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ABSTRACT N

LARSON, M.; CAPOBIANCO, M.; JANSEN, H.; ROZYNSKI, G.; SOUTHGATE, H.; STIVE, M.; WIJNBERG, K., and
HULSCHER, S., 2003. Analysis and modeling of field data on coastal morphological evolution over yearly and decadal
time scales. Part 1: background and linear techniques. Journal of Coastal Research, 19(4), 760-775. West Palm Beach
(Florida), ISSN 0749-0208.

A number of statistical techniques to analyze and model coastal morphological evolution over yearly and decadal (i.e,,
long-term) time scales based on field data are presented. After a general introduction to long-term morphological
modeling, mainly linear methods are discussed, whereas nonlinear methods are treated in a companion paper (SouTH-
GATE et al., 2001). The theoretical background to the methods introduced is summarized and examples of field appli-
cations are given to illustrate each method. High-quality field data sets from different sites in the world, including
Germany, The Netherlands, and United States, were employed in these examples. The analysis and modeling tech-
niques used encompassed bulk statistics (mean, standard deviation, correlation etc), random sine functions, empirical
orthogonal functions, canonical correlation analysis, and principal oscillation pattern analysis. Besides an evaluation
of how suitable respective technique is for analyzing and modeling long-term morphological evolution, some general
observations are presented regarding scales of morphological response as derived from the field applications. Data
describing the evolution of both natural and anthropogenically affected coastal systems were studied. All methods
investigated proved their usefulness for extracting characteristics of long-term morphological evolution, as well as for
modeling this evolution, when applied under the right circumstances. However, more sophisticated techniques rely
on more data in time and space, which is typically the limiting factor in the application of statistical methods as those
presented here.

ADDITIONAL INDEX WORDS: Data analysis, modeling, bulk statistics, principal component analysis, empirical or-
thogonal functions, canonical correlation analysis, principal oscillation patterns, long-term morphological evolution.

INTRODUCTION

The coastal areas constitute complex physical systems of
high dimensionality where the forcing acts at many scales in
time and space, often through complicated interactions and
feedback mechanisms between the forcing and the system re-
sponse (DE VRIEND, 1991a; LARSON and Kraus, 1995). Thus,
predicting sediment transport and evolution of beach mor-
phology in these areas are difficult tasks, especially over lon-
ger time periods when the scale range is wide. Physically

03300B received and accepted in revision 10 January 2003.

based prediction models have their inherent limitations due
to insufficient knowledge of the governing processes as well
as how these processes are described in equation form (DE
VRIEND, 1991b). In a more basic context there are limits to
the predictability of morphological variables that are related
to the issue of scale (CAPOBIANCO et al., 2003), but possibly
also due to the nonlinearity of many coastal systems that
may induce chaotic behavior (SOUTHGATE et al., 2003).

A useful alternative to models of long-term beach evolution
developed based on physics (see HANSON et al, 2003) might
be data-based models, where the components as well as the
entire structure of the model could be constructed from anal-

This content downloaded from
130.89.109.219 on Thu, 23 Mar 2023 10:32:54 UTC
All use subject to https://about.jstor.org/terms



Background and Linear Techniques 761

ysis of available data on beach morphology. The fundamental
assumption in data-based modeling is that the sampled data
sufficiently well reflect the essential properties of the process
under study in time and space. If this is not the case, model
predictions will fail to capture the system behavior and pre-
diction results will be poor. The strength of a data-based mod-
el, that is, it may reproduce the main features of the beach
behavior observed at a particular site without any special
physical insight, could also be the primary weakness of the
model since the general applicability is not ensured. Using a
data-based model developed for one site requires careful con-
siderations before it is used at other sites.

A natural step prior to data-based model development is
analysis of the data to establish basic properties and the de-
gree of association between these properties. Such analysis
typically aims at detecting and quantifying dominant pat-
terns in the data and their evolution in time and space, as
well as how different patterns are related to each other. Thus,
it is possible to obtain valuable information on the long-term
behavior of beaches that may be used not only for developing
data-based models, but also for increasing the understanding
of the factors governing the morphological evolution. The use
of a limited set of basic patterns to represent the data is often
an effective way of distinguishing between signal and noise
(VoN STorCH and NAVARRA, 1995). The signal is associated
with the morphological processes at the scale of interest,
whereas the noise includes the effects of processes operating
at smaller scales not sufficiently resolved by the data as well
as inaccuracies in the measurements. Distinguishing be-
tween signal and noise is often non-trivial and depends on
the specific application as well as the required accuracy of
the data representation.

The main objective of this paper is to introduce a number
of data analysis and modeling techniques that are potentially
useful in predicting the long-term evolution of beaches. The
emphasis is on presenting examples from the field where the
techniques have been applied to understand and predict the
behavior of the coastal system, although a brief theoretical
background is provided for each technique discussed and ap-
propriate references are given. By discussing the techniques
through practical examples it may be easier to assess the
usefulness and limitations of respective technique for appli-
cation to a specific data set. The focus on practical examples
stresses the need for high-quality data sets and at present
this remains one of the major obstacles for understanding
long-term beach evolution (DE VRIEND et al, 2003). In the
PACE project a number of such long-term data sets were
compiled and the examples provided here constitute a part of
the research work performed within PACE.

Another important aspect of the data analysis and model-
ing discussed in this paper, besides evaluating the applica-
bility of the techniques in predicting long-term beach evolu-
tion, was to determine characteristic time and space scales
of long-term beach response in order to extract some general
properties of these response scales. The response of a coastal
system is associated with changes in the forcing or the system
itself, which could be naturally or anthropogenically induced
(e.g., beach nourishment or the construction of a groin or jet-
ty). Finally, a third motivation for employing the present

analysis techniques is data reduction where the original data
are too extensive to be efficiently managed. Instead, the data
are represented through a limited set a functions obtained by
using some predefined statistical measure. An example of
such functions that are discussed extensively here are em-
pirical orthogonal functions (EOFs) which concentrate the
variance in an optimal manner.

Data sets on long-term beach evolution typically encom-
pass time series of topographic surveys (one- or two-dimen-
sional in space), possibly with some simultaneous measure-
ments of the forcing (e.g, wind, waves, and currents). De-
tailed, high-quality data sets tend to be relatively limited in
time extending from a few years up to a few decades, which
limits the possibilities of understanding the coastal behavior
and making predictions of this behavior. Geologically recon-
structed data sets on beach evolution are much longer and
could encompass many thousands of years (STIVE et al.,
2003). In the examples given here no such long-term data set
is included, although the present techniques might be highly
useful to explore and model beach evolution also on geological
scales.

A majority of the techniques introduced in this paper are
related to principal component analysis (PCA). PCA methods
have been employed for quite some time in meteorology and
oceanography to resolve the spatial and temporal variability
of physical fields (PREISENDORFER, 1988; VON STORCH and
NAVARRA, 1995). However, PCA was originally developed by
researchers in the field of experimental psychology (HOTELL-
ING, 1933) and later utilized by geologists (KRUMBEIN and
GRAYBILL, 1965; Davis, 1971). The PCA methods have
shown great promise in terms of representing complex fields
through a limited number of basic patterns in space (princi-
pal components or spatial EOFs) combined with multiplica-
tive time functions (principal component scores or temporal
EOFs). Even though the patterns do not necessarily have any
physical relevance, it is often possible to give an interpreta-
tion that is physically based when beach topographies are
analyzed. This is probably due to the fact that topographies
are geometric constructs made up of different features, and
the patterns extracted through PCA often happen to match
these features. PCA has previously been employed in analysis
of coastal data, typically to determine the shape of the EOFs
for time series of beach profiles surveyed at a particular lo-
cation (e.g., WINANT et al., 1975; AUBREY, 1979). However,
several of the other PCA-related methods discussed here
have not been applied to coastal morphological data before.

In the following, a selected number of methods, judged to
be especially suitable for investigating long-term beach evo-
lution, are introduced and examples are discussed to high-
light the characteristics of these methods. Mainly linear
methods are presented in this paper, whereas nonlinear
methods are the topic of a companion paper (SOUTHGATE et
al., 2003). As pointed out above, most of the techniques dis-
cussed here are related to PCA, but also simple, bulk statis-
tical methods are included. The paper concludes with a sec-
tion summarizing the applicability of the presented tech-
niques for predicting long-term beach evolution. Some gen-
eral observations regarding the long-term response of
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beaches based on the data analysis performed within the
PACE project are also given.

BULK STATISTICAL ANALYSIS
Background and Theory

Traditionally, simple bulk statistical measures such as the
mean, standard deviation, range, and correlation have been
employed to characterize beach response. A time series of, for
example, profile surveys is used as input data and the sta-
tistics of the profile elevation is computed at selected cross-
shore locations. Such statistics may be used for predicting the
probability that a certain variation in the elevation will occur
and provide a basis for design of structures and activities in
the nearshore (INMAN and RusNaAk, 1956; DEwWALL and
CHRISTENSON, 1984). Another common application related to
the variability in profile elevation is determining the depth
of closure (HALLERMEIER, 1981), which corresponds to the
seaward limit of significant sediment transport. In practice,
significant transport is related to profile variability given by
the local standard deviation in elevation (KrRaUs and HARI-
KAI, 1983) or a predefined depth change between individual
profile measurements (NICHOLLS et al, 1998a). Recently,
probability-based approaches have been developed for deter-
mining the depth of closure where a range of depth changes
are investigated and their probability of exceedance (Capro-
BIANCO et al.,, 1997; NICHOLLS et al., 1998b).

Bulk statistical analysis has also been employed to derived
quantities, that is, morphological variables computed from
topographic measurements. An example of this is analysis of
morphological features and forms, for example nearshore
bars and berms (HANDS, 1976; LARSON and Kraus, 1992;
RUESSINK and KROON, 1994), dunes (STIVE et al., 1996), and
overall profile shape (DEAN, 1977; PRUSZAK, 1993), where
the temporal and spatial variations of the quantity are in-
vestigated. In the case of morphological features, an objective
definition must be found that correctly represents the prop-
erties associated with the feature and the variation in these
properties. Investigating the behavior of morphological fea-
tures typically requires fairly detailed information about the
bottom topography that could be difficult to obtain for long
time periods. An alternative to topographic surveys might be
image data collected using video cameras, where changes in
the topography could be directly or indirectly inferred
through image analysis (WIJNBERG and HoLMAN, 1997).

Correlation analysis provides a measure of the linear re-
lationship between two quantities for which simultaneous
measurement time series are available. If a strong correlation
is observed between two quantities, models can be developed
(empirical or physically based) to predict one quantity from
the other. Establishing relationships between different quan-
tities could also be of interest from an analysis perspective,
where insights into the behavior of a beach and how it re-
sponds to the forcing might be gained. Waves are the primary
forcing for beach change in many cases and time series of
measured (or hindcasted) statistical wave properties are of-
ten available. Although marked correlation between the
waves and profile change might be noted, it is in general dif-
ficult to establish predictive relationships between, for ex-

ample, bar movement and offshore wave characteristics with-
out data censoring (LARSON and Kraus, 1992). Thus, signif-
icant relationships may only be derived for certain classes of
events (e.g, extreme storms) which display a distinct re-
sponse with respect to the scales resolved in the measure-
ments. A remedy for this situation might be advanced statis-
tical models that can describe more complex input-output
systems as well as include the time history of the morpholog-
ical evolution, which often is of major importance for the
beach response.

Different types of Fourier methods, which represent phys-
ical features in time and space through sinusoidal functions,
have also been employed in analysis of coastal morphology
(Pruszak and R6zyNski, 1998). Such analysis may provide
an efficient way of deriving characteristic scales for cyclic
phenomena in the coastal areas, for example, seasonal shore-
line fluctuations, material exchange between the bar and
berm region, and spatial properties of rhythmic features. One
disadvantage of the Fourier analysis is the a priori assumed
sinusoidal shape of the applied functions, which restricts the
identified patterns in time and space. In general, selecting a
specific shape for the functions in the analysis may provide
a certain robustness in the estimates and allow for introduc-
ing process knowledge into the analysis. However, the rep-
resentation of the data is typically not optimal in the sense
that the applied patterns are fixed and not derived from the
data properties. A particular technique applied here that may
be classified as a Fourier method is Random Sine Functions
(RSF's). In RSF analysis residuals around a certain reference
shape (e.g., an equilibrium beach profile) are treated as sine
functions with random amplitude (envelope), wave number,
and phase. The derived sine functions reflect the variability
in the data and may be suitable for characterizing spatial and
temporal properties of different features and forms.

Field Application

Data on waves and profiles have been collected at the U.S.
Army Field Research Facility at Duck, North Carolina, since
the beginning of the 1980s (HowD and BIRKEMEIER, 1987,
LEE and BIRKEMEIER, 1993). This data set is unique with
respect to the spatial and temporal resolution of beach profile
change as well as the accuracy of the measurements. Thus,
in several applications discussed in this paper the Duck data
set was employed to evaluate analysis and modeling tech-
niques. The beach profile has been surveyed approximately
biweekly along four lines at Duck (Line 58, 62, 188, and 190;
see Howp and BIRKEMEIER, 1987), from the dune region out
to about 8 m water depth, and at present about 13 years of
data are available.

A commonly used measure of beach profile variability is
the standard deviation in elevation, which may be computed
at selected cross-shore locations from a time series of profile
measurements. Figure 1 illustrates the standard deviation in
elevation (s,) as a function of mean profile elevation calculat-
ed for the four survey lines at Duck using 13 years of data.
The main features of the cross-shore variation in s, are quite
similar at different beaches, although the magnitude differs
(Kraus and HARIKAI, 1983). A maximum in s, is typically
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Figure 1. Standard deviation in elevation as a function of mean profile
elevation for four survey lines at Duck (1981-1993).

found around the shoreline, and, going offshore, s, decreases
first at a low rate after which it drops drastically at a certain
depth (about 4 m in Figure 1). This marked drop in s, has
often been used to define a depth of closure. It is also clear
from the figure that s, attains small but non-zero values at
greater depth, indicating that, although these events are
rare, profile change of significance occasionally occurs at
these depths (another factor affecting s, at greater depths is
the survey accuracy). By introducing probability consider-
ations into designs involving the depth of closure, a more re-
alistic description of profile variability and its effect on the
activity or structure to be designed is obtained.

Even though simple bulk statistics are quite useful in char-
acterizing long-term beach dynamics, more sophisticated
measures may provide additional insights to how the beach
responds. For example, correlation analysis yields informa-
tion about whether different quantities tend to display inter-
related behavior. If such behavior is established, it could be
a starting point for identifying physical mechanisms to ex-
plain the response or for deriving empirical predictive rela-
tionships. Figure 2 shows the correlation coefficient (c,) cal-
culated between time series of measured profile elevations at
selected cross-shore locations. The variability associated with
four main profile morphological features was investigated,
namely shoreline, inner bar, outer trough (between inner and
outer bar), and outer bar (two bars are commonly present at
Duck). Elevation time series at the mean locations for these
features were correlated with corresponding series measured
at other locations.

The c,-values for the mean inner and outer bar locations
exhibit the same basic spatial correlation pattern (most sea-
ward part of the profile not shown): there are strong positive

e T T T T T T LA ]
300 400 800
Distance Offshore (m)

Figure 2. Correlation between time series of elevation at selected loca-
tions representing main morphological features and neighboring profile
regions (data from Duck, 1981-1993).

correlations around the mean bar location and marked neg-
ative correlations with points located further away (on both
sides of the positive maximum). This pattern is probably
caused by the fact that the bars are built over a certain dis-
tance by material from both the shoreward and seaward side.
The outer bar has a broader positive correlation area than
the inner bar reflecting the typical greater horizontal extent
of the former bar. Around the mean outer trough location the
same basic pattern is observed as for the bars. For the mean
shoreline location, ¢, shows a sharp drop going offshore, most
likely because coarser material often found in this region pro-
duces a beach response that often display little covariability
with locations further seaward. However, in the outer trough
region there is a positive peak in ¢, indicating that erosion at
the shoreline is connected with deepening of the outer trough.
The correlation between what is happening at the shoreline
and the mean inner and outer bar locations is weak, although
slightly negative as expected.

Correlation analysis may be less well-suited for resolving
morphological forms and features. Instead, different Fourier
methods may be applied that more readily identify the pres-
ence of such features and quantify their properties. Here,
RSFs were developed to study the behavior of multi-barred
beaches. A certain degree of integrity (regular sampling)
should be retained, however, the method is much less com-
puter-intensive than traditional Fourier transformation tech-
niques or different types of PCA. RSF was first applied to the
Lubiatowo beach (PRuUszAK and ROzyNski, 1998), which is
gently sloping with fine sand (D;,=0.22mm) having multiple
bars and a marked dune typical of the South Baltic coast.
Measurements were performed at 27 cross-shore survey lines
regularly spaced at 100 m. Three of the lines located in the
middle of the study site were chosen for the RSF analysis,
because their records had the best integrity and contained
measurements of all surveys between 1964 and 1994, usually
taken once or twice per year. This measurement time span
allowed for determining bar behavior at time scale of decades.

The analysis started by computing the reference Dean pro-
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Figure 3. Profile envelope resulting from RSF analysis employing five
fixed bar wave numbers.
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Figure 4. Exponentially decaying bar wave number pattern.

file, which was determined through a least-square fit against
all surveys lumped together. Then the residuals were com-
puted around the reference profile. In the RSF analysis a sine
function is drawn along three such consecutive residuals and
a bar wave number k(x), envelope A(x), and phase &(x) are
obtained for the middle residual according to the following
formulas: k(x)-Ax = arccos[(r(x+Ax)+r(x—Ax))/2r(x)]; Alx) =
[r2(x)+((r(x+Ax)—r(x—Ax))/2k(x)Ax)?]2; and r(x)/A(x) =
sin[k(x)x+@(x)], where r(x—Ax), r(x) and r(x+Ax) are consec-
utive residuals and Ax is the sampling interval. The first for-
mula yields —1 =< cos[k(x)Ax] = (r(x+Ax)+r(x—Ax))/2r(x) <
1 and this criterion determines whether a sine function can
be drawn through three given residuals. Apart from a few
cases this criterion was satisfied for the present data, so the
analysis could be applied successfully. Thus, the RSF analy-
sis produces three functional parameters, where the bar wave
number and the envelope express bed variability. The phase
can not be given any physical interpretation and it is dis-
carded in the following discussion.

The envelope reflects the intensity of the bed variation.
Standard deviation or mean deviation about the reference
profile play a similar role, so the line of the envelope should
closely resemble these two measures, especially the latter
one. Since the envelope depends on the bar wave number
pattern, the RSF model is usually calibrated so that the en-
velope becomes close to the mean deviations about the ref-
erence profile. Initially, the bar pattern was characterized by
five constant parameters %, to 2, each one associated with
typically observed bar configurations (subscript ‘0’ corre-
sponding to the ephemeral innermost bar located 0-90 m off-
shore and ‘¢’ to the outermost bar located 580-800 m off-
shore). The k,-parameters were obtained as the mean values
for locations where the bars were typically observed. Such an
approach seemed to slightly overestimate the most intensive
bed variability (Figure 3), so it had to be modified. The com-
putation of average bar wave numbers for every location re-
vealed an exponentially decaying trend, and the expression
k(x) = 0.086exp(—0.0025x) was obtained through a least
square fit against the data points (Figure 4). As a result a

better agreement between the mean deviations and the en-
velope was achieved (Figure 5).

RSF is especially useful for description of local geometrical
bar properties. The main idea is that bar length and height
can be associated with the location across the beach profile,
so the variability of large rhythmic bed forms can be studied
in relation to their position on the profile. Thus, it permits
for quasi-dynamic analysis as bar properties can be related
to their cross-shore locations. The exponential pattern for the
bar wave numbers corresponds to the observation that on-
shore bars are short and high, whereas offshore bars are long
and flat. Another point is that bar behavior is described by
only two functional parameters, which combine profile vari-
ability with bar length.

EMPIRICAL ORTHOGONAL FUNCTION (EOF)
ANALYSIS
Background and Theory

Eigenvector techniques encompass the mapping of the ob-
served data onto a set of shape functions (the EOFs) that is
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Figure 5. Profile envelope resulting from RSF analysis employing ex-
ponentially decaying bar wave number.
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extracted from the data itself (PREISENDORFER, 1988; JACK-
SON, 1991). The EOFs correspond to a statistically optimal
description of the data with respect to how the variance is
concentrated in the modes, where the variance explained de-
creases monotonically with the mode number. Thus, since the
explained variance typically drops at a high rate with the
mode number, only a limited number of modes is needed to
explain most of the variance in the data. This property is
often the motivation for using EOF's as a data reduction tech-
nique or a method to separate between signal and noise. As
previously discussed, although the EOFs are optimal in a sta-
tistical sense there is no reason that the eigenfunctions
should have a physical background, even though such inter-
pretations are possible in many cases as will be shown below.

A data matrix X containing, for example, morphological
quantities sampled in space (columns) at specific times
(rows), may be represented using matrices involving the spa-
tial EOFs (E), the eigenvalues (L), and the temporal EOFs
@A

X = ELAT (6))]

The column vectors in £ and A are orthonormal and corre-
sponds to the eigenmodes, and the variance associated with
respective mode is given by the eigenvalue in L. The EOFs
are normally obtained by solving an eigenvalue problem in-
volving the covariance or correlation matrix based on X, but
in some applications the sum-of-square matrix is used in-
stead. In the former approach the arithmetical mean is re-
moved, which is the most common method in applications to
morphologic data since the mean tends to dominate the sig-
nal. Using the sum-of-squares matrix might be more useful
in cases where the EOFs are rotated (i.e, are replaced with
another pattern to achieve a “simpler” description according
to some criterion) to allow for a more physical interpretation
of the eigenvectors (PREISENDORFER, 1988; VON STORCH and
NAVARRA, 1995).

A disadvantage of traditional EOF analysis is the inability
to resolve fixed patterns in the data that propagate with
time. Thus, progressive wave-like motions are represented as
combinations of standing waves and the characteristics of
propagating patterns can not be quantified by the technique
(e.g., wave speed and wavelength). However, modifications of
the EOF analysis have been developed to remedy this defi-
ciency, namely extended EOF analysis (EEOF) and complex
PCA (CPCA). In EEOF analysis the original data set is ex-
tended by adding lagged observations in time after which tra-
ditional EOF analysis is performed (WEARE and NASSTROM,
1982). A disadvantage with EEOF is that the approach be-
comes computer-intensive as the number of time lags increas-
es. In CPCA a new data set is formed from the original set
and its Hilbert transform (HOREL, 1984). Then, complex ei-
genvectors are determined by applying EOF analysis to the
derived complex data set. CPCA has a good potential for iden-
tifying traveling patterns in the data, although the interpre-
tation is more difficult than EOF analysis since both ampli-
tude and phase relationships must be considered. Further,
CPCA, or any modification of the EOF technique involving
time-lagged data, requires the data to be sampled with a con-

stant time interval, which is often not the case for coastal
morphology data.

EOF analysis was originally applied in coastal morphology
in the middle of the 1970s to investigate variations in the
beach profile shape in space and time (HAYDEN et al., 1975;
WINANT et al, 1975). Theses studies showed that distinct
morphological characteristics could be associated with the
lower EOF modes. For example, AUBREY (1979) related the
mean profile shape, bar and berm features, and the low-tide
terrace to the first, second, and third EOF modes, respective-
ly (the mean was not subtracted in the analysis). After these
pioneering studies, EOF analysis has become a fairly com-
monly applied technique in morphological research to inves-
tigate beach response over time scales of several years. More
advanced techniques have also been applied to beach topog-
raphy data in a few cases, for example CPCA (LiANG and
SEYMOUR, 1991; LIANG et al, 1992) and three-mode PCA
(MEDINA et al.,, 1992). For revealing patterns in data sets on
nearshore topography that are spatially extensive but tem-
porally sparse, a combination of the EOF technique with a
moving window approach can prove useful (WIJNBERG, 1995;
WiNBERG and TERWINDT, 1995) (see application in the fol-
lowing). EOFs may also be used for modeling purposes if the
time functions (A) can be predicted over the simulation pe-
riod. AUBREY et al. (1980) tried to predict daily and weekly
beach changes over a five-year period from offshore wave
properties using linear statistical predictor techniques to ob-
tain A (see also HsU et al,, 1986 and HsuU et al., 1994).

Field Application

EOF analysis was applied to two different data sets on
nearshore beach topography, one from Terschelling off the
Dutch coast and the other from Sylt off the German coast.
The Terschelling data encompass a longer time period and a
greater spatial area than the Sylt data. Also, the beach at
Terschelling basically represents a natural beach unaffected
by human intervention, whereas major beach nourishments
have been carried out at Sylt. Thus, application to these two
data sets will illustrate what the EOF analysis can reveal
regarding natural variations as well as anthropogenic effects.
Also, two slightly different analysis techniques were used for
the two data sets, one involving direct analysis of the topo-
graphic data with the spatial EOFs representing two-dimen-
sional maps (Sylt data), and the other involving spatial fil-
tering and separate analysis of individual profile lines (Ter-
schelling data).

The Terschelling data set consists of annual surveys of the
nearshore bathymetry over the period 1965-1995 (31 years)
along 20 km of coastline. Surveys were carried out along fixed
cross-shore transects (profiles) every 200 m alongshore. In
the example discussed here, profiles of 750 m length were
analyzed, starting at the +1m contour. The cross-shore spac-
ing of the surveyed elevations was 15 m. In the analysis, the
EOF technique was applied to spatial subsets of the profile
data using a moving window (see WIINBERG and TERWINDT,
1995). The applied window size was 1 km with a temporal
extent of 31 years. The main advantage of the spatial sub-
division compared to the traditional approach of including the
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Figure 6. Spatial EOFs for profile lines along the Terschelling coast: (a)
first mode, (b) second mode, and (c) third mode.

entire surface (compare with the following example) is that
it allows for the possibility of having longshore varying tem-
poral evolutions for similar cross-shore EOF patterns. Also,
alongshore variation in the character of large amplitude bed
level fluctuations may appear more clearly, because there is
no constraints regarding longshore correlations. Note that
these arguments are most relevant for cases where large
stretches of coast are analyzed (10 to 100 km or more). An
additional advantage of the window approach is that the spa-
tial averaging over a 1 km section improves the robustness
of the EOF estimate, because instead of using only 31 profile
observations (or 31 ‘surfaces’), 6 X 31=186 observations were
used.

The first EOF modes describe the mean profiles (Figure 6a;
the mean was not removed from the data before the analysis).
The related temporal functions (Figure 7a) describe fluctua-
tions in mean steepness. Positive (negative) values imply a
steeper (flatter) than average profile. The second EOF modes
generally describe nearshore bar topography, except in sub-
sets km 5-6 and km 6-7 (Figure 6b). In these windows the
second EOF mode relates to the concavity of the profile. The
third EOFs also characterize bar topographies (Figure 6¢). It
appears that the second and third EOF bar functions are of-
ten about 90 degree phase shifted (like sine and cosine), such
that they appear to be mapping the cross-shore migration of
bars. The temporal functions of the second and third EOFs
show rather regular behavior to the right of km 17 and more
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Figure 7. Temporal EOFs for profile lines along the Terschelling coast:
(a) first mode, (b) second mode, and (c) third mode.

complex behavior to the left, though it is still coherent (Fig-
ures 7b and 7c). Note that the spatial EOF’s are more or less
similar across this whole reach. The regular behavior appears
to describe net offshore propagation of all bars, out of the
monitored area, while at some point in time a new bar is
formed near the shoreline.

Placement of material in the nearshore to nourish beaches
typically causes changes in the natural conditions that mod-
ify the sediment transport patterns and associated beach
changes. Such modifications of the transport patterns may
have both short-term (e.g., initial profile adjustment and re-
sponse to severe storms) and long-term effects (e.g,, adjust-
ment towards long-term dynamic equilibrium, the natural
state or a new state induced by the fill). Here, fill response
at different time and space scales was investigated by ana-
lyzing a high-quality data sets from the Island of Sylt, Ger-
many, on the topographic evolution in connection with fill
placements. The Island of Sylt is a well-known beach resort
on the German North Sea coast that has suffered severe ero-
sion at least since the middle of the last century (DETTE and
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Figure 8. Mean topography for the beach at Rantum, Sylt.

NEWE, 1997). In the beginning of the 1980’s it was decided
to halt further erosion of the dunes and high cliffs, and in
order to implement this policy beach fills have been placed
along selected stretches of the island. As an example, the evo-
lution of the fill placed at Rantum in the southern part of the
island was investigated using EOF analysis. The beach at
Rantum was nourished in 1987 with 1.44 10® m? of sand put
along 3 km of the coast. Here, a subset of 63 profile lines
surveyed 8 times during approximately four years were an-
alyzed. In order to obtain a good data coverage in time and
space for the analysis only survey data out to about 5 m water
depth were included.

Figure 8 displays the mean topography for Rantum indi-
cating the presence of rhythmic features (see wavy depth con-
tours), which are frequently observed along the Island of Sylt
(LARSON et al,, 1999a). The first spatial EOF map (E,; Figure
9a) essentially shows an increase in the elevation over the
entire area that reflects the addition of the fill material. The
associated temporal function A, (see Figure 10) displays a
similar behavior to what EOF analysis have shown at other
nourishment sites (LARSON et al., 1997): a rapid change when
the fill was placed followed by a gradual decay towards the
natural equilibrium state. For beach fills placed at Ocean
City and Silver Strand (LARSON et al., 1999a), for which sim-
ilar EOF analysis was performed, this adjustment took about
one year (a complete seasonal cycle). At Sylt it seemed to take
considerably longer time, possibly because the material was
placed above mean sea level making it less accessible for
cross-shore adjustment, except during major storms. The spa-
tial EOFs E,, E,, and E, explained 47.7, 24.4, and 10.7%,
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Figure 9. Spatial EOF maps for the beach at Rantum, Sylt: (a) first mode, (b) second mode, and (c) third mode.
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Figure 10. Temporal EOFs for the beach at Rantum, Sylt.

respectively, of the variation in the data. Figure 9b shows the
spatial map E, and Figure 9c the map E;. The map E, is most
likely also related to the fill placement modifying the shape
given by E,, whereas E, characterizes the effect of some ma-
jor storms occurring during the study period (i.e, erosion of
material on the foreshore and in the dunes and deposition in
the bar region). Such storms appeared in the end of March
1987 and during January/February 1990 (DETTE and NEWE,
1997; compare with the peaks for E; in Figure 10).

CANONICAL CORRELATION ANALYSIS (CCA)
Background and Theory

CCA may be used to investigate if there are any patterns
that tend to occur simultaneously in two different data sets
and what the correlation is between associated patterns
(BARNETT and PREISENDORFER, 1987; GRAHAM et al,
1987a). The main idea is to form a new set of variables from
the original two data sets so that the new variables are linear
combinations of the old ones and maximally correlated. Thus,
if the two original data sets are denoted Y and Z, the new
transformed variables in matrices U and V have maximally
correlated column vectors for the same index and zero cor-
relation for differing indices. Furthermore, the column vec-
tors in U and V are orthonormal. The desired weights for
transforming Y into U are given by the solution to the eigen-
value problem (GRAHAM et al., 1987a),

(YY) Y{(YTZNZTZ)"(ZTY — p2] = 0 (2)

where w2 denotes the eigenvalues and the subscript T is
transpose. The eigenvalue gives the squared correlation be-
tween the corresponding temporal amplitudes of the canoni-
cal modes (the column vectors in U and V), and the associated
eigenvectors R yield the transformation U=YR. A similar ei-
genvalue problem as given by Eq. 2 defines the transforma-
tion of Z into V having the same p.2-values and eigenvectors
@, which produces the other transformation V=ZQ. The spa-
tial amplitudes (G and H) of the canonical modes are obtained
as G=YTU and H=Z7V. Thus, the original data sets are ex-
pressed as Y=UG and Z=VH.

EOF analysis is often used in a pre-processing step to CCA
in order to reduce the noise in the data and to become fa-
miliar with the general structure of the data. The data sets
(Y and Z) are developed in terms of their EOFs and a certain
number of modes are selected to represent the data before
the CCA is carried out. Thus, the data sets maybe expanded
as Y=AET and Z=BFT, where A and B contains the temporal
EOFs and E and F the spatial EOF's for Y and Z, respectively.
A limited number of EOF modes are then selected to repre-
sent Y and Z when performing the CCA.

Based on the correlation between the dominant patterns in
Y and Z established through the CCA, a regression matrix
may be derived that relates the two matrixes to each other.
Thus, if Y is known, Z may be predicted by employing the
regression matrix. Having an input data matrix Y, (measured
or simulated), the associated output data matrix Z, is given
by,

Z,=Y¥ 3)
where,
¥ = GSFT (4)

and S=U”B. CCA has not been previously used in applica-
tions to coastal morphology, but several examples exist from
the fields of meteorology and oceanography (BARNETT and
PREISENDORFER, 1987; GRAHAM et al., 1987b; BRETHERTON
et al, 1992; BARNSTON and HE, 1996).

Singular Value Decomposition (SVD) is sometimes used as
an alternative to CCA for finding coupled patterns in two
data sets (WALLACE et al., 1992; CHENG and DUNKERTON,
1995). In SVD are the patterns derived by maximizing the
cross-covariance between Y and Z, whereas in CCA the cross-
correlation is maximized instead. Since correlation is a better
measure of linear association than covariance, CCA is often
more appropriate to apply, although this is not always the
case (CHERRY, 1996).

Field Application

The measurement time series of waves and profiles from
Duck were analyzed using CCA in order to determine the
covariability between waves and profile response (LARSON et
al., 1999b). The profile shape itself as well as the change be-
tween consecutively surveyed profiles were correlated with
both the offshore (deep-water) and nearshore wave condi-
tions. In the offshore, the waves were described by composite
probability density functions (pdf) derived based on the mea-
sured wave conditions prior to a profile survey. Nearshore
wave conditions were calculated using a random breaker de-
cay model (LARSON, 1995) and averaged local wave proper-
ties were used as input to the CCA. The profile response dis-
played significantly higher correlation with the nearshore
wave properties as compared to the offshore waves, and the
highest correlation was found between the profile shape and
the mean ratio of breaking waves for the time period preced-
ing the profile survey. The CCA using nearshore wave prop-
erties indicated a potential for predicting the profile response
with an acceptable degree of accuracy once a regression ma-
trix relating the profiles to the waves have been established
that represents the typical variability at the site.
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Figure 11. Temporal amplitudes of CCA modes for mean wave energy
dissipation and beach profile shape: (a) first modes (U, and V), and (b)
second modes (U, and V).

Applying CCA between the deepwater wave height pdf and
the profile shape produced a maximum correlation of 0.41
between U, and V, (temporal amplitudes of the first CCA
modes). These modes showed that the shift of material be-
tween the foreshore and the bar area is related to an increase
in the probability of higher waves in the pdf (and vice versa).
If the change in elevation between consecutive profiles was
used instead of the profile shape itself, the correlation be-
tween U, and V, dropped to 0.37. However, taking the ab-
solute elevation change yielded an increase in the correlation
to 0.63. This marked increase indicates that the magnitude
of elevation change (quantified by the absolute values) is
much easier to relate to the waves than the change itself,
which is because the latter also includes the direction of the
change (positive or negative). The pdfs derived for other
quantities (wave energy flux, dimensionless fall speed, and
wave steepness) did not produce notably higher correlations
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Figure 12. Spatial amplitudes of the CCA modes: (a) lowest three modes
for mean wave energy dissipation (G,~G,), and (b) lowest three modes for
beach profile shape (H,~H,).

than the wave height pdf and are not discussed here. The
highest correlation (0.70) between the temporal amplitudes
of the first CCA modes was obtained when the absolute ele-
vation change per unit time was correlated with the wave
height pdf.

The relationship between the profiles and nearshore waves
was also investigated with CCA. First, the profile shape was
correlated with the mean energy dissipation due to wave
breaking calculated based on the waves measured during the
period preceding a specific profile survey. The correlation was
0.77, 0.74, and 0.65 between the first, second, and third CCA
temporal modes, respectively. Figures 11a and 11b display
the temporal amplitudes of the first and second modes, re-
spectively, for the profile elevation and dissipation. The high
correlation between associated modes is clearly visible as well
as the variability at many different temporal scales. In Fig-
ure 12a the spatial amplitudes of first three modes are shown
for the energy dissipation, while corresponding modes are
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displayed in Figure 12b for the profile elevation. The mean
was subtracted out from the data before the analysis, imply-
ing that the modes associated with the dissipation can attain
negative values. It is difficult to give any physical interpre-
tations to the mode shapes; however, the modes associated
with the profile elevation reflects the presence of longshore
bars at Duck.

The profile elevation was also correlated with the mean
ratio of breaking waves. This analysis resulted in somewhat
higher correlation values with 0.80, 0.76, and 0.60 for the
temporal amplitudes of the first three modes. The spatial am-
plitudes of the first mode for the breaking wave ratio showed
that more wave breaking close to shore was associated with
more material in the profile here. Thus, higher waves with
more wave breaking in the offshore implies that more ma-
terial is typically found in the outer part of the profile. Anal-
ysis of profile elevation and root-mean-squre wave height
produced correlation values similar to the analysis between
elevation and ratio of breaking waves. Correlating elevation
change with nearshore wave properties produced somewhat
lower values. For example, the mean energy dissipation gave
correlation values of 0.65, 0.53, and 0.40 for the temporal
amplitudes of the three first modes.

In order to further investigate the predictive capability of
CCA, regression matrices derived from the data sets on pro-
files and waves were used to reconstruct the time series of
profiles using a limited number of CCA modes (to calculate
the profiles 10 CCA modes were employed). Here, some re-
sults from the analysis of profile elevation and breaking wave
ratio will be discussed. For these quantities, satisfactory
agreement between calculated and measured profiles was
achieved in the area where the profile exhibited a lot of
change, whereas in the offshore the discrepancy was rela-
tively larger. The wave properties selected for the CCA are
mainly related to wave breaking which means that areas
where this process dominates the sediment transport and
profile response, such as in the nearshore, show better agree-
ment. As a total measure of how well the profiles could be
predicted from the breaking wave ratio using the regression
matrix obtained from the CCA, the squared deviation be-
tween predicted and measured profile elevation was calcu-
lated across the profile for all surveys (see Figure 13). Also,
the total variation in the data was quantified by computing
the squared deviation between the measured profiles and the
mean of the profiles at the same locations. The difference
between the two curves in Figure 13 indicates how much of
the variation that is explained by the CCA model. Thus, the
model is explaining a large part of the variation (around 50%)
in the nearshore out to about 400 m, but further offshore is
the predictive capability more limited.

PRINCIPAL OSCILLATION PATTERN
(POP) ANALYSIS

Background and Theory

In POP analysis the patterns used to characterize the data
set under study are derived based on approximate forms of
certain dynamical equations. This is in contrast to, for ex-
ample, EOF analysis where the patterns are determined from
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Figure 13. Deviation squared between calculated and measured profile
elevations together with deviation squared between measured elevation
and the mean of the elevation.

an optimal description of the variance in the data. The POP
technique may be used to identify coherent migrating, stand-
ing, and otherwise changing patterns without prior knowl-
edge of the system dynamics forcing (VON STORCH et al.,
1988). The POPs are defined as the normal modes of a linear
dynamical representation of the data in terms of a first-order
autoregressive vector process with residual noise. POPs as-
sociated with real eigenvalues represent non-propagating,
non-oscillatory patterns that decay exponentially, whereas
the complex eigenvalues can represent propagating waves.
POP analysis is a linearized form of the more general Prin-
cipal Interaction Pattern (PIP) analysis, which involve non-
linear dynamical equations (HASSELMANN, 1988; JANSEN,
1997a).

The analysis encompasses the representation of the data
set X (i.e, a time series of morphological variables) through
the POPs P and the corresponding time functions W, which
are governed by linear dynamical equations. Thus, the pre-
diction model may be written,

X =PW aw _ CW + 7 (5)

dt

where C is a constant matrix and m a noise matrix (in the
optimal case this is white noise implying that no dynamics
have been left unmodeled). Typically, most of the dynamics
is concentrated in the lower-order POPs allowing for a con-
siderable data reduction as well as distinction between signal
and noise for the particular application. Thus, the POP model
is normally restricted to include a limited number of modes
that explain most of the dynamics in the data. In applications
to data, the differential equation in Eq. 5 is written in differ-
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Table 1. Loss of information due to model reduction (EOF model) and
additional dynamic constraints (POP model).

Table 2. POP characteristics (8 modes included).

D.FAC
Number EOF POP DD POP (E-1yr) Per (yr)
k
of EOF Data (%) (%) 1R 4.0 6.0
4 62 58/53 11 4.0 6.0
6 74 70/64 2R 35 5.0
8 79 76/71 2I 35 5.0
10 84 8177 3R 10.0 53.4
12 88 85/80 3I 10.0 53.4
15 92 90/86 4 0.6
20 97 94/91 5 1.7
* Data/change-of-data

ence form and the POPs are determined from the eigenvec-
tors of C, which in turn is derived from the data by defining
two new data sets separated by a time step (that is, C is
obtained from solving the equation X, ,,=CX,, where At de-
notes the time step). EOF analysis often proceeds the POP
analysis to reduce the computational effort to obtain the
POPs.

Since C is non-symmetric in general, the eigenvalues will
be complex valued. As mentioned previously, the eigenvalues
characterize the dynamics of the system, where the real and
imaginary parts represent the damping and frequency of the
oscillation for the corresponding POPs, respectively. The pre-
dictive power of a POP model depends on the characteristics
of its POPs, for example, the damping or the e-folding time
(the time by which a particular POP has damped out to 1/e
of the original value) and the cycle period. The POP modes
are not orthogonal which may be a drawback in some appli-
cations. POP analysis has not been previously employed to
study long-term beach evolution, but some practical applica-
tions to geophysical data exist (VON STORCH et al, 1988;
PENLAND, 1989; XU and VON STORCH, 1990).

Field Application

A POP analysis was applied to a section of the Dutch coast
(see JANSEN, 1997b and JANSEN, 1998), which has been mon-
itored for over 35 years (the JARKUS data; 33 years of data
were available at the time of the analysis). The measure-
ments include the first row of dunes and the morphodynamic
bed at a longshore spacing of approximately 800 to 1000 m.
Reduced POP models with, respectively, 4, 6, 8, 10, 12, 15,
and 20 EOFs (and corresponding POPs) were identified from
the first 32 years of the data (1965-1996). Table 1 shows the
loss of information due to model reduction (EOF models) and
additional dynamic constraints (POP model), expressed in the
percentage of the variance that is captured when the 32-year
data is reconstructed from the reduced EOF and POP models.
Because of the dynamic constraints, the POP models system-
atically lose 4 to 8 percent more than the EOF models.

The results for a model based on 8 POPs will be discussed
in detail here. Comparison between measured and recon-
structed data displayed good agreement for all years within
the data range used for identification (provided a sufficient
number of EOF/POPs were included). The prediction for
1996, however, shows significantly larger differences. Theo-
retically, this can be explained by the ‘quality’ of the POP

model, or better, the ‘quality’ of each individual complex POP
characterized by the relationship between its period and
amount of damping (real POPs have no period and are merely
damped). Severely damped POPs give a limited contribution
to the first prediction step and consequently have little utility
for prediction purposes. Table 2 shows these characteristics
for the 8-POP model (a damping factor of 4 years means that
the amplitude of the particular POP in 4 years time is re-
duced to 1/e of its original value). Optimally, the periods of
the complex POPs are significantly larger than their corre-
sponding damping factors. It can be concluded that this is not
the case for any of the POPs identified.

The unsatisfactory prediction results obtained for the data
set employed may be caused by (1) poor data quality (i.e, the
accuracy of the topographic measurements); (2) measure-
ments not performed at equally spaced time intervals; (3)
lack of dominant rhythmic (i.e, quasi-periodic), features in
the morphodynamic system indicating that the driving force
(wave climate) may be more important than expected; and (4)
inadequacy of the linear POP model (the dynamics may be
dominated by nonlinear interactions, including the possibility
of chaos). In the POP analysis, the identification of dynamic
features is based on the assumption of a fixed sampling in-
terval. This assumption should probably not be maintained
in view of the sampling of the employed data. In order to
correctly identify a dynamic model one first has to slice the
sample vectors according to their sample date. This will gen-
erate a longer time series with non-equally sampled mea-
surements. Taking care of the exact sample dates, a contin-
uous-time dynamic model can then be identified. Finally, it
was also found that the prediction quality is not necessarily
improved when more POPs are included. In Figure 14 the
quality of the prediction is schematically shown as a function
of the number of POPs used. In the present application, the
best prediction was obtained for 8 POPs. With a smaller num-
ber of POPs not all of the identifiable dynamics in the time
series was captured by the model. Inclusion of more POPs
only lead to capturing more of the noise rather than identi-
fication of additional rhythmic features. Such inclusions will
improve the reconstruction but, in general, have a negative
effect on the prediction.

APPLICABILITY OF TECHNIQUES AND
GENERAL OBSERVATIONS

Selecting methods for analyzing and modeling long-term
morphological evolution is intimately connected to the avail-
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Figure 14. Accuracy as a function of the number of POPs included.

ability and quality of the data under study. In general, a more
sophisticated method needs a larger amount of data as well
as special requirements regarding the data sampling (e.g., at
even intervals in time and space). Unfortunately, in the prac-
tical case, long-term data is often scarce and restricted to a
few variables, so that more advanced methods might be un-
suitable or not possible to apply. Thus, bulk statistics is still
very useful for analyzing beach evolution and for deriving
simple empirical relationships to be used for predictive pur-
poses. For example, time series of beach level measurements
may be used for quantifying the variability, which in turn
could be a basis for the design of structures and activities at
the site in question. Formulas for the depth of closure arise
from such analysis and they have a wide range of applications
in engineering studies. Scales of beach response in time and
space may be extracted through correlation and Fourier anal-
ysis techniques, forming a basis for assessing the impact of
various types of forcing or disturbances.

However, simple bulk statistics can typically not adequate-
ly resolve shapes or forms of morphological features and oth-
er methods are needed. Different types of Fourier techniques
might be useful for describing such features, although pre-
defined functions are used to match the features that may
limit the applicability of these techniques. EOFs are more
general in the sense that the shape is not a priori given but
derived from the properties of the data. For example, long-
shore bars are common and persistent features in many near-
shore areas. Bars actively participate in the material ex-
change across the profile, often acting as temporary storage
for sediment eroded from the foreshore. Knowledge of the
properties of bars can yield insight to placement of sediment
for nourishment purposes. Fourier methods or EOF analysis
could provide valuable information on the temporal and spa-
tial variability of bars improving the design of offshore nour-
ishment schemes, especially regarding the long-term nourish-
ment response. Furthermore, many coastal areas have along-

shore rhythmic features at spatial scales ranging from hun-
dreds of meters up to many kilometers, with characteristic
time responses over decades and centuries (compare DODD
et al., 2003). The properties of these features are often crucial
to understand in connection with engineering activities in the
nearshore zone. Again, methods involving data representa-
tion through special functions could yield information on such
properties.

EOFs are derived based on an optimum description of the
variance (i.e, a purely statistical criterion), but the shapes
can often be given physical interpretations. Applications have
shown that signals from different types of forcing and distur-
bances, for example, signals generated by the impact of beach
nourishment, the effect of extreme events, and the influence
of large-scale features in the offshore on nearshore morpho-
logical evolution, may be detected and quantified in an ob-
jective way using EOFs (LARSON et al., 1997). Although EOF
analysis requires larger amounts of data than determining
bulk statistics, such data sets are often available including
long time series of profile surveys at a particular location or
complete topographies surveyed for a relative modest number
of times. Again, the characteristic time and space scale of the
sampling underlying a particular data set determine the
scales of morphodynamic behavior possible to extract from
the data. The data sets employed in the PACE project were
selected for their quality as well as spatial and temporal ex-
tent, and typically it would be difficult to obtain comparable
data sets in engineering applications.

Most of the methods discussed here can be applied for pre-
dictions, ranging from calculations of depth of closure
through empirical formulas to forecasting large-scale mor-
phological evolution using POP analysis. In several of the
methods some physics may be introduced, thus improving the
generality of the predictive model both regarding applications
to other sites and for other forcing conditions. Simple empir-
ical equations, as well as sophisticated multi-regression
methods (e.g., CCA), introduce leading parameters based on
physical considerations, whereas other methods employ con-
strains that are intimately linked to the dynamics of the pro-
cess (e.g., POP analysis). Applications of more sophisticated
data-based models (CCA and POP analysis) clearly showed
the potential for these techniques, although the data require-
ments for their application are quite extensive. If a strong
correlation is observed between two data fields, CCA is an
effective way of developing a predictive model and the need
for data from each individual field might not be much larger
than for EOF analysis. Concerning POPs, larger amounts of
data is typically needed, possibly with other requirements on
the accuracy and sampling of the data.

The analysis and modeling of different data sets carried out
within PACE led to some general observations regarding the
long-term behavior of coastal morphological system. A few of
these observations were discussed in connection with the ap-
plication examples for the various methods introduced here,
whereas other results have been presented elsewhere. In
brief, the analysis and modeling revealed the following gen-
eral long-term characteristics of the morphological systems
studied:
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* The more advanced methods applied allowed for a separa-
tion between morphological responses at different scales
and some of these responses could be directly related to the
forcing or to specific disturbances in the coastal system. The
possibility to distinguish such responses indicates a poten-
tial for analyzing and modeling the evolution at a particular
scale fairly independently of processes at other scales.
Thus, in describing long-term morphological evolution mod-
el formulations could be successfully made directly at the
scale of interest instead of formal derivations from a small-
er scale.

Using EOF techniques, it was possible to show that the
disturbances generated by a beach nourishment placed in
the nearshore area basically disappear after a complete
seasonal cycle of waves, if the material is available for
transport by the waves. In the case the material is placed
in the upper part of the profile (or in deeper water) where
waves only attack during extreme events, the adjustment
back towards an equilibrium state takes considerably lon-
ger time (depending on the characteristics of the extreme
events),

On most beaches the seasonal signal in the profile vari-
ability is quite strong because of the material exchange be-
tween the foreshore and bar region. Although this exchange
is important for many engineering activities in the near-
shore, the coastal system exhibits a certain stability and
the statistical properties of the profile variation indicate
predictability. However, the seasonal signal is typically su-
perimposed by extreme events that could change the fun-
damental state of the system. The effects on the morpho-
logical system of these events are difficult to predict and
only limited data are available. Thus, long-term data from
coastal systems should be studied on the premises that the
collected data originated from different populations.

Beach profile evolution displayed a distinct correlation with
the offshore wave climate, but modeling efforts indicated
that this relationship was not dominant enough to yield
predictions explaining a large part of the profile variation.
Calculating nearshore wave properties with a theoretical
model and using some antecedent profile shape significant-
ly improved the correlation and models could be derived
that explained a satisfactory portion of the variation in the
data. This indicates the importance of the preceding topog-
raphy for the morphological evolution and the close inter-
action between the profile and the waves (forcing). Thus,
the coastal morphological system have some of the basic
characteristics of chaotic systems, namely strong feedback
and nonlinear couplings between the variables.

CONCLUDING REMARKS

This paper provides a summary of statistical techniques for
analysis and prediction of coastal morphological evolution at
yearly and decadal time scales. A wide range of primarily
linear methods was reviewed and field applications of the
various techniques were presented to illustrate their useful-
ness and limitations. The methods included bulk statistics
(e.g., mean, standard deviation, correlation, and Fourier anal-
ysis), random sine functions, empirical orthogonal functions

(EOF's), canonical correlation analysis (CCA), and principal
oscillation patterns (POPs). High-quality data sets from Ger-
many, The Netherlands, and United States encompassing
time series of profile surveys and complete topographies were
employed in the applications to evaluate the techniques.
These specific applications also yielded some general infor-
mation on the response scales of both natural and anthro-
pogenically affected coastal systems over yearly and decadal
time periods. Furthermore, several of the techniques inves-
tigated are highly useful for data reduction as well as signal/
noise distinction, which are increasingly important applica-
tions in coastal morphology where large data sets often have

to be managed.

Some major, overall conclusions that emerged from the re-

view and application of the techniques presented here are:

* sophisticated methods (e.g., CCA and POP analysis) require

large amounts of data often in combination with special re-
quirements on the data sampling and quality that at pre-
sent restrict their use in field applications

linear methods are highly useful for analyzing and model-
ing coastal morphological systems, although these system
often display characteristics that tend to promote nonlinear
behavior (e.g., high-dimensionality and strong interaction
between forcing and response)

* the need for high-quality data encompassing coastal evo-

lution from yearly to decadal scales is significant and the
present lack of data is one major obstacle for understanding
and predicting the beach response at these scales

¢ the characteristic scale (in time and space) of the process

governing the coastal evolution of interest provides the key
to analyzing and modeling the evolution

« statistically based models might perform as good or better

than physically based models in terms of predictive skill,
although the possibility of applying a statistical model to a
site different from where it was developed is limited (sim-
ilar problems arise if fundamental changes in a coastal sys-
tem is going to be simulated)

« there is a need to introduce probabilistic considerations

when modeling coastal morphological evolution, even in the
case of physically based models, in order to obtain a quan-
titative estimate of the uncertainty in predictions made
data collection and monitoring should be designed based on
clear objectives regarding data usage, analysis, and mod-
eling in order to maximize the added value of the data
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