scales on th& andy axes
equal to 1:0.0002 and 1:2, respectively.

where Gi? is the Ginsburg number for a solvent. In fact, the
Ginsburg number essentially depends on the ratio of the am-
plitude of correlation lengthr, and the Debye screening
length. In accordance with what was said above, the Gins-
burg number is a monotone decreasing function of concen-
tration. Besides this, it also depends on the temperature as a
parameter. Summarizing our arguments for the regigns
<(>)r., we can write

|G x<xp(),
GiXIT=1 Girx),  xg(7)<(<)x, S
where
1 2
xD(T):(rrO) Y (39

is the limit concentration of an electrolyte, which determines
the applicability region of our polarization model. The con-
centration dependences of Gi at some fixednd different
values of the dielectric permittivity are presented in Fig. 1.
Note that the greater the value of the dielectric permittivity
is, the greater is Gi. This fact was noted experimentally in
[6]. Figure 2 shows the concentration dependence of Gi for

1 T T T

0.75

Gi 05 .
Gig

025 .

0 1 1 1 1
0 0.011 0.022 0.033 0.044 0.055
X
concentration
FIG. 2. Concentration dependence of the Ginsburg number for

parameters given in the text.
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electrolyte solution withe=80 andI', 0=0.5. The qualita- But the fluctuations change slightly the value of the critical
tive behavior of Gik) nearxp is shown by a dashed line. temperature. This fluctuation-induced shift of the critical
Essentially, the value af, vanishes and the system loses itstemperaturéthe locus of the critical point in genejas pro-
stability at the concentration of an electrolyte: portional to

X, =3, 28, (39) AT = x. (44)

. . Qo . ~ Indeed, let us define the renormalized order parameter so that
Obviously this possibility is realized only #,>1 [see EQ.  the coefficient at the gradient term is equal to unity:
(33)]. In this case one can expect the multicritical behavior

of a systen 7], $(r)=e(x) 7(r). (45)

Using the formula(37) is not convenient since usually
experiments are carried out at fixed concentration. Let USne [ GH for the new order parameter reads as follows:
illustrate this situation considering the values of the critical
exponent. According to Eq37) we have

1 ~
IBHeff[d’]:f dV(E[V¢(f)]Z+al(T.X)¢(r)

G < mnx) < 7 (@
L R < 0 (b L L
- 7 ™ o) + 582(T,X) (1) + Zay(TX) (1) |,
< G < x) (c
0.625 for _ 00 (© (46)
T < G < 7p(x) (d),
where
where (T x)=[c(x)] “%ay(T ). (47
5= (1ol V)" ~x. (41  In the first order of perturbation theory on fluctuation cou-

pling constan®, [27], we have
At the end of this section, let us complete the obtained

results with qualitative arguments. By order of magnitude ~ ~ ~ d (2
[13] | ’ ’ ’ BT =3l T0)+38,(TH 51 | Go(arda
A=1
¢ (rs 6 “2) 1
I: - L
o Gola)=z————. (48)
a,(T,x)+q

wherer 4 is the interparticle spacing. The addition of an elec- ,
trolyte leads to the augmentation of the correlation lengtf™0mM Ed.(44) it follows that
amplitude because of its renormalization by charge-charge
fluctuations. It is clear that the behavior of strongly concen- dTe(x) _ i (49)
trated electrolytes is expected to be similar to that of simple dx \/§ '

liquids or liquid metals.
which explains the anomalously big values aT.(x)/dx

IV. FLUCTUATION-INDUCED SHIFT OF THE CRITICAL observed ir{23—23. Note that such a term was used purely
POINT IN A SOLUTION OF ELECTROLYTES empirically in [26] to process the experimental data. The
same conclusion on the existence Wf terms is valid for

An anomalous curvature of the-x and P-x projections  other coordinates of the critical point, such as pressure and
of the critical line of electrolyte solution at very small mole gensity.

fractions of an electrolyte Na@IH,O was observed in many
experimental work$23—25. But the nature of very big val-
ues ofdT,(x)/dx was not clarified.

We will show that the shift of the critical point of a high
diluted solution from the locus of a pure solvent is governed |n this section we will show that the addition of electro-
predominantly by the charge-charge fluctuations. Theyte leads to essential additional asymmetry of the vapor-
“square root” concentration law for such a shift is a direct liquid coexistence curve. We establish this fact in an evident
consequence of the polarizational charge-density couplingorm within the framework of the canonical formalism
theory proposed in previous sections. The dependence of tig9 21], which gives a clear motivation for all standard
coefficients of the effective LGH at low concentrations is asymptotic terms of the equation of state as well as for those
given by Eq.(33). In the mean-field approximation, the shift of form 7"# introduced in[14].
of the critical temperature as it follows from E3) is As follows from the scale-invariant theory of critical phe-

nomena, the singular part of the equation of state is given by
A(meanT — 32 (43)  the expression

V. ASYMMETRY OF A BINODAL FOR ELECTROLYTE
SOLUTIONS



6902

hy
[ha| P77

). (50
The order parametdP and conjugated fieldk,,h, within
the canonical formalism should be identified withand the
coefficientsa{® ,a{® of the Hamiltonian(28). As a result,
Eq. (50) takes the form

Here the bracket§) designate the averaging on the volume
of the correlation spherex(rg). In particular, the equation of
a binodal including the additional Wegner's tef@8] is as
follows:

(P)= |h2|ﬁgs(

al®

PR o

()= Ia‘z°)lﬁgs(

(Ppin= =25 Pgs(0) (L +bjlaj|*+---), (52

wherea =a(2°’|a<1c):0. Its “liquid” and “gas” branches in

variables {,a%), as is clear from Eq(51), are absolutely
symmetric. But this symmetry disappears if we return to th
initial (“laboratory”) variables ¢, 7) [19,21]. Indeed, using
Egs.(22) and(23) one can get

(D=CH+ 3 TodD+ . (53

|

where the functiong(x) is inverse toggs(x), Eq. (53) in the
asymptotic region transforms to

UM (Mo =9s(0)|a3|A(1+Dbylaz|*+- )+

Since(see[13))

hy
[hal P77

<¢/fz>:<¢/f>2+|h2|la|s(

(54
Uit (Mo =C+3T2[g5(0)|a3 | +140)]a% [* ]
+ ...,

Note that Eq.(54) besides standard ternj$3] includes an
additional contribution|7|?# (as well as other terms
«|7|"¥,n>2). The latter was introduced in work4] due

to empirical reasons. This new term wigh= 0.5 appears in
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FIG. 3. The concentration dependence of coefficiEpt(53)
determining the nonuniversal contribution to the amplitude of rec-
tilinear diameter singularity.

whereC(® 1™ al® are the values of the respective coeffi-
cients in the absence of electrolyte. The values of thg/ 2terms
order and strongly depend on the paramdtgw. If I' o
<(<)0.1, they can be omitted. In the opposite cases, an
account of additional terms is rather essential. It occurs due
to the decrease of the value af (see the formulas below
The coefficientC; is equal to the tangent of the slope angle
of the rectilinear diameter with respect to the temperature
axis in the mean-field approximation. Approximate values
for C, andC, as well as forl andI'{®" can be calculated
with the help of formulas

c~- 2
47,
(0) (e 5(0) 1500) (58
e e
F(ZO)%_zi ()0 85 — 335
5a( af(af+af")

HereA, are the coefficients of the Hamiltonian
~ ~ T T R v
hy(®)=Ph(n($)]=Ard+ SR>+ ZA 0+ 7As0

obtained from Eq(24) with the help of transformatio(22).
The results of numerical calculations of the concentration

the mean-field approximatiof29] as well. Essentially, the dependences for the coefficierits and C, are shown in
asymmetry of the coexistence curve is determined by a prodzigs. 3 and 4, respectively. Figure 4 indicates that the addi-

uct of universal multipliergs(0) andl4(0) and the coeffi-
cientI', describing the individual properties of liquids and

tion of electrolyte leads to the increase of asymmetry of the
coexistence curve, which is in qualitative agreement with

solutions. The temperature and concentration dependences &fperimentg5,10,30.

coefficientsC,I",,a% are determined by the expressid@g)
and

C=Cy+Cyr+- -,

Ci=CO+cl) =01,

e ONE NCUN %9

a3 =aP+al®,

VI. DISCUSSION

The main attention in this paper is focused on the detailed
account of polarization effects in electrolyte solutions near
their vapor-liquid critical points. It is shown that the essential
renormalization of coefficients of the Landau-Ginsburg
Hamiltonian takes place. The renormalization of coupling
constantal®) is especially significant. For some solvents at
definite concentration of an electrolyte, the coefficiaff?
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APPENDIX A

It is known [33] that the fluctuation parsF of the free
energy for a binary mixture in the quadratic approximation
has the structure

1 1 (9/.L2
Sf=—=| — — &2+ —2£2+..., Al
| 2( gt 5o & (A1)
-5 ! : : : where
0 22,107 44-107  66-07° 8807  11.107
X
- ) ) on, on, ony  on,
FIG. 4. Tangent of the slope of rectilinear diameter with respect gozw + ~0)’ 1= 0" o (A2)
to temperature axis vs electrolyte concentration according to Eq. ny n; ny n;

(56) at e=80 andl’'o0=0.5.
describe the fluctuations of the density and the composition

. : in the system, and{” andn{®) are the equilibrium densities
can reach zero and further become negative. This means th the components.

respective systems can lose their stability. The decrease 0 In a general case, according to E41), critical phenom-

ay” at the addition of electrolyte also leads to the consideryna in binary mixture can be of two type) liquid-vapor

able diminishing of the Ginsburg number. As a result, theang(p) “decomposition.” The critical points of the first type
applicability region of mean-field theory of fluctuations ex- gre |ocated on the surface determined by the equation
pands. Besides, it is shown that the addition of electrolytes

augments the asymmetry degree of the equation of state. Un- ﬁ;lzo, (A3)
fortunately, the verification of these predictions is now im-
possible since the needed experimental data are absent in taed the second is located on the surface,
literature.

The approach developed in this paper can be applied to %:0 (Ad)
solutions of electrolytes or dipole impurities in binary mix- ac '
tures near their consolute points. In fact, the respective
change of formalism is inessential. But reliable informationNear the vapor-liquid critical point, the variablé, is
about the coefficients of the initial Landau-Ginsburg Hamil-Strongly fluctuating while the fluctuations ¢f are bounded.
tonian is also absent. However, one qualitative fact discov¥Ve call such a variable weakly fluctuating. The case of mul-
ered in[31] attracts our attention. It was shown, in particular, icomponent mixtures differs only in the number of weakly
that the critical exponent of the correlation length near the fluctuating variables. The boundness of fluctuations gpr

. . . i (0) (0) i
double critical pointDCP) takes the following value: means that fluctuations afi™ and ny” leading to strong
fluctuations ofé, obey the condition

wherevy is the respective exponent far away from the DCP.Near the consolution point, the situation is inverse.
The classical value ofy can be easily explained in our ap-  An interesting example of a binary mixture is salt molten,
proach. The systems investigated 81,32 went beyond the in which neutral salt molecules are fully dissociated into ions
vicinity of the DCP under the influence of a small quantity of of only two types. In this casen{” and n{®) satisfy the
electrolyte or dipole impurity. Their addition leads to the electroneutrality condition

narrowing of the region where the fluctuations have scale-

invariant character. Besides, these impurities lead to addi- z,n{V=2z,n{®, (A6)
tional asymmetry of the equation of state. This is in qualita-
tive agreement with the results pf]. wherez;, i=1,2, is the valency of an ion. Strictly speaking,

The essential focus from our point of view has detailed arthe latter are also connected with first variable.
account of polarizational effects within the restricted primi- Due to strong Coulombic interactions, only the vapor-
tive model[7]. Besides, the use of collective variablds$] liquid critical point is possible in such salt molten. For the
allows us to analyze main screen effects in a more directéame reason, the inequality for fluctuatiogs becomes
way. The results of our consideration of this question will bestronger. Therefore, it is expedient to move on to new vari-
presented separately. ables
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dp=2nVey, (A7) KyD(X,y[€) -T2 D(x,y[e)=4md(x—y),  (B7)
(0) (0
n ni where
S¢p= =——&, A8
(b go_ gl 2 50 ( )
which describe the fluctuations of charge and electroneutral — r
density, respectively. loc m
APPENDIX B

is the local value of inverse screening length dnds its
It is essential that due to EGL0) the corresponding po- Vvalue in homogeneous media. In the Debye approximation,
larizational contributions to the LGH can be obtained by thel’ is
averaging of Eq(6) over the charge fluctuations. Collecting
in Eq. (6) the contributions of different types of ions, we get 1

(BH{a(r),€(N])

622 Obviously bothf, , andu, ,, are functionals of the dielectric
- 0 Z XXp permittivity. So we can write EqB1) as
2kgTe? ab
r4 e e e
xf dV1dVyf o (s, To[€(N)Ua (1, ol €(F)). <:8Hint>:_32ﬂ_2f dxdyG(x,yle)D(x,yle).  (B8)
(B1) N
In a local approximation for EqB8) we get
Here
L L . 0 e . 1
fa,b(ra1rb):<qa(r1)qb(r2)>zzazbe D(r1-r2|5) (BZ) <'8Hint>: - % dx[1+’;()‘(>)]3/2' (BQ)
is the pair correlation function of ions of types;b,” ng is
the particle density, and This result could be written down immediately since the in-
tegrand is the local energy in the Debye approximation. In
~ €'(X) the case of small gradients of the dielectric permittivity, the
e(x)= e (B3) quasilocal contribution to the energy of a system can be writ-
ten as
The interionic potentiall, ,, can be extracted from the Pois-
son equation @ © .
(BHint >=§f (V(x))=dV. (B10)
KXG(X!y): —47T5(X—Y), Ua,b(raarb):ZaZbG(ra’rb)i
B4 e~ -
B4) In this section we sef)(x)=e€(x). To obtain the value of,
where we representG(i,)?) and D()Z,)7) as the expansions on
L (Ve
Ky=[V-e(x)]V. (B5)
. . + =+ .. L. [Vex)? o ..
In accordance W|tt{2_9], the functionf, p(r,,r,) can be G(X’y):GO(X*y)+Tez(X,y)+-~-,
found from the equation
(B11
8fa,b 1 &Ua'b 1 &ub,d [ﬁz()—())]Z
= = DL - e D(%,y)=Do(X )+ =5 Dalxy) - .
(B6)

Heref,, 4 is the triple correlation function. Now different The functionsGo(x,y) andDo(x,y) are determined by the
closures may be used. For small concentratiansx,,,, of  local terms of the Poisson equation and can be represented in

electrolyte, Kirkwood'’s superposition approximatig®] for ~ the form
fap.a Can be used. But this step needs a certain amount of

caution in the case of low concentrations for highly asym- 1 1 oo
metric electrolytes, for whicld . /d_<(>)1, whered; is — = [x—y|=rg,
the diameter of théth ion as follows from the results ¢84]. Go(i);) — 1+e(x) [x—y| (B12)
Multiplying Eq. (B6) on[1+¢€(x)] and applying the op- 1 PV
(R}

eratorV with the help of Eq(B4), we get Ix—y|’
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Do(X,y) | s Tlx=yD, [x-yl=re,
1 D,(X,y)=1 2/x=]|
exp(—T = X—y|<re, vy
) |X y| p— I0c| y|) (%) | y| c 0, |X y|>l’c.
|)2_)7| exp —T'[x=y]), x=yl>re. In Egs. (B12) and (B13) it is taken into account that on

scales|x—y|>r., the media are spatially homogeneous.
FunctionsG,(x,y) andD(x,y) are not equal to zero when Substituting Eqs(B11), (B12), and (B13) in Eq. (B8), we

IXx—y|<r.. So we have get
X - -
N _l y|, |X_y|$r01
Ga(x,y)= 2 (B13 3
0, X=yl=re, ST (B14)
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