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Abstract

Spectral smoothing filters are popularly used in a large number of modern hyperspectral remote sensing studies for removing
noise from the data. However, most of these studies subjectively apply ad hoc measures to select filter types and their parameters.
We argue that this subjectively minded approach is not appropriate for choosing smoothing methods for hyperspectral applications.
In our case study, it is proved that smoothing filters can cause undesirable changes to statistical characteristics of the spectral data;
thereby, affecting the results of the analyses that are based on statistical class models. If preserving statistical properties of the
original hyperspectral data is desired, smoothing filters should then be used, if necessary, after careful consideration of which
smoothing techniques will minimize disturbances to the statistical properties of the original data. A comparative t-test is proposed
as a method for choosing a smoothing filter suitable for hyperspectral data at hand.
© 2005 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights
reserved.
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1. Introduction

One of the most important problems of using hyper-
spectral data is signal noise levels. It is normally found that
the noise level in hyperspectral data is high as their narrow
bandwidth can only capture very little energy that may be
overcome by the self-generated noise inside the sensors.
Additionally, physical disturbances such as the fluctuation
of light illumination and atmospheric states make the
situation worse as the disturbances decrease the precision of
spectral signals recorded by the sensor (Oppenheim and
Schafer, 1975; Landgrebe, 1997; Lyon, 2004).

Spectral smoothing and aggregating techniques includ-
ing both linear and non-linear methods are popularly used in
a large number of modern hyperspectral remote sensing
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studies for removing noise from the spectral data (Chen et
al., 2001; Ben-Dor et al., 2002; Andréfouët et al., 2003;
Vaughan et al., 2003; Rees et al., 2004; Smith et al., 2004;
Thenkabail et al., 2004; Whiting et al., 2004; Zhang et al.,
2004; Wu et al., 2005). However, most of these studies
subjectively apply ad hoc inspections as their measure to
select appropriate smoothing methods. In other words, they
do not use any strict optimizing criteria to select suitable
smoothing filters for their studies.

Smoothing methods cause changes to the original
spectral data that could lead to incorrect results in
subsequent analyses (Savitzky and Golay, 1964; Kawata
and Minami, 1984; Tsai and Philpot, 1998; Gong et al.,
2001; Schmidt and Skidmore, 2004). For example,
image processing of remotely sensed imagery for
accurate plant biophysical studies (Bruce and Li,
2001; Zarco-Tejada et al., 2001; Imanishi et al., 2004;
etry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All
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Le Maire et al., 2004; Meroni et al., 2004) and
vegetation discrimination and classification (Tsai and
Philpot, 2002; Hochberg and Atkinson, 2003; Foody et
al., 2004; Schmidt et al., 2004) are dependent upon
statistical estimates of spectral data that are often
dampened by smoothing filters (Fig. 1). Instead, a
more objective approach should be proposed as a
measure to select the correct smoothing method for a
Fig. 1. (a) An average spectral profile of plants before smoothing; (b)
an average spectral profile after smoothing; and (c) a scatter plot of the
two principal wavelengths (550 and 700 nm) before (triangle) and after
(square) smoothing.
particular hyperspectral application so as to minimize
disturbance to the original spectral data.

As a result, there are two major goals in this study.
First, this study intends to demonstrate the effects of
smoothing techniques on the statistical properties of the
spectral response. Second, as a replacement for ad hoc
measures, the study aims to propose the use of one
statistical test (a pair t-test) as a tool for realizing the
trade-off between the choice of smoothing methods and
their effects on statistical properties of the original data.
A real-world example of plant reflectance responses is
used for supporting the argument of this study.

2. Methods

2.1. Smoothing techniques

In the field of digital signal processing, the definition
of a spectrum so(λ) observed by a spectrometer is given
by the sum of the true signal of the spectrum st(λ) and
the noise n(λ) where λ indicates wavelength.

soðkÞ ¼ stðkÞ þ nðkÞ ð1Þ
Thus, the definition of spectral smoothing is the

estimation of st(λ) from the observed spectrum so(λ). An
estimate ŝt(λ) can be calculated by the convolution of the
observed spectrum so(λ) with a weighting function (i.e.
smoothing filter) g(λ) chosen by the practitioner:

stðkÞ ¼ soðkÞ*gðkÞ: ð2Þ

The operator * denotes convolution integral (Oppen-
heim and Schafer, 1975; Lyon, 2004). There are many
types of smoothing filters g(λ) adopted by remote
sensing practitioners for hyperspectral applications
including linear and non-linear methods (Savitzky and
Golay, 1964; Kawata and Minami, 1984; Tsai and
Philpot, 1998; Foody et al., 2004; Schmidt and
Skidmore, 2004). The most popularly used smoothing
filters are moving average and Savitzky–Golay filters.
Hence, both are selected for this study.

2.1.1. Moving average
The moving average method for smoothing is well-

known and has been called by different names, such as
running mean and mean average filter. The concept of
the moving average filter is simple as it takes the mean
spectral value of all points within a specified window
(i.e., filter size) as the new value of the middle point of
the window (Tsai and Philpot, 1998). The method is
solely based on linear calculations and has one key
parameter, the filter size.
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2.1.2. Savitzky–Golay
The concept of this method is based on simple

polynomial least-square calculations. However, instead
of fitting a least-square curve to the total length of
spectrum at once, the method fits the spectral data piece-
by-piece with the size equal to a user-defined value (i.e.,
filter size) using a special form of matrix calculations
(Savitzky andGolay, 1964; Steinier et al., 1972;Madden,
1978). This method requires two key parameters: the
filter size and the degree of polynomial orders.

2.2. Hyperspectral data collection

The data used for testing the key hypothesis of this
study are laboratory spectra of mangrove leaves. The
data were recorded from the leaves of 16 tropical
mangrove species listed in Table 1. The leaves were
collected using a line-transect method from mangrove
trees (higher than 2.5 m) in the natural mangrove forest
of Ao Sawi (Sawi Bay), Chumporn province, the south
of Thailand (10° 15′N, 99° 7′E). There were ten
transects randomly placed throughout the area so as to
collect tree samples from every mangrove zone (e.g.,
pioneer, intermediate, and upper zones). Leaves were
picked off the trees just before the spectral measurement
in order to preserve the original leaf quality. Specifically,
on 6 February 2001, a few major branches of every
randomly sampled tree were cut off and transported to
the laboratory where the leaves were picked for spectral
measurements.

Freshly picked leaves were randomly divided into 30
piles of the same size (20 to 30 leaves) per mangrove
species. First, each pile of leaves was randomly spread
Table 1
Thirty spectral reflectance curves were recorded per each mangrove
species listed below

Mangrove species

1. Avicennia alba
2. Acrostichum aureum
3. Bruguiera cylindrica
4. Bruguiera gymnorrhiza
5. Bruguiera parviflora
6. Ceriops tagal
7. Excoecaria agallocha
8. Heritiera littoralis
9. Lumnitzera littorea
10. Lumnitzera racemosa
11. Nypa fruticans
12. Pluchea indica
13. Rhizophora apiculata
14. Rhizophora mucronata
15. Sonneratia ovata
16. Xylocarpus granatum
on top of a black metal plate painted with ultra-flat black
paint until the background metal plate could not be seen.
Second, we recorded spectral responses of each leaf
plate for 20 times. Each plate was rotated 45°
horizontally after every fifth record in order to correct
for the bi-directional reflectance distribution function
(BRDF). Third, the 20 records were averaged to
construct a radiance curve. Fourth, the radiance was
converted to a reflectance curve, using a spectralon
reference panel, as well as the correction of the
spectrometer internal current (dark current). We repeat-
ed the steps above for all the leaf plates. As a result, 30
reflectance curves were constructed for each mangrove
species (Table 1). It should be noted that the whole
operation was conducted under a laboratory condition
(i.e., dark room, 25 °C) in order to avoid ambient light
sources unrelated to the true spectral signal of the leaves.

The FieldSpec Pro FR spectroradiometer (Analytical
Spectral Device, Inc.) was equipped with three spectro-
meters (i.e., VNIR, SWIR1, and SWIR2), covering 350
to 2500 nm (2151 bands in total), with sampling
intervals of 1.4 nm between 350 and 1000 nm, and 2 nm
between 1000 and 2500 nm. The spectral resolution of
the spectrometers was 3 nm for the wavelength interval
350 to 1000 nm, and 10 nm for the wavelength interval
1000 to 2500 nm. The sensor, equipped with a field of
view of 25°, was mounted on a tripod and positioned 0.5
m above the leaf plate at the nadir position. A halogen
lamp fixed at the same position was used to illuminate
the sample plate.

2.3. Experimental use of smoothing filters

2.3.1. Statistical comparisons
We smoothed all the leaf spectra of the mangrove

species listed in Table 1 (N=480 spectra in total) using
two different types of smoothing filters: (i) moving
average and (ii) 2nd order Savitzky–Golay. Filter sizes
in use were exhaustively varied between 7 and 51 with
the increment of 2 (i.e., i=7, 9, 11,…, 51) for each filter
type. Then, we statistically compared the smoothed data
against the original spectral data using pair t-tests for all
the filters. The test was thoroughly conducted at every
spectral location between 400 and 2400 nm. In other
words, for each filter, Ho: μs(λ)−μo(λ)=0 and Ha: μs(λ)
−μo(λ)≠0 where μs(λ) is the mean of smoothed spectra
at λ nm wavelength (λ=400,…,2400 nm) and μo(λ) is
the mean of original spectra at the same wavelength.

2.3.2. Spectral separability analysis
The effect of smoothing on the original data was

quantified using a spectral separability index. The



Fig. 2. The effect of smoothing filters on the mean of the leaf-level spectral data of 16 mangrove species: (a) moving average filters; and (b) 2nd order Savitzky–Golay filters.
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Fig. 3. The number of statistically disturbed locations (Npb0.01) caused
by moving average and Savitzky–Golay filters.
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separability index used in this study was the square of
Jeffries–Matusita (J–M) distance analysis. The J–M
distance method delivers a value between 0 and √2
(≈1.414), so the squared distance gives a number
between 0 and 2. The calculation of the J–M distance in
this study was based on the following equation (Eq. (3)).
See Richards (1993) for further details in separability
analyses.

JMij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1−e−aÞ

p
where

a ¼ 1
8
ðmi−mjÞT

Ci þ Cj

2

� �−1

ðmi−mjÞ

þ 1
2
ln

1
2
jCi þ CjjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijCij � jCjj

p
0
B@

1
CA: ð3Þ

Note: i and j are the spectral responses of two classes
being compared. C is the covariance matrix of the
spectral response, μ is the mean vector of the spectral
response, ln is the natural logarithm function, T is the
transposition function and |C| is the determinant of C.

The J–M distance index was used for quantifying
spectral separability between two very similar mangrove
classes, R. apiculata and R. mucronata, to see whether
smoothing reduced separability between the two classes.
Due to “the curse of dimensionality” (Bellman, 1961;
Hughes, 1968; Fukunaga, 1990), a subset of the whole
range of all spectral bands had to be chosen prior to the
separability analysis. Thus, spectral bands used for
calculating the J–M distance were: 513, 717, 1263,
1385, 1489 and 1669 nm. These principal spectral
locations were selected by a feature selection algorithm
(please see further details of the algorithm in Siedlecki
and Sklansky, 1989; Kavzoglu and Mather, 2002; Yu et
al., 2002; Vaiphasa, 2003).

3. Results

Each small plot in Fig. 2 demonstrates the p-values
of the comparative t-tests between smoothed and
original data for all spectral locations between 400
and 2400 nm. In brief, if a p-value at a particular
spectral location was as low as 0.01, it demonstrated
that the smoothed data were statistically different from
the original spectral response with 99% confidence.
This illustrated that the original spectra were signifi-
cantly disturbed by the chosen smoothing method. For
example, the 2nd order Savitzky–Golay filter at size
11 resulted in 560 statistically disturbed bands
(Npb0.01=560). Additionally, original and smoothed
spectral curves of Avicennia alba were also included in
the figure so as to illustrate the smoothing effect of each
filter.

It is important to note that, even if we have
exhaustively done the t-test for 2 filter types with sizes
between 7 and 51, we only illustrated in Fig. 2 the
results of the 2 filters at 3 different sizes, including 11,
31, and 51 for the purpose of brevity. Instead, the results
of the exhaustive experiment for all filter types and sizes
were summarized in Fig. 3. The plot demonstrated the
number of statistically different spectral locations with
99% confidence (Npb0.01) per filter size. Overall, it was
found that moving average filters statistically disturbed
the original spectral response more than Savitzky–
Golay filters as the number of statistically different
locations steadily increased from 1000 to 1526. In
contrast, the number of statistically different locations of
Savitzky–Golay filters increased from 606 to 1153. The
general trends of both moving average and Savitzky–
Golay filters indicated that bigger filter sizes resulted in
higher statistical disturbances even if there were some
exceptions in the trend of Savitzky–Golay filters where
local minima were noticeable.

The reader may note that, even if the number of
spectral bands that have p-values less than 0.01 (Npb0.01)
were recorded for every filter, the p-value level at 0.01
were not used as a critical value α for accepting or
rejecting the outcome of one individual filter. Instead,
the Npb0.01 was only used for the purpose of compar-
isons between the influences of smoothing filters on the
spectral mean. In the case that the reader wishes to make
a decision to accept or reject the smoothing results of
one individual filter on the basis of the reported p-values



Table 2
Comparison between J–M distance indices of two very similar
mangrove classes, R. apiculata and R. mucronata, before and after
smoothing

Filter type Filter size J–M distance

Moving average 11 1.9311
31 1.9254
51 1.9163

2nd order Savitzky–Golay 11 1.9314
31 1.9307
51 1.9284

Original data n/a 1.9315
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alone, the reader has to adjust α to the effect of
“multiplicity” (i.e. increasing chance of having Type I
error as the number of tests grows) (Rothman, 1990;
Hsu, 1996; Perneger, 1998; Feise, 2002). Nevertheless,
such consideration of one individual filter was not the
intention of this study.

Finally, the results of the separability analysis
between the two mangrove classes (R. apiculata and
R. mucronata) were demonstrated in Table 2. It was
found that none of the J–M distance indices of the
smoothed data was higher than the J–M distance index
of the original data. In other words, spectral smoothing
reduced separability between the two mangrove classes.
Additionally, the results in Table 2 also reflected the
trends in Fig. 3 as the separability index reduced while
the filter size increased.

4. Discussion and conclusion

This case study demonstrated that the effects of
smoothing on the statistical estimate of spectral data
were likely to negatively affect the outcome of
subsequent analyses that utilized statistical character-
istics of the spectral data. This problem was evident in
Table 2 as smoothing filters reduced separability
between the two mangrove classes, R. apiculata and
R. mucronata. This outcome demonstrated that spectral
smoothing may not enhance the data but made it more
difficult to separate the two mangrove classes in the
spectral feature space. This argument also may be true
for the following spectral discrimination and classifica-
tion studies that used ad hoc measures to select
smoothing filters without preserving statistical proper-
ties of the original data (Gong et al., 2001; Andréfouët et
al., 2003; Hochberg and Atkinson, 2003; Schmidt and
Skidmore, 2003; Vaughan et al., 2003; Yamano et al.,
2003; Castro-Esau et al., 2004; Foody et al., 2004; Rees
et al., 2004; Schmidt et al., 2004; Thenkabail et al.,
2004).
An instructive example of how to use the t-test
method for choosing smoothing filters can be described
as follows. In Fig. 2, if an ad hoc criterion was in use, a
practitioner who was challenged to smooth the spectral
profile of A. alba might face a dilemma to choose
between the size-31 moving average filter and the size-
51 Savitzky–Golay filter so as to remove the noise in the
mid-infrared region of the spectrum (i.e. ≈1900–2400
nm), as well as try not to over-smooth the data. In
contrast, when the t-test was applied, its results
encouraged the practitioner to select the size-51
Savitzky–Golay filter as it possessed fewer statistically
disturbed bands (i.e. the Npb0.01 of the size-51 Savitzky–
Golay filter was 1153 while the Npb0.01 of the size-31
moving average filter was 1458).

Even if this case study was based on two most
popularly used filters (moving average and Savitzky–
Golay), it was anticipated that the t-test method was a
universal method that can be used for choosing
smoothing filters other than moving average and
Savitzky–Golay. Moreover, the method is not limited
to vegetation spectra. It could be used for other case
studies, for example, selecting appropriate smoothing
filters for mineral spectra. However, the number of
spectral samples required for t-statistics (e.g. N≈20
samples) is one obvious limitation of the method.

In the continuing study, the concept of using
statistical measures for constraining the selection of
spectral smoothing such as the t-test could be expanded
to a greater extent. Instead of using only t-tests that
constrained the disturbance on the statistical mean, F-
tests could be integrated to limit the disturbance on the
statistical variance. In addition, designing smoothing
filters that preserved other properties of the original
spectral data such as signal strength (i.e., maximizing
signal-to-noise ratios) could also be an interesting topic
for future research. So far only a few pioneer studies
have been found in this area (Kawata and Minami,
1984, Bruce and Li, 2001; Schmidt and Skidmore,
2004).

In conclusion, hyperspectral smoothing should be
used, if necessary, with objective justification of which
smoothing technique causes minimal damages to the
original data in terms of statistical differences. There-
fore, we proposed a comparative t-test as a measure for
choosing the best smoothing filter for the hyperspectral
data at hand.
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