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[Translator's note: The address Ad quanta intelligenda condila, delivered by Dijk
sterhuis in 1955, is written in Dutch, whatever its title might otherwise suggest. It 
is held by many to be the finest piece Dijksterhuis ever wrote - which is no mean 
statement to make about the author of The Mechanization of the World Picture, of 
Archimedes, of Simon Stevin, and of many other books and articles, most of which 
have remained locked inside the Dutch language. In the address Dijksterhuis takes 
up in concentrated form a key topic that runs all across his work in the history of 
science: the mathematization of nature; what precisely is meant by that expression, 
and how the essence of the process can be grasped through the study of its 
manifestations in the past. Dijksterhuis seeks to penetrate to the core of the issue 
by asking how mathematics and science can be connected at all - how is it that a 
description of the empirical world can have mathematical precision as one key 
attribute. 

This is not the place to celebrate Dijksterhuis' unique achievement in the 
history of science or to sketch his life and works. Professor K. van Berkel is 
currently preparing a biography (in Dutch), and I have a section on Dijksterhuis' 
conception of the Scientific Revolution in my forthcoming book 77ie Banquet of 
Truth. So let me just give the briefest of outlines. Eduard Jan Dijksterhuis was born 
in 1892. He studied science and mathematics, which disciplines he taught to high 
school students until 1953. In that year he was appointed to a newly created chair 
at Utrecht University as 'extraordinary professor' in the history of science and 
mathematics. Two years later he was in addition appointed to a similar chair at 
Leyden University. Ad quanta intelligenda condita is the inaugural address he gave 
there on Friday, 21 January 1955. When, in 1960, Utrecht University converted his 
chair into an 'ordinary professorship' he gave up his Leyden chair, partly for 
reasons of health. He retired in 1%3, and died two years later. 

The bulk of the Dijksterhuis archival collection is located at the Museum 
Boerhaave in Leyden. A detailed inventory of this collection has been available 
since 1984. 

The original text of Ad quanta has been fully translated here, with the sole 
exception of some ritual solemnities at the beginning and the end. I thank Mrs. 
J.K.E. Smit-Dijksterhuis and Meulenhoff Publishers for permission to prepare a 

Tractrix 2, 1990, pp. 111-125. 
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translated version, and Steven Engelsman, Harry Leechburch, and Joella Yoder for 
their kind help. I hope very much that, besides providing a faithful rendition of 
Dijksterhuis' expressed meaning, my translation manages to convey some faint idea 
of the sculptured beauty of Dijksterhuis' literary prose, which in 1951 won him the 
highest Dutch literary prize. 

H. Floris Cohen] 

The history of the exact sciences, which I have been assigned to teach at this 
University, comprises the historical development of mathematics and of the exact 
sciences, that is to say, of those natural sciences which can be treated with the help 
of mathematics. In this definition we find mathematics and science juxtaposed, but 
in such a way that the latter concept is limited in its scope by the former. By itself, 
the juxtaposition might suggest a purely accidental link between the two - after all, 
it is not inconceivable for one teacher to teach two different, mutually independent 
disciplines. Yet the limitation of the one concept by the other makes it clear that 
an essential connection is intended here. 

This gives rise to a sense of wonder. If mathematics is a free creation of the 
human mind, whereas science deals with a reality that is there without man's doing, 
then we should be amazed to find the two disciplines coupled in an essential way. 

True, today this amazement is rarely experienced anymore. Accustomed as he 
is from early on to the combination of words 'science and mathematics', present-
day man has undergone here, too, the dulling effect convention always exerts on 
our capacity to be amazed by things. 

To inquire into the nature of the connection between mathematics and 
science is a matter of epistemology (in the sense of the theory of science). Thus, in 
principle, the question seems answerable by studying both disciplines in their 
present-day guises. However, experience teaches us the virtual impossibility of 
taking up a given science and studying it solely as a phenomenon of our own time. 
Again and again questions will arise about its historical origin, about the roots in 
the past of its problems, its methods, its concepts, its terminology. This is why in 
every epistemological inquiry the history of science has a contribution to make. Let 
us then ask, in the present hour, what message the history of science has in store 
concerning the relationship between mathematics and science. 

For a response, we turn to where every inquiry in the history of science takes 
its inevitable point of departure - the civilization of ancient Greece. There we find, 
in the Pythagorean school, four mathemata - arithmetic, geometry, music, and 
astronomy. Here already we notice both an opposition between science and mathe
matics and a close connection. Arithmetic has been an independent science from 
an early day onward. It is no longer in need of appealing consciously to sense 
experience; therefore, it may already be called pure mathematics. Music and 
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astronomy, which deal with musical tones heard and celestial motions seen, 
respectively, are equally indubitably natural sciences. With regard to geometry 
doubts are possible. Is it still that part of natural science that treats of the formal 
properties of solid bodies? Or is it already that part of mathematics which, surely, 
finds its psychological origin in empirical evidence taken from such bodies, but no 
longer uses such evidence in a conscious manner for its subsequent construction? 
Proklos' statement' that Pythagoras taught that geometry is studied auloos kai 
noeroos, that is to say, immaterially and noetically, through thought alone, indicates 
that already in the Pythagorean school geometry had ceased to be geodetics, its one 
remaining link with tradition being the preservation of those many terms, such as 
'squaring', 'applying', and 'adding', that derive from its empirical origin and were 
ridiculed later by Plato.^ 

So there were two mathematical and two scientific mathemata; however, the 
latter reUed heavily on the former. The mathema 'music' consisted of a doctrine 
of intervals which sought the essence of what the sense of hearing observes as a 
difference in pitch between two distinct tones in a numerical ratio such that the 
addition of intervals meant the multiplication of ratios. In astronomy both geometry 
and arithmetic found their application, the former in devising systems of motion 
which made it possible to render account of the observed phenomena; the latter in 
the consideration of distances and times of revolution of celestial bodies, giving rise 
to cosmological speculations on the harmony of the spheres and on the periodicity 
of events in the world. 

As geometry was increasingly treated noetically, more and more attention was 
inevitably drawn to the fact that the geometrical entities on which generally valid, 
exact, and apodictic judgments were being passed could not be identical to the 
objects of sense experience that carry the same names - the straight Hues, circles, 
and spheres shown to us by experience are different from those called thus by 
geometry. 

The question of what realm of being these mathematical entities may belong 
to is answered in Plato's philosophy^ by the statement that they possess an ideal 
existence which shares with the mode of being of the ideas the properties of 
eternity and of immobility, being distinguished from the ideas only in that it lacks 
the property of unity. The relation between the realm of the ideas and the realm 
of geometrical form is elucidated by comparing it to the relation between physical 
bodies and their shadows or mirror images. This relation, in its turn, is the same 
that obtains between geometrical forms and the physical bodies that carry the same 

Prodi Dadochi in primum Euclidis Elementorum librum Commentarii, ed. G. Friedlein (Leipzig, 
1873), p. 65, 18. 

^ Plato, Politeia VII, 527A. 

This is what Aristotle has to say about the metaxu position of mathematical entities in 
Metaphysica A 6, 987bl6-18. 

" Plato, Politeia VI, 509D-510E. Comments by Proklos, edition cited in note 1, 10, 21-11, 9. See 
further EJ . Dijksterhuis, "Proklos' Commentaar op Euclides I vertaald," Euclides 25,1949-1950, p. 47. 
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names, e.g., between a sphere and a bouncing-ball. 
It is important to distinguish carefully between two elements in the Platonic 

conception of the relationship between the mathematical and the physical worlds. 
The first of these is the notion of a correspondence between the physical objects 
we observe by means of our senses, and the geometrical forms that carry the same 
names, whose properties are determined noetically. The second element is the 
conviction that the realm of geometry exists in its own right; that it is separate and 
independent from the realm of physical bodies, and that it is just as independent 
from the latter as the realm of ideas is from the realm of geometry, or as a 
physical body is from its shadow. Moreover, the sequence of idea - geometrical 
form - physical body - shadow also indicates an ongoing descent in degree of 
reality: a geometrical form surpasses, in its amount of reality, a physical body just 
as much as the latter does to its own shadow. It is important to insist on this 
distinction because the other great Greek thinker beside Plato to influence the 
making of the mental history of the Western world in a decisive manner, Aristotle, 
adopts the first of these two conceptions and supports it with his authority, but 
rejects the second. For him the realm of the ideas is not transcendent, nor, a 
fortiori, is the realm of mathematics. The properties treated by geometry are 
properties of physical bodies, provided these cire considered from a particular, 
namely, a geometrical point of view, while barring for the moment all other 
possible modes of consideration. 

For present purposes the primary thing is not that Aristotle does not accept 
Plato's mathematical ontologism, that is to say, the doctrine of the independent 
existence of geometrical forms. More important for our purpose is that his concep
tion of a correspondence between exact geometrical forms and physical objects in 
which the blurred forms manifest themselves, concurs in practice with Plato's 
conception. If one wishes to emphasize the points of difference one may indeed 
oppose the former, as a theory of abstraction, to Plato's theory of idealization. 
However, one should realize that both lead to exactly the same result, namely, 
those very same ideal geometrical forms. Aristotle's abstraction is the means to 
achieve Plato's idealization. To say that we abstract from everything in respect to 
which the empirical forms deviate from the ideal, geometrical forms, implies the 
acknowledgment that those ideal forms do exist, whether in one mode or another. 
The remaining difference of opinion concerns the mode only: transcendent with 
Plato, immanent with Aristotle.' 

There are more indications that these two conceptions are indeed quite close. 
The axiomatic structure of geometry which we find in Euclid may, on the one hand, 
easily be interpreted as the realization of certain epistemic ideals of Plato, whereas, 
on the other hand, it clearly serves as the prototype after which Aristotle modeled 
the reflections he devotes in the Analytica Posteriora^ to the essence of demonstra
tive science. 

Aristotle, Metaphysica M 2, 3. 

See for evidence H. Scholz, "Die Axiomatik der Alten," Blatter Jur deutsche Philosophie 4, 
1930-1931. 
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So far our discussion has remained fully inside the boundaries of mathematics, but 
is it not clear that it tends to overstep those limits and to enter the field of the 
natural sciences? If the world of quiescent, empirical forms stands in correspon
dence with a noetic realm of ideal, mathematical forms, are we not then very close 
to the suspicion that the changes that occur in the former stand in correspondence 
with processes in the latter that lend themselves equally to noetic treatment? The 
conception of a mathematical physics in the literal sense, that is to say, of a physics 
to be treated as mathematics, could not fail to press itself with equal force upon 
both Platonists and Aristotelians. The former could extend this conception by 
thinking that the mathematical system to be construed represented nature proper, 
of which the physical world experienced by our senses is no more than an imper
fect, material imitation; they could find how, in his Politeia,^ their master had 
emphatically defended such a conception in the cases of the Pythagorean mathe
mata, music and astronomy, and they could establish how fully the conception 
developed there agreed with the cosmology of the Timaios. 

The shared, Platonic-Aristotelian view of the connection between mathematics 
and natural science is put into practice in exemplary fashion by Archimedes. In the 
first book of his work On the Equilibrium of Planes^ he discusses the condition for 
equilibrium of a pivoted beam loaded with weights. However, this is not done by 
means of experiments and measurements, as might be expected with such an 
essentially physical problem. Rather, he handles it as if he were dealing here with 
a purely mathematical issue - he formulates certain self-evident axioms (for 
example, that with a symmetric load the beam remains in equilibrium) followed by 
deductive reasoning. In fully the same manner, namely, by starting from an axiom 
that expresses certain fundamental notions of Aristotelian physics, in his work On 
Floating Bodies he derives through mathematical reasoning the theorem - still 
named after him - on the buoyancy undergone by a body immersed in a fluid. 

Once more Custom, the great damper, stands in the way of a spontaneous 
realization of how odd these facts are. During our school years, when all of us pick 
up the basic principles of mathematics and science, and countless people reach the 
optimum level of their knowledge in these disciplines, we are not as a rule taught 
sufficiently to distinguish between the two. This blurring of an essential difference 
prevents a sense of wonder to arise over the apparent possibility of treating science 
in a deductive manner. 

Does this possibility exist indeed? Do Archimedes' derivations really deal with 
true physical balances and with material bodies immersed in real fluids? One 
moment of critical inspection of the argument suffices to see at once that this is 
not the case. In On the Equilibrium of Planes (and we confine ourselves to this 
particular work here) we are not told about a material beam that is made to turn 
in the air around a material axis supported with friction, and from which material 

' Plato, Politeia VII, 529D-530C; 530E-531C. 

Archimedes, "De planorum aequilibriis sive de centris gravitatis planorum," I, 6, in Archimedis 
Opera Omnia cum Commentariis Eulocii, ed. J.L. Heiberg, vol. 2 (Leipzig, 1913). 

Archimedes, "De corporibus fluitantibus,' edition cited in note 8, vol. 2. 
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bodies are suspended, but rather about a mathematical line segment, assumed to 
be pivoted, on which plane figures are mounted, while to those figures certain 
numerical values are assigned which are proportional to their areas and are called 
their weights. 

The same ideal sphere reigns here as we find ourselves in when we are doing 
geometry, and in this sphere alone the derived condition for equilibrium is fully 
valid. But - and this is the remarkable thing - the condition is happily applied to 
physical balances. In so doing, nothing but the precision with which the condition 
obtains appears to get lost - equilibrium now appears to manifest itself in a wider 
domain of values than those derived theoretically. That this is so, is ascribed to 
such circumstances as friction and resistance of the air, which disturb the ideal 
phenomenon. It appears to be possible to include these disturbing factors in the 
mathematical picture, but, in order to do so, these have to be idealized as well, and 
the situation is not principally altered thereby. It remains the case that we have 
depicted a natural phenomenon in a mathematical system with conclusions possess
ing validity in physical reality. But the validity is never more than approximate; the 
exactitude of the picture can never be found back in experience. 

The application of mathematics to mechanics and hydrostatics is still far from 
giving a complete impression of the function mathematics can fulfill in science and, 
in antiquity, did fulfill already. Exploring the usage made of mathematics in Greek 
astronomy widens the picture further. Here, too, the observed phenomena were 
idealized. Replacing celestial bodies with mathematical points is an obvious 
example. However, here it was not possible to find out about the behavior of such 
points by deductive reasoning starting from self-evident axioms. To begin with, 
observed quantitative facts had to be taken into account. Moreover, one felt bound 
by certain a priori assumptions which rested on religious, aesthetic, or scientific 
grounds, and the facts had to be interpreted in their light. For example, it was 
accepted as an axiom that celestial bodies cannot carry out other than circular and 
uniform motions. Hence arose the task of reconciling the irregularities observed in 
the motions of the heavenly bodies with this so-called Platonic axiom. 

This task, known as the Platonic problem, was carried out most completely by 
the astronomer, Klaudios Ptolemaios. For our purpose it is of importance to give 
a general formulation of the method he applied to achieve his aims. To do so, we 
consider how it worked in a simple case, namely, the motion of the sun. It was 
well-known that the seasons are not equally long, even though during each the sun 
passes through a 90° arc amidst the stars. In Ptolemaios' time the duration of 
spring was 94.5 days, and of the summer, 92.5 days. So as to reconcile these facts 
with the Platonic axiom Ptolemaios assumed that an observer on earth is not at the 
center of the uniform, circular orbit of the sun. By trigonometric means he 
determined the distance from the observer to the center of the orbit of the sun and 
also the position of the diameter on which it lies in such a way that indeed spring 
took 94.5 days, and summer 92.5. Since observations allowed him to derive as well 
where the sun had been at a given moment in the past, and through what arc it 
passes uniformly in a given period, he could calculate and predict for any arbitrary 
moment in the future where in the sky the eccentric observer will see the sun, and 
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test the theory by comparing solar positions as computed with those observed in 
reality. 

Now what has happened here? Using a certain amount of empirical material 
formulated in mathematical form (the duration of spring and summer), and taking 
into account certain general principles (the Platonic axiom), a hypothesis has been 
framed on how the observed phenomena truly fit together (the observer has an 
eccentric position). The hypothesis is construed in such a way that 1) the facts that 
gave occasion to framing it in the first place can be derived from it (obviously, this 
is the minimal requirement) and 2) it leads to predictions (solar positions at given 
moments in the future) which can be checked through new observations. If we 
employ a not fully satisfactory terminology, which already came up in antiquity and 
later came into general usage, we may divide the entire process into a part marked 
by resolution, which ends with the framing of the hypothesis, and one marked by 
composition, which consists of a twofold deduction from the hypothesis and of the 
empirical verification of the predicted facts. 

It is important to note that in the two parts of the thought process the 
hypothesis performs a different function. In resolution it appears as a conjecture, 
in composition as the starting point for a deduction - as an axiom, that is. The 
former function corresponds to present-day terminology, the latter to Greek usage. 
To our ear, the word 'hypothesis' always contains a strong shade of uncertainty. In 
Greek, hupothesis (hypothesis) signifies the assumption taken as the foundation of 
an argument, the requirement for the assumption being that the audience accepts 
it. Thus it is simply synonymous with the word 'axiom', in which such a require
ment is similarly expressed. 

For our special purpose it is useful to point out those stages in the process 
where mathematics is of service. This happens 1) when, in resolution, empirical 
facts are formulated in mathematical form; 2) when the hypothesis framed has a 
content that can be expressed mathematically; 3) in the dual deduction to be found 
in composition. 

It is clear that the truly creative element of the entire process consists of the 
framing of the hypothesis. Here, it should be stressed, one must not speak, as 
occasionally happens in slipshod discourse, of a deduction from phenomena. The 
point is not what follows from phenomena, but rather to find something from 
which they follow. One cannot possibly derive from the data about spring and 
summer that the observer has an eccentric position. While fully respecting the 
Platonic axiom one may equally well render account of the data by supposing the 
observer to be at the center of a circle orbited not by the sun but rather by the 
center of a smaller circle (a so-called epicycle) uniformly traversed by the sun. 

Framing an hypothesis always contains an element that cannot be rationally 
accounted for. Only such terms as nous, virtus intellectiva, intuition, imagination, 
inspiration, may begin to define it. This is why, in the investigation of nature, not 
even interest, diligence, goodwill, accuracy, technical proclivities, and a talent for 
mathematics satisfy all requirements. A specific power is required that, in its 
highest form, is given only to a few blessed ones. 

So far we have acquainted ourselves with the schema of the method of 
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resolution and composition (better: of the hypothetico-deductive method) by means 
of mathematical astronomy as an example. But one can easily see that it is valid for 
all exact sciences, and that these are distinguished from one another only by 
differences in the relative scope and the relative importance of one or another part 
of the process. Thus, when geometry turned from a natural science into a branch 
of mathematics, the collection of theorems (whether acquired through measure
ment or through guesswork or in any other way) that the Greek mathematicians 
could take for known when their activities began, served as the empirical material 
from which to start when applying the method. The EucUdean system of defini
tions, postulates, and axioms similarly formed the hypothesis. Deductively, both the 
premises and new geometrical propositions were derived, and, because of the 
noetic character the discipline soon acquired, the Pythagoreans already ceased to 
feel any longer the need to check such propositions empirically. In the statical and 
hydrostatical investigations of Archimedes discussed by us, the starting material 
consisted of what, through experience of long standing, had been learned about the 
action of levers and the conduct of bodies immersed in fluids, which material was 
given shape in a few axioms felt to be self-evident. From the hypothesis new 
propositions were deduced - for example, numerous theorems concerning the 
stable floating positions of paraboloids of revolution. However, Archimedes 
apparently did not feel the need to verify these propositions empirically, even 
though, for us, it would not be amiss in a case like this to require such a verifica
tion. 

It appears further that, over the course of time, the hypothetico-deductive 
method not only has been indeed continuously applied implicitly, but also has been 
explicitly investigated. In antiquity Galenos devotes attention to it; in the 13th 
century Robert Grosseteste and others display great interest.'" Grosseteste in 
particular urges the necessity of checking the tenability of the hypothesis that has 
been established through empirical verification or falsification of its consequences. 
Naturally the a priori principles in light of which the hypothesis is conceived may 
differ from one case to the next. For Grosseteste and numerous later investigators 
of nature these principles include a belief in the uniformity of nature's modes of 
operation, together with the related lex parsimoniae, which states that nature does 
everything in the simplest manner possible, so that no more explanatory principles 
should be introduced than are strictly necessary. Still later, the method is extensive
ly examined in the philosophical curriculum at the University of Padua, so that, 
when Galileo expounds the method expUcitly in the early 17th century, he does 
nothing but carry on a tradition of long standing at the institution to which he 
belongs. 

The enduring interest displayed in the method has not at all times been able 
to effect an equally fruitful application. Before the sixteenth century the harvest of 
scientific results remains tiny, and its first accretions since come slowly. In prin
ciple, one knew quite well how to cultivate science, yet the practical application of 

A.C. Crombie, Robert Grosseteste and the Oripits of Experimental Science (Oxford, 1953). 
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the method met relatively rarely with success. The explanation of this remarkable 
phenomenon is still a primary problem in historiography. It belongs to a class of 
cognate questions, all of which come down to our desire to imderstand how it is 
that a certain development did not tcike place at a certain period of time when, so 
it seems to us in retrospect, it might very well have, and why at a later stage it 
suddenly did. The question may also be clothed in the form of asking whether 
there exists indeed a specific speed of growth for a specific science and, if so, by 
what it is determined. 

Responses to such questions must undoubtedly take into accoimt the coopera
tion of a great number of factors, part of which are of an internal-scientific nature, 
whereas others are socio-economic and political-historical. Whoever succeeds in 
pointing at some of these factors should never forget that he is always leaving a 
greater number out of consideration. 

Keeping this restriction in mind, we shall enumerate here some circumstances 
which undoubtedly have slowed down the development, during the Middle Ages, of 
science treated in the mathematical-empirical way. To begin with, there was the 
underestimation, inherited from Greek thinkers, of the difficulty of the task con
fronted in the investigation of nature. This underestimation found expression in the 
establishment of hypotheses without possessing empirical material, acquired 
through observation and experiment, of sufficient scope and accuracy. Further, 
Aristotelian physics, which was generally accepted, was predominantly qualitative. 
It did not, to be sure, exclude the execution of physical measurements as a matter 
of principle (for attention was being paid to changes in the intensity of certain 
qualities), but it certainly did not elicit those, either. Next, there were the difficul
ties connected with the creation of a method of experimentation. But above all 
- and this is of importance for our particular topic - both algebra and practical 
computation had been developed only a little, and both still suffered from the 
consequences of the exclusively geometrical character Greek mathematics had 
acquired under Pythagorean-Platonic influence. Not until the 17th century did these 
two branches of mathematics reach a level that put them on a par with geometry, 
and even then it took a long time until it was learned how to profit from their 
further development. 

Progress on the other points we have mentioned was doubtless faster and 
clearer. Even though it took much effort and much struggle, success was met, in 
the domains of physics and, later, of chemistry too, by liberation from the secular 
influence exerted by Aristotelian thought. A better awareness arose of the richness 
and the complication of the phenomena of nature. Between natural science and 
technology a connection began to be made of which both were to profit greatly in 
centuries to come. 

These and similar causes led to a more rapid unfolding of science in the 16th 
and 17th centuries. It is remarkable how neatly, after an interim of so many cen
turies, this unfolding took up the developmental stage at which the Greeks had left 
science. As the first representative of the new science Copernicus resumes the 
cultivation of astronomy in fully the same spirit as the ancients. True, he alters the 
standpoint from which to consider the celestial phenomena, but the method applied 
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remains the same. He even takes pride in a stricter compliance with the Platonic 
axiom than Ptolemaios had displayed. At the end of the 16th century Stevin ties his 
researches in statics and hydrostatics directly with Archimedes. He defines the 
'weeghconst' ('art of weighing'), that is to say, the theory of equilibrium, as "a 
distinct, free branch of mathematics."" Thus the axiomatic treatment he provides 
of the statics of a solid with one point immobile runs entirely within the Archime
dean, that is to say, the Euclidean framework. He appears fully aware of the ideal 
character of the system thus constructed. Repeatedly'^ he emphasizes the difference 
between what is valid 'when taken mathematically' and what is true 'when under
stood naturally", that is, in physical reality. The celebrated 'wreath of spheres' 
proof'^ of the law of equilibrium on an inclined plane is conceived so fully to take 
place in an ideal domain that not one word is devoted to the apparent impossibility 
of physically realizing the situation described. Now, just like his great predecessor 
from Syracuse, Stevin was not only given to reflection, but to action as well. 
Therefore one might expect to find him paying attention to the question of the 
extent to which physical reality is to deviate from ideal theory. Curiously enough, 
this expectation is hardly fulfilled. To be sure, Stevin supplements his 'Art of 
Weighing' with a 'Practice of Weighing',''' where the theory explained in the 
preceding treatise is applied in practice. However, the machines discussed in the 
latter are equally kept in the domain of the ideal as is true of the windmill for 
which, in a separate work," he develops a quantitative theory - the first one in 
history. True, Stevin repeatedly calls attention to the fact that, in dealing with real 
machines, things do not quite so nicely fit the theory taught in the 'Art of Weigh
ing'. The impression gained, however, is that Stevin seriously underestimates the 
extent of the deviation. 

Galileo treats the phenomena of free fall and of projectile motion in the same 
manner as Stevin had treated statics.'* Leaning on the lex parsimoniae he posits as 
an axiom that the speed of a body freely falling from rest is proportional to the 
time pa.ssed since motion began. From this axiom he derives mathematically a 
relation between distance and time. Another axiom enables him to treat fall along 
inclined planes as well. This puts him in a position to verify the law of fall empiric
ally - a verification that is carried out in fact. However, from that point onwards 
the entire theory of fall and of projectile motion is further built up as a fully 
idealized construction. Experimental verification of the theory of projectile motion 
developed by him is not to be carried out until later, by the Accademia del 
Cimento. Barring this, though, one may say that Galileo, entirely aware all the time 

Simon Stevin, De Beghinselen der Weeghconst (Leiden, 1586), Anhang, Hooftstick III: "Dat de 
Weeghconst een besonder vrie Wisconst is." 

Thus, for example, Weeghconst I, Vertooch 4, Voorstel 8. 

Weeghconst 1, Vertooch 11, Voorstel 19. 
14 

Simon Stevin, De Weeghdaet (I^idcn, 1586). 
Simon Stevin, Van de Molens (Amsterdam, 1584). 

See for evidence E.J. Dijksterhuis, Val en worp. Een bijdrage tot de ontwikkelingsgeschiedenis der 
Mechanica van Aristoleles tot Newton (Groningen, 1924), chapter 4. 
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of what he is doing, applies the method of resolution and composition to the full. 
Once again, however, the method manifests itself in its purest form when 

applied to the discipline that, from antiquity onwards, had been the exemplar of 
method in the investigation of nature - astronomy. This is particulcirly true of 
Kepler's researches into planetary motion. After years of trial he feels compelled 
to acknowledge that, when the empirical data assembled by Tycho are treated in 
accordance with the Platonic axiom and with the methods of Ptolemaean astron
omy, a difference of eight minutes of arc remains between, on the one hand, the 
consequences of the hypothesis established and, on the other, certain measure
ments that had not previously gone into the making of the original hypothesis.'^ 
Having come that far, Kepler is the first to risk the rejection of the Platonic axiom 
and to introduce new mathematical tools for the representation of planetary 
motion. In the laws that bear his name he generalizes the Platonic circle into an 
ellipse, with constant linear speed being equally generalized into constant areal 
speed. 

As the development of mathematical science progressed further, the question 
of the relation between physical reality and the mathematical picture that theory 
juxtaposes to it could be asked with ever more justification. In antiquity the 
question had concerned Euclid's geometry, Archimedes' mechanics, and Ptolemy's 
astronomy. Now the phenomena of fall and projectile motion, and soon those of 
circular motion, impact, heat, and optics, too, are involved as well. In the Middle 
Ages the old controversy over the relation between idea and physical reality had 
taken shape as the problem of universals. It is now revived as the question of the 
true meaning of the mathematization of natural science. And again, the three 
possible responses by means of which the problem of universals had by and large 
been resolved now presented themselves once more. The response that corresponds 
to the Platonic standpoint of the universalia ante rem ('universals prior to things') 
is the conception of nature as an imperfect realization of an ideal, and in this case 
a mathematical, world of thought. What corresponds to the Aristotelian standpoint 
of the universalia in re ('universals in things') is to conceive of an idealization that 
originates in the abstraction from experience. Finally, the counterpart to the 
nominalist standpoint of the universalia post rem ('universals posterior to things') 
is the conception of a practical tool that is of help in achieving an approximate 
description of reahty. Note that the description leaves out everything that is as yet 
too difficult for thought to grasp in the given situation, but also whatever need not 
be taken into account in order to attain the aim one has set oneself. The key point 
is that no independent significance whatsoever may be attributed to the description. 

It is unlikely for all those investigators who together, in the course of the 17th 
century, laid the foundations for the later flowering of science to have adopted a 
definite standpoint in face of these questions. One of the very greatest, however, 
Kepler, did give an unambiguous answer. Adopting and elaborating the key idea of 
Plato's Timaios, Kepler explains that God allowed Himself to be guided, in creating 
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the world, by mathematical considerations in that He kept in mind certain logoi 
kosmopoietikoi, that is, world-building ratios.'* Furthermore, He created the human 
mind such as to enable it to discern quantitative relations. This is in fact its proper 
function. Just as the eye is geared to seeing colors, and the ear to hearing sounds, 
just so the human intellect is ad quanta intelligenda condita, that is to say, designed 
for grasping quantities." Therefore, the mathematical system that we established 
with the observed phenomena as our point of departure not only contains every
thing in nature that it has been given to man to acquire knowledge of, but we may 
also rest assured that, in the very act of estabhshing the system, we may glimpse 
the divine plan of creation. The human intellect is God's spiritual image, just as the 
world is His material image. It is on this that man's ability to cultivate science 
rests. 

Thus, just as for Plato, there exists for Kepler an ideal world which possesses 
a higher reality than the empirical world in which that reality is materially imitated. 
For Kepler, too, the function that experience fulfills in the investigation of nature 
is to give us occasion to reflect on a cognition already possessed by our thought in 
consequence of its divine origin. 

In the 17th century the sciences achieved great progress through the applica
tion of the hypothetico-deductive method, that is to say, through a harmonic col
laboration of empirical research and mathematical systematization. Given this, it is 
odd to find that, as an expression meant to characterize the method, the term 
'experimental method' increasingly becomes the fashion, since only one of its two 
components is indicated thereby. This is probably a symptom of the powerful 
influence Francis Bacon's brilliantly formulated reflections on the method of 
science exerted on scientific thought in the 17th century and far beyond." In those 
reflections the empirical element is emphasized in a quite one-sided manner, 
whereas the indispensable function of mathematics is ignored. The listing procedu
re he recommends for the systematic collection of empirical facts is not, according
ly, more than a most questionable impoverishment of the sole method that was to 
appear effective. Here not only the services of mathematics are disowned, but also 
the creative accomplishment expressed in establishing a fruitful hypothesis. Re
markably, a similarly incomplete nomenclature was adopted in the 19th century, 
when the philosophy of science once again displayed strongly Baconian features, 
and scientific method was frequently defined as empirical-inductive. 

After the hypothetico-deductive method yielded the great gains to 17th-
century science that are comprised in the works both of the investigators men
tioned here and of many others, at the end of the century the method appeared 
susceptible of a considerable enlargement of its scope. Up to then a strict require-
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ment for explanatory hypotheses in science had been that they should be as 
self-evident as possible. They should also lend themselves in any case to a visual 
picture in the sense that, minimally, they fit into the sphere of representation that 
is created by normal sense experience in daily life. In accordance with these 
requirements the two great corpuscular theories of the 17th century, those of 
Gassendi and of Descartes, allowed no other action of material particles upon one 
another than the action that is exerted in mutual contact, through pressure or 
impact, that is - the very type of action to be observed all the time in the macro-
world. Such investigators as Robert Boyle and Christiaan Huygens display to us 
the full extent to which this corpuscularian conception - also designated as 
'mechanical' - dominated the physicists' thought at the time. For them, this very 
trait established the decisive demarcation from medieval science. Descartes in 
particular defended such a conception in no uncertain terms. In his view a scientific 
theory should produce a mechanical model of physical reality, and such a model 
should, if need be, be susceptible to actual construction by skilful tinkering so as to 
demonstrate ad oculos the operations of nature. 

Now Newton, in his theory of gravitation, introduced the supposition that each 
couple of material particles in the universe attracts one another with equal forces 
which counteract along the line that connects them, the magnitude of these forces 
being inversely proportional to the square of the distance of the two points. By 
means of this hypothesis he succeeded in conceiving of phenomena of both celestial 
and terrestrial motion as consequences of one and the same general law of nature. 
Despite the important results yielded by the theory it elicited resistance on the 
principal grounds that no visual picture could be made of how, all across empty 
space, a body here might act upon a body yonder. 

Newton, however, had countered the objection by anticipation in declaring, in 
his Principia, that his gravitation should not be regarded as a causa physica, but 
rather as a causa mathematical^ His objective was no other than what astronomers 
all across time had always aimed at, namely, to provide a mathematical description 
of the course of things that is as simple as possible and that covers as many 
phenomena as possible. However, because of our human capacity to exert and 
undergo actions which we designate as forces, the language of 'forces' always raises 
a powerful illusion of visual picturability and, therefore, of comprehensibility. This 
is why Newton, in clothing his description in the garb of such picturesque 
force-language, created the impression that planetary motions, terrestrial tides and 
movements of falling or projected bodies had now been explained in the sense of 
making it clear how they are actually produced. In fact this was not the case at all. 
Terms like gravitation and attraction are no more capable of making anything 
intelligible than terms like substantial form or quality were in scholastic philosophy, 
or mechanical pressure and impact in the 17th century. Newton himself never for 
one moment lived under the illusion that they are. He explicitly called actio in 
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distans a physical absurdity," but this did not prevent him in the least from making 
use of it in a mathematical theory of a natural phenomenon. 

Thus Newton abandoned the requirement of visual representation. He sub
jected a hypothesis to the sole condition that from it one can deduce both the facts 
already known before and new, empirically testable conclusions. In so doing 
Newton considerably extended the possibilities provided by the empirical-mathema
tical method of the investigation of nature. He also clarified a great deal our 
understanding of its essence. In the 17th century explanations by means of the 
contact action of material corpuscles had appeared persuasive because the phenom
ena of pressure and impact, with which daily life makes us familiar, were regarded 
as sufficiently intelligible. In the hands of a genius like Christiaan Huygens, among 
others, this conception had yielded important results. However, for the further 
development of physics it was of eminent significance that Newton aboHshed the 
principle of the necessary connection with what is macroscopically familiar. 

Curiously, it did not take long before the very same concept of gravitation 
that no lesser minds than those of Leibniz and Huygens had branded as an 
essentially non-mechanical principle of explanation signifying a recourse to the 
occult qualities of Scholasticism, appeared so familiar and well-known to inves
tigators of nature that they began to declare it a fundamental principle and to aim 
at turning it into the cornerstone of as many domains of science as possible - they 
began to consider it as a typically mechanical principle. After the major alterations 
in physical thought in the 20th century had taken their course a certain nostalgia 
for the visual representations of classical physics could even be observed on 
occasion, this nostalgia being felt in particular for Newtonian conceptions that, 
when pronounced for the first time, had been considered to lack picturability in the 
highest degree! This is how far judgments on the acceptability and manageability 
of a scientific concept appear to depend on the extent to which we have become 
famiHar with it, which is determined in its turn by the environment in which we 
undergo our scientific education. Again and again a younger generation learns to 
handle effortlessly the concepts and conceptions that their great predecessors had 
introduced with much hesitation and in face of the opposition of their contem
poraries, and then the new generation goes on to develop these further in an 
equally laborious process. It is this collective growth of human thought that makes 
progress in science possible. 

Thus the expansion of the mathematical-empirical method accomplished by 
Newton was of a principal nature and significance in that the aim of a scientific 
theory could now be defined as providing a mathematical description of the course 
of a natural phenomenon, under the naturally added clause that the description 
must give rise to empirically verifiable consequences. Saying this should not be 
misunderstood to mean that such a conception of scientific method has since been 
universally accepted. To the contrary, the Cartesian desire for so-called mechanical 
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models of physical phenomena and events appears to have lived on unabated 
among many investigators of nature in the 19th century, some of whom were 
among the very greatest. The history of aether theories provides a striking example. 
However, it looks as if in the 20th century the Newtonian conception has gained 
the upper hand more and more. 

On the other hand, already at the beginning of the 19th century a possibility 
had been opened to pursue further the road taken by Newton. When, in framing 
a scientific theory, we are no longer bound to physical picturability, geometrical 
picturability does not of course bind us either. With the construction of non-Euclid
ean and more-dimensional geometries an expansion of the mathematical means of 
description of physical processes became given at least in principle. Not until the 
20th century, however, were these new means to be employed in fact. As we see so 
often happen in history, progress was achieved once more through the escape from 
the grasp of certain limitations the Greek founders had imposed upon mathe
matical-physical thinking. It is not impossible that the emancipation from our 
strong bond to Hellenic thought must be pursued further in order to warrant a 
continuing flowering of science.^ 

But this is no longer an historical statement, and thus it appears that, at least 
for the present hour, the history of science has come to the end of what this par
ticular discipline has to say about the application of mathematics in science. No 
doubt a treatment in greater depth would bring to light many more data about 
their collaboration. Such a treatment might also demonstrate how richly mathe
matics has been rewarded for the indispensable services rendered to science in that 
the tasks it was assigned to fulfill had an in.spiring effect upon its own development. 
It is not likely, though, that data of a principally new nature, fit to help resolve the 
problem put at the beginning of this address, would be acquired thereby. 

Will the philosophy of science itself succeed in fully clearing up the function 
mathematics fulfills in science? Will it be able to explain how it is that we can 
cultivate science with the help of mathematics? 

That depends on what we mean by 'explanation'. Presumably the answer will 
be of the type made fun of by Nietz.sche in discussing Kant's response to the 
question of how synthetic judgments a priori are possible: vermoge eines Vermogens 
('enabled by an ability').'^ The human mind - so the conclusion may well run - if 
first opening itself to what lessons unprejudiced observation has to offer, is capable 
of depicting the operations of nature in a mathematical system that enables us to 
predict what is going to happen under certain, consciously selected circumstances. 
In essence, this is the very conviction we heard Kepler commit himself to in the 
garb of theological language: In cultivating science with the help of mathematics 
the human mind, ad quanta intelligenda condita, shall understand of creation what 
it has been given man to understand of it, that is, geometriae vestigia in mundo 
expressa, the vestiges of geometry that stand expressed in the world. 
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