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a b s t r a c t

Defective capital assets may be quickly restored to their operational condition by replacing the item that has

failed. The item that is replaced is called the Line Replaceable Unit (LRU), and the so-called LRU definition

problem is the problem of deciding on which item to replace upon each type of failure: when a replacement

action is required in the field, service engineers can either replace the failed item itself or replace a parent as-

sembly that holds the failed item. One option may be fast but expensive, while the other may take longer but

against lower cost. We consider a maintenance organization that services a fleet of assets, so that unavailabil-

ity due to maintenance downtime may be compensated by acquiring additional standby assets. The objective

of the LRU-definition problem is to minimize the total cost of item replacement and the investment in addi-

tional assets, given a constraint on the availability of the fleet of assets. We link this problem to the literature.

We also present two cases to show how the problem is treated in practice. We next model the problem as a

mixed integer linear programming formulation, and we use a numerical experiment to illustrate the model,

and the potential cost reductions that using such a model may lead to.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.
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1. Introduction

To maintain capital assets, a typical maintenance organization re-

pairs them by replacing failed items (repair-by-replacement). A phys-

ical item that is replaced is called a line replaceable unit (LRU; see,

e.g., DoD, 1996). The LRU definition problem is a maintenance pol-

icy decision that should be considered as a part of strategic or tacti-

cal maintenance planning: the exchange of LRUs produces downtime,

and therefore the selection of items that should be defined as LRUs is

a critical decision. Downtime can be compensated for with spare as-

sets, and this means that the LRU decision should be considered from

the outset of a capital asset acquisition program.

Traditionally, non-economic criteria are used to define LRUs.

For example: Is it possible to know (test) that the item requires

maintenance? Can the failed item be disassembled, and a spare

reassembled to the asset without destruction or damage to other

parts? Are there special adjustment and calibration needs? These

technical criteria help engineers fit the LRU definition to existing

practices and available resources of the maintenance organization.

While these non-economic criteria are of key importance, inclusion

of economic criteria can lead to a more cost effective LRU definition.

The aim of this paper is to take a step in that direction.
∗ Corresponding author. Tel.: +3153 489 2520; fax: +3153 4893631.
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We first link the problem to the scientific literature. Three rele-

ant literature streams are reviewed: (i) maintenance task analysis,

ii) maintenance optimization, and (iii) level of repair analysis. The

etup of this review is based on the Logistics Support Analysis frame-

ork (see, e.g., Jones, 2006). We find that the LRU decision is implicit

n existing models for maintenance planning, and thus has not re-

eived the attention that it requires.

We next show how the problem is treated in practice by gathering

nsights from two organizations: a system developer, Thales Neder-

and BV, and a maintenance service provider, NedTrain BV. We show

ow LRU decisions are made at these organizations, giving insights

bout when they make the decision, who makes the decision, and

hat criteria are used. Also here, we find that the LRU definition de-

ision is often made implicitly.

We propose to model the LRU definition problem explicitly. Us-

ng insights from the literature and from practice we come up with a

ixed integer linear programming (MILP) formulation to find the opti-

al LRU definition. We perform a numerical experiment using typical

roblem sizes and parameters as they appear at NedTrain. Our theo-

etical contribution is as follows:

1. We link the problem to multi-component maintenance optimiza-

tion and frame it in the literature as a decision that should be

made after maintenance task analysis, and before level of repair;
EURO) within the International Federation of Operational Research Societies (IFORS).
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2. We improve the LRU definition decision that is traditionally tech-

nical, by explicitly modeling the trade-off between downtime and

cost, including replacement lead time, spare assets and the cost of

replacement;

3. In multi-component maintenance optimization, the interactions

between components are modeled. We explicitly incorporate one

type of interaction called structural dependence, in which defin-

ing what to replace depends on the assembly structure of the cap-

ital asset.

From a practical point of view, we contribute by examining the

ost savings that could be achieved compared to ad-hoc decisions

ade by experts. We do this in an extensive numerical experiment.

e thus show that it is important to make the LRU definition decision

xplicitly in practice, and we give a model that can be used to do this.

The remainder of this paper is structured as follows. Section 2

resents the relevant literature and frames the LRU definition prob-

em in the literature. Section 3 then shows two example cases from

ractice. Section 4 presents the LRU model notation, assumptions,

nd the mathematical formulation. Appendix B shows that the re-

ulting LRU definition problem is NP-hard. Section 5 presents the nu-

erical experiment. Finally, Section 6 discusses the conclusions and

erspectives for future research.

. Literature background

We use the framework of logistics support analysis (LSA) to struc-

ure our review of the literature. The LSA framework is shown in

ig. 1. It structures the decisions needed to produce the mainte-

ance program for an asset, including the required (amounts of)

esources. This enables us to position the LRU definition problem in

he literature.

We first explain the LSA framework in Section 2.1. We then focus

n three topics in detail; on maintenance task analysis in Section 2.2,

n maintenance optimization, which covers the LRU definition prob-

em, in Section 2.3, and on level of repair analysis in Section 2.4.

.1. Logistic support analysis

Jones (2006) and Blanchard and Fabrycky (2011) provide good

verviews of the LSA framework. It begins with the analysis of pos-

ible failure events. Reliability predictions are made for the failure

f asset components. Next, maintenance significant items (and their

ailure effects and criticalities) are identified with the help of fault-

ree analysis (FTA) and failure modes, effects and criticality analysis

FMECA). The analysis results are combined in the reliability centered

aintenance analysis (RCMA) to establish the set of feasible mainte-

ance policies for the capital asset, e.g., time based maintenance or

un-to-failure (see, e.g., Moubray, 1997; Tinga, 2010). At this point

n the LSA framework, engineers have thus determined which items

ay fail, how often that is expected to happen, what effect and crit-

cality such failure may have, and what preventive measures (if any)

o take.
FTA FMECA MTA

RCMA

RELIABILITY 
PREDICTION

VE

Fig. 1. The logistics support analysis framework (Adap
The next three analyses, Maintenance task analysis (MTA), mainte-

ance optimization and level of repair analysis (LORA), are discussed

n detail in the next three sections. MTA helps to identify and quan-

ify the required maintenance resources, such as manpower or sup-

ort equipment. Maintenance optimization models are mainly used

o determine the optimal preventive maintenance intervals and task

lustering. LORA supports repair or discard decisions, and determines

here in the repair network to carry out these activities.

Sparing analysis, which follows after LORA, helps determine the

pare parts package (see, e.g., Basten & van Houtum, 2014; Muckstadt,

005; Sherbrooke, 2004, for an overview of the literature on spare

arts inventory control models). Life cycle cost (LCC) is determined

ext. Finally, value engineering (VE) highlights asset functions that

dd cost but do not add significant value and feedback is given to

esign.

.2. Maintenance task analysis

Maintenance task analysis is the detailed, step-by-step analysis

f a maintenance task to determine how it should be performed,

ho will be required to perform it, and what physical resources are

eeded to complete it. Most maintenance tasks involve manual disas-

embly and (re)assembly operations. To find the best task procedure

or maintenance, engineers use human factors analysis, path/motion

lanning and assembly/disassembly sequencing.

Human factors analysis helps to assess the effort to access the

aintenance point and the risks involved, given a proceduralized task

see, e.g., Dhillon & Liu, 2006). Together with human factors, path and

otion planning helps to reveal the best way for a service engineer

o reach and route a part into or out of an assembly. Next, optimal

equencing helps to establish the optimal order of assembly and dis-

ssembly (see, e.g., Lambert, 2003).

Once the task procedure is established, maintainability analysis

s used to estimate (or measure) the required time and resources.

he literature on maintainability analysis has mostly concentrated

n estimating the (mean) time to repair, using either statistical

ethods or expert-based assessment (see, e.g., Barabadi, Barabady,

Markeset, 2011; Moreu De Leon, González-Prida Díaz, Barberá

artínez, & Crespo Márquez, 2012). A quantification of both resource

emand and task time are very useful for decision making. The data

ill be used as input of maintenance optimization models. We will

eed the results from MTA for solving LRU definition problem.

.3. Multi-component maintenance optimization

Most literature on maintenance optimization focuses on defining

he best policy for when to replace a particular item. However, for

ulti-component assets it is important to define not only when, but

lso what to replace. This derives from the fact that in capital assets

ith many items, interaction between items influences the mainte-

ance action that should be chosen. Nicolai and Dekker (2008) re-

iew the literature on multi-component maintenance optimization
LORA

SPARING 
ANALYSIS

LCC
Maintenance 
Optimization

ted from Jones, 2006, page 11.23, Figure 11–16).
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and they distinguish between economic, stochastic and structural de-

pendence as a result of interaction between items.

Economic dependence exists when costs decrease or increase

by grouping maintenance tasks. Stochastic dependence exists when

items present failure interactions, i.e., states of items can affect the

states of other items and their failure rate. Finally, structural depen-

dence exists when items have to be replaced, or at least dismantled,

before failed components can be replaced or repaired.

The term structural dependence was coined by Thomas (1986),

who was one of the first to review the problems in multi-component

maintenance optimization with structural dependence, i.e., where,

“...the question is whether one should replace the whole car, the en-

gine or just the piston rings when the piston rings need to be re-

placed”. With structural dependence, the disassembly precedence re-

lations are important, which follow from MTA. We see the LRU def-

inition problem as a multi-item maintenance optimization problem

with structural dependence.

This problem has been a recurring problem in the literature on

maintenance optimization for several decades, starting with the sem-

inal paper by Sasieni (1956) (see e.g. Nicolai & Dekker, 2008; Marais,

Rivas, Tetzloff, & Crossley, 2013). Moreover, while typically the focus

has been on the decision about the optimal maintenance interval, i.e.,

when to replace, the key decision for the LRU definition problem is at

what level within the indenture structure of a physical asset to define

the LRU, i.e., the decision on what to replace.

2.4. Level of repair analysis

The level of repair analysis problem is a cost minimization prob-

lem that involves two decisions. Firstly, determining whether a main-

tenance significant item should be repaired or discarded upon fail-

ure. Secondly, determining where to allocate this repair/discard task

in the repair network. The LORA problem has been addressed in the

literature as an MILP model by several authors (see, e.g., Barros & Ri-

ley, 2001; Basten, van der Heijden, & Schutten, 2011). Recently, LORA

models have been extended to consider availability by incorporating

the amount of spare parts to stock (the sparing decision) (see, e.g.,

Basten, van der Heijden, & Schutten, 2012). We find that the litera-

ture on LORA takes the LRU decision as a given.
LRU requirements

System 
Engineering

LRU
Perform
(Allocat

Integrated Logistic 
Support

System 
Performance 

(Required)

ILS Guidelines

System 
Requirements 

Analysis/System 
Design

Design Teams

Technical Units

RAMT

LRU Definition

Fig. 2. LRU decisions in the workflow of Thales B.V.: from Functional Requirements (FR) to De

Testability (RAMT)— from system level to LRU level.
To the best of our knowledge, the importance of optimally deter-

ining line replaceable units was brought to attention only by Jensen

1975), in the context of level of repair analysis. Jensen states that the

RU definition is implicit in his LORA formulation. However, one of

he inputs of his model is the explicit definition of which item is re-

laced directly from the asset, and which items (if any), are used to

epair the failed LRU. Therefore, the LRU definition decision must be

ade before his LORA model can be used.

. Defining LRUs in practice

We show insights about how organizations make the LRU defini-

ion decision in practice based on two exploratory cases. Interviews

ere conducted following the methodology in Schotborgh, McMa-

on, and Houten (2012). This means that we begin by asking experts

o compare performance of different LRUs, and next focus on what

erformances they consider, e.g. time to replace, resources needed,

ask difficulty. We thus determine (i) when LRU definition decisions

re made, (ii) who makes them, and (iii) what criteria are considered.

In Sections 3.1 and 3.2, we present our findings at a high-tech sys-

em developer and a maintenance service provider, respectively. For

ach case, we give a short company overview, followed by a descrip-

ion of the LRU definition process. Next, we discuss the criteria used

y experts, and we give individual case conclusions. Finally, in Section

.3 we draw more general conclusions from practice.

.1. High-tech systems developer: Thales Nederland B.V.

Thales Nederland B.V. (Thales) is the largest defence company in

he Netherlands. Thales designs and manufactures naval command

nd control, sensor, and communications systems. As a high tech sys-

ems developer, Thales is involved in maintenance by providing train-

ng, supplying service parts (LRUs), overhaul, upgrades, and modifi-

ations to its clients, and by performing repairs according to support

ontracts.

At Thales, design tasks are partitioned according to the type of

echnology used, and engineers are grouped into Technical Units

ith expertise in each type of technology, e.g., processing or mi-

rowaves. Fig. 2 shows how the LRU definition process is organized at

hales, according to the V-model of systems engineering. Through the
 
ance 
ed)

LRU 
Performance 
(Predicted)

System 
Performance 
(Predicted)

Part 
Performance

System 
Integration, 
Verification, 
Validation

Product Development 
Integration, 
Verification, 
Validation

Capability 
Requirements

Client

sign Solution (DS). Allocation of performance —Reliability, Availability, Maintainability,
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rocess of system requirements analysis, engineers translate the

lient’s capability requirements into system performance. Mainte-

ance performance is allocated at system level in the form of Reli-

bility, Availability, Maintainability, Testability (RAMT) requirements.

Next, each Technical Unit must allocate the system level RAMT

equirements to individual LRUs, thereby making the LRU definition

ecision. They use for this the (i) LRU requirements and the (ii) Inte-

rated Logistic Support (ILS) Guidelines that have been developed by

he ILS department. The Technical Unit communicates the LRU defi-

ition decisions to individual design teams. Design Teams will then

evelop the LRUs (parts) complying with the requirements and the

ogistics guidelines. For completeness, we include a summary of the

RU requirements in Appendix D.

The ILS Guidelines are used to give an overview of supportability

spects to be considered by designers, as well as performance targets

or design. Their goal is to improve system supportability and lower

ife cycle cost. Improving LRU definitions at Thales often involves re-

esign, and this is a considerable effort. Thales outsources manufac-

uring of some of its components, and this means that redesign has

o involve the suppliers. Engineers can use the guidelines to trade-off

anufacturability with supportability, i.e., a trade-off between man-

facturing and operating costs.

The LRU requirements describe two types of criteria used by de-

ign teams when developing LRUs. Firstly, an LRU has to satisfy four

andatory criteria. If this is impossible, then the next higher assem-

ly/equipment will be defined to be the LRU. Otherwise, the mainte-

ance concept is changed to direct repair of the hardware item while

nstalled in the asset, i.e., no repair by replacement and no definition

f LRU.

Secondly, there are a number of preferred criteria for selection of

RUs. For example, there exist requirements for the maximum weight

nd dimensions. These allow the LRU to be handled by one service en-

ineer only. If the design team has a good reason not to fulfill the re-

uirement, then the preferred criteria may be waived. However, there

s a constraint on the total number of waivers. Waivers are controlled

uring design review.

In summary, we have found that LRU definitions at Thales are

ade during the early stages of design. Engineers within technical

nits make the LRU definition decisions, and criteria for defining LRUs

re based on compliance to standard LRU requirements. These re-

uirements do not explicitly mention economic trade-offs.

.2. Rolling stock maintenance service provider: NedTrain B.V.

NedTrain B.V. (NedTrain) is a full maintenance, repair and over-

aul (MRO) service provider for trains. It is a subsidiary of NS, the

ain passenger railway operator in the Netherlands. NedTrain pro-

ides 24/7 service involving regular maintenance, repair, overhaul,

odernization and life extension. Four types of facilities provide the

equired services, spanning from first line service to component re-

air and overhaul.

For NedTrain, the supportability of new trains depends on the

evel in the indenture structure at which LRUs are defined. The LRU

evel is initially defined during acquisitions of new trains, resulting in

preliminary list of LRUs. The preliminary list of LRUs may change

hroughout a train’s life cycle when new knowledge about item per-

ormance becomes available. The actual LRU decision is made at the

perational level. In practice, the LRU level is changed ad-hoc by ser-

ice engineers during repair.

Fig. 3 shows how the LRU definition process takes place during

cquisition of new trains to produce the preliminary list of LRUs. A

imilar process is followed to change the list later in the life cycle.

he LRU level is initially defined by the supplier during acquisitions,

nd it is communicated to NedTrain as a recommended spare parts

ssortment. For each of the suggested LRUs, NedTrain must decide to

ccept or revise this LRU level.
If NedTrain decides to revise the suggested list of LRUs, then ex-

erts will try to find an LRU level that gives a better fit to existing re-

ources and to the maintenance concept. The whole process involves

requent communication with the suppliers. A team of experts begins

he LRU research. This is typically done by looking deeper in the in-

enture structure to try to find smaller LRU candidate than the one

roposed by the supplier. Next, they determine whether or not there

re parts in this new level that can be exchanged. This is the most im-

ortant technical aspect considered for defining LRUs. If there is no

easible disassembly sequence to remove the LRU candidate item di-

ectly, then the item is non-LRU. In this case the team shifts focus to

he parent (assembly) item and repeats the analysis.

For some LRU candidates, direct replacement is possible only

hen the proper tools or equipment are available. If resources facil-

tate replacement and they are available, then the item is selected

s an LRU. Some of the aspects considered for this decision include

ask frequency, skill level and effort required, for example. It is a rule

f thumb that approximately 85 percent of the parts can be replaced

n any maintenance workshop of NedTrain. However, the problem

f limited availability of skills and manpower was noted by several

xperts.

If the required resources are not readily available in the workshop,

hen there is a cost trade-off. The expert team filters out those items

hat require expensive tools or equipment. If the cost of installing the

dditional resource is unacceptable, the expert team will begin nego-

iations with the supplier to outsource replacement. If an agreement

s reached with the supplier, the item will be defined as LRU. In this

ase a service contract is signed and the supplier will perform direct

eplacement on the train. Otherwise, the item is defined as non-LRU.

The preliminary list of LRUs lends the operational LRU decision to

ervice engineers in the workshops. Once the trains are fielded, there

s a lot of freedom for service engineers at NedTrain to decide how

particular failure is repaired. LRU definitions are changed ad-hoc,

.e., the decision of what component is replaced. Often, if a service

ngineer decides to correct the failure by replacing an O-ring, (s)he

an. If otherwise (s)he decides to replace the entire (assembled) unit,

hen that may also be allowed.

Service engineers find it is easier to replace a small part instead

f a large assembly. This is because typically less interfaces have to

e taken apart by replacing smaller items. Also, large and heavy com-

onents need more handling effort. However, some experts suggest

hat while replacing a small component is cheap, the train often re-

ains waiting longer. The behavior of service engineers may come in

onflict with this point of view. Our conclusion is that the LRU defini-

ions should be a strategic/tactical decision. This is also the position

f management.

Summarizing, we have found that LRU definitions decisions at

edTrain are made during acquisition and during the operating life

f passenger trains. The goal during acquisitions is to analyze the

reliminary list of LRUs of the supplier to create an initial spare parts

ssortment that better fits the maintenance concept of NedTrain.

herefore, the objective is not the specific choice amongst replace-

ent alternatives. This LRU definitions are made by an expert team

f engineers, in agreement with the suppliers, to fit the resources of

edTrain. In practice, during the operating life of the train the service

ngineers may make the replacement decision ad-hoc, and the LRU

evel within the indenture structure may change.

.3. Case conclusions

Our research shows that LRU definitions require considerable ef-

orts, that costs are not always incorporated and that supplier in-

olvement is required. At NedTrain, performing the LRU definition

ecision for a new train series requires one year of an expert team’s

fforts. In practice, RAMS/RAMT influence LRU definitions, and LCC

alculations have a limited influence in the decision. Both for Thales
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Fig. 3. First LRU decisions at NedTrain B.V.
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1 2
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Assets in
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...

k

(b)

Fig. 4. (a) Example indenture structure (e.g., I = {1, . . . , 9}, �2 = {4, 5, 6}, and A7 =
A8 = A9 = {2, 5}), and (b) a maintenance system for capital assets.

a

L

w

I

d

and for NedTrain, increasing collaboration with suppliers has led to

improved LRU definitions, e.g., higher availability and lower LCC.

To help Thales and NedTrain, we propose to use model-based de-

cision support. We use an optimization approach in Section 4 of this

paper which will probably be more useful for companies like Ned-

Train, though we expect it will also give insights that help design-

ers at Thales. NedTrain can benefit from reduced downtime and in-

creased standardization of repair. At Thales, helping designers make

logistic trade-offs is required to support the system engineering ef-

forts. This could be subject of future research.

4. Model

In Section 4.1, we explain the relevant notation and assumptions,

and in Section 4.2, we present a mixed integer linear programming

formulation for the LRU definition problem. Appendix B shows that

the resulting LRU definition problem is NP-hard.

4.1. Notation and assumptions

Consider a capital asset with several indenture levels. Such a

multi-indenture structure is a rooted ordered tree. Fig. 4 shows
n example three-indenture asset with the notation that we use.

et I be the set of all maintenance significant items, and |I| ∈ N,

ith |I| denoting the cardinality of I. For convenience we denote

= {1, 2, . . . , |I|}. Let �i be the subset of items that are direct descen-

ants of item i ∈ I. Notice that � = ∅ if and only if item i ∈ I is a leaf
i
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Table 1

Asset structure settings: numbers of components per indenture level.

PS Parameter Indenture level

|�0| |�i| |L| 1 2 3 4 5 6

1,3 50 2 3 50 100 200 – – –

100 2 3 100 200 400 – – –

50 4 3 50 200 800 – – –

100 4 3 100 400 1600 – – –

2 50 2 3 50 100 200 – – –

50 2 4 50 100 200 400 – –

50 2 5 50 100 200 400 800 –

50 2 6 50 100 200 400 800 1600
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i.e., has no descendants). We denote by the set Ai the set of all ascen-

ants of item i ∈ I, i.e., all assemblies that contain, at some indenture

evel, item i.

Consider the maintenance system in Fig. 4. For its primary process,

n operator requires k assets to be operational, i.e., the target number

f available assets is k. Each of the k assets will remain in operation

ntil a corrective maintenance action or preventive maintenance is

equired. When a maintenance event is required, the asset is removed

rom service and taken to a maintenance facility. After maintenance,

he asset is sent to an inventory stock point.

We make some assumptions in order to keep our model simple,

llowing us to focus on the insights that we can get. We assume that

here is ample repair capacity (i.e., uncapacitated resources) and that

tem replacement times are deterministic with lead time ri > 0 for

RU i ∈ I. The item replacement time is the total time required for fail-

re detection, isolation, repair and checkout/calibration. We assume

hat the asset behaves as a series of critical items: if one fails, then

he asset fails. Finally, we assume that failures happen individually.

Let mi be the individual failure rate (yearly number of failures) of

tem i ∈ I. This means that if mi > 0, then failures occur in item i

hat are not due to failures in any of its descendants. Without loss

f generality it holds that mi > 0 for all leaf items, i.e., items i ∈ I

ith �i = ∅. We assume mi over k operational assets. There may be

oments when there are less than k assets operational, but given

high service level, this does not happen often and the number of

perational assets will not be far below k (for a more extensive dis-

ussion of why such a constant failure rate is realistic to assume, see

herbrooke, 2004, p.24, or Basten & van Houtum, 2014, p.40). Let λi

e the cumulative failure rate of item i ∈ I. λi is the sum of the cumu-

ative failure rates of those child items j ∈ �i that are not defined as

RU. λi is thus an auxiliary variable and we show our recursive ap-

roach for calculating λi in Section 4.2. By definition, λi ≥ mi, for all i

I, and λi = mi if item i is a leaf item, i.e., if �i = ∅.

We define the following decision variables:

• Xi =
{

1, if componenti ∈ Iis defined as LRU,

0, otherwise;

• N ∈ N is the total number of assets to acquire.

The cost function contains two cost factors. Firstly, the annual

olding cost, c0, of the assets (this includes interest, depreciation,

tc.). Secondly, the cost of replacement of an LRU i ∈ I, ci. Replace-

ent costs include labor and material costs.

.2. Mixed integer linear programming formulation

Our objective is to determine which items out of the total set of

tems I to define as LRU, plus the total number of assets N to acquire,

uch that the total costs are minimized while the availability con-

traint is met. We state the LRU-definition problem as a mixed inte-

er linear program below. The linearization of the objective function

nd Constraints 2–4 can be found in Appendix A.

inimize c0N +
∑
i∈I

ciλiXi (1)

ubject to N −
∑
i∈I

riλiXi ≥ k (2)

λi = mi +
∑
j∈�i

λ j(1 − Xj),∀i ∈ I (3)

λi ≤ λiXi +
∑
j∈Ai

λ jXj,∀i ∈ I (4)

N ∈ N (5)

Xi ∈ {0, 1},∀i ∈ I (6)
Constraint 2 is a constraint on the number of assets that must be

vailable for operation. Constraint 3 is the recursion stating that an

tem i ∈ I is replaced both when failing individually (mi), and upon

ailure of one of its child items that have not been defined as LRU. Fi-

ally, Constraint 4 assures that a child non-LRU that fails must have

n LRU ascendant. If λi = 0 or if Xi = 1, the constraint is always satis-

ed. If Xi = 0 and λi > 0, then some parent item must be defined as

RU, i.e.,
∑

j∈Ai
Xj ≥ 1, and thus λi ≤ ∑

j∈Ai
λ jXj .

. Numerical Experiment

This section explains our numerical experiment. We first give the

etup of our numerical experiment in Section 5.1; a detailed descrip-

ion of how we generate some parts of the problem instances can be

ound in Appendix C. We show the results in Section 5.2. The LRU

efinition problem is implemented using the CPLEX 12.6 Class API for

ATLAB R2013a on an Intel Core i5 M540@2,53 gigahertz, with 4 gi-

abytes RAM running 64-bit Windows 7. All instances are solved to

ptimality; we do not use a time limit.

.1. Instance generator

We use a problem instances generator that is inspired by that of

asten et al. (2012). We define three problem sets (PS): PS1, PS2 and

S3. Table 1 lists the settings used to modify the asset structures for

ach of the three sets, and Table 2 lists the settings for the other pa-

ameters. Typical values found at NedTrain are in between the low

nd high values used in the problem sets. We use a full factorial de-

ign per PS, and generate ten problem instances per parameter setting

o avoid basing conclusions on one unique instance only.

Since maintenance is a labor intensive service, in our experiments

e explicitly consider the effect of wages on the LRU definitions. We

efine the labor cost as the product of the yearly wage, w, and the

irect labor time, ri. This means that the cost of replacement of an

RU i ∈ I is: ci = c′
i
+ wri, with c′

i
covering material and indirect labor

ost.

We use three parameters to produce the asset structures used in

ach of the three problem sets: (i) the number of items in the first

ndenture level, denoted by |�0|, the (ii) average number of items per

arent, denoted by |�i| and (iii) the number of indenture levels, de-

oted by |L|.

In PS1 and PS2 we explore the effect of different indenture struc-

ure combinations (see Table 1). In PS1 we fixate the number of in-

enture levels while varying the average number of items per parent,

�i|, and the number of items in the first indenture, |�0|. In PS2 we

ary the number of indenture levels, |L|, while keeping constant |�0|

nd |�i|. Besides the different indenture structure combinations, each

roblem instance in PS1 and PS2 takes one value or range for each of

he seven parameters from Table 2. This means that we generate a

otal of 10 × 27 × 4 = 5,120 problem instances per PS.

Based on the results of PS1 and PS2, PS3 has been designed to

ocus on the effect of changes in the parent cost, c′
i
| �i 	= ∅, as a func-
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Table 2

Parameters settings or sampling range for PS1, PS2 and PS3.

Parameter Setting

1 2

Item failure rate per asset (1/year) mi/k [0.01; 0.1] [0.01; 1]

Item replacement lead time (hour)a ri [0.25; 2] [0.5; 4]

Item replacement cost (euro × 1000) c′
i
b [1; 10] [10; 100]

Parent–child cost factor fc [0.5; 1.5] [1; 3]

# Required operational assetsa k 10 100

Asset cost (euro × 1000) c0 [200; 400] [1000; 2000]

Wage (euro/hour) w 5.5 55

a For PS3 ri and k are fixed at setting 1.
b For leaf items i ∈ I | �i = ∅.
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tion of the costs of its children. Therefore, the setup is identical to

that of PS1, with the exception of two parameters that remain fix-

ated at setting 1 (see Table 2) because they were found not to influ-

ence the results in PS1 or PS2. This means that for PS3 we generate

10 × 25 × 3 × 4 = 3,840 problem instances.

We give more details on the parent-child cost factor, fc, and the

parent cost, c′
i
| �i 	= ∅, because this helps to explain the results in

Section 5.2. A detailed explanation of the other parameters is given in

Appendix C. For PS1 and PS2 the cost of a parent assembly is propor-

tional to the cost of its most expensive child item, i.e., c′
i
= fc max c′

j
|

j ∈ �i, for i ∈ I|�i 	= ∅. In addition to this setting, in PS3, we also con-

sider c′
i
= fc|�i|

∑
j∈�i

c′
j

and c′
i
= fc

∑
j∈�i

c′
j
. The former setting means

that a parent assembly has the average cost of the child items, j ∈ �i,

multiplied by a cost factor. In the latter setting, the cost of a parent is

the sum of the cost of the child items multiplied by the cost factor.

5.2. Results

Computation times are mainly driven by the changes in the asset

structure settings of Table 1. Therefore, Table 3 shows the minimum,

mean and maximum computation times for each subset of problem

instances that share the same asset structure settings. The compu-

tation times are typically low, so we do not further focus on them.

The remainder of this section discusses the results by answering the

following questions:

1. What cost increases result when we compare the optimal LRU def-

inition with defining (i) the first indenture (largest) items as LRU

and (ii) the highest indenture (smallest) items as LRUs?

2. Which model parameters influence the cost increases in the above

cases?

To answer these questions, we solve each problem instance to

find the optimal LRU definition, and we apply two heuristics that are

based on what we have seen in practice. We call the first heuristic
Table 3

Computation times of our experiments (in seconds).

PS Parameter Computation time

|�0| |�i| |L| min mean max

1 50 2 3 0.01 0.03 0.20

100 2 3 0.03 0.05 0.21

50 4 3 0.04 0.07 0.26

100 4 3 0.12 0.18 0.46

2 50 2 3 0.01 0.03 0.24

50 2 4 0.03 0.06 0.33

50 2 5 0.07 0.15 0.48

50 2 6 0.20 0.33 18.37

3 50 2 3 0.03 0.04 0.22

100 2 3 0.03 0.05 0.08

50 4 3 0.05 0.06 0.07

100 4 3 0.11 0.16 0.39

a

i

r

o

p

he large heuristic (make LRUs as large as possible, i.e., all first inden-

ure items), and denote the resulting costs by Cl. We call the second

euristic the small heuristic (make LRUs as small as possible, i.e., all

eaf items), and the resulting costs are denoted by Cs. The optimal

osts are denoted by C∗. Notice that both heuristics represent a naive

pproach, because they are generally not followed for all items when

efining LRUs in practice. However, we believe that it is a good refer-

nce point for contrasting extreme cost results.

We answer Question 1 by showing the cost increases that appear

hen comparing C∗, with the cost of the two heuristic solutions: Cl

nd Cs. The percentage increase that we show is calculated as Cl/s−C∗
C∗ .

uestion 2 addresses the influence of model parameters on the possi-

le cost increases. Answering this question gives managerial insights

bout the relevant cost drivers in the model. We use an n-way anal-

sis of variance to test the significance of the results for different pa-

ameter settings.

To answer Question 1, Table 4 summarizes the cost increases over

ll problem instances. We see that for all PSs, using the heuristics re-

ults in huge cost increases compared to the optimal solution, with

he small heuristic performing better than the large heuristic. The

ost increase for all problem instances is at least 4 percent (shown

n Appendix E). These results show that solving the LRU definition

roblem considering technical aspects only, as is currently common

n practice (see Section 3), typically leads to high additional costs. Op-

imization incorporating economic criteria is required.

We next answer Question 2. We discuss only those parameters

hat have a significant effect on the achieved cost increase. Item

eplacement time, ri, and the target number of assets, k, had no

ignificant effect on the cost increase in any of the PSs. Fig. 5 shows

he main effects plot of the cost increase in PS1 for those parameters

hat have a significant effect (p-values less than 0.05 in the n-way

nalysis of variance of the cost increase). We discuss each of these

ffects below. Appendix E shows the minimum (min), average (mean)

nd maximum (max) cost increase for parameter settings of PS1, PS2

nd PS3.

The largest cost increases result from increasing the number of

tems per parent (|�i| from 2 to 4) and the cost factor (fc from the

ange [0.5; 1.5] to the range [1; 3]). Both increases mean that costs

f leaf items remain the same while parent items become more ex-

ensive. As a result, it becomes more costly to make a suboptimal
Table 4

Average cost increase between optimal and heuristic solution for PS1–

PS3.

Problem set # Instances Cost increase

Cl vs C∗(percent) CsvsC∗(percent)

PS1 5120 62 33

PS2 5120 80 54

PS3 3840 112 33
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Fig. 5. Percentage cost increase for settings (1 or 2) of model parameters for PS1.
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Fig. 7. Median percentage cost increase for settings of parent cost, c′
i
| �i 	= ∅, for PS3.
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RU definition. Furthermore, in the optimal solution, the number of

RUs doubles and LRUs will be smaller than before. Therefore, we see

hat the percentage cost increase of the large heuristic compared with

he optimal solution becomes much higher, while this effect is much

maller (|�i|) or even reversed (fc) for the small heuristic.

Increasing the item replacement cost, c′
i
| �i = ∅, or the item fail-

re rate, mi, leads to a slightly higher cost increase. While these set-

ing changes do not significantly influence the number of LRUs in the

ptimal solution, the LRU replacement costs increase with increases

n ci or λi. Therefore, the relative contribution of the costs of the fleet

o the total optimal costs becomes much smaller: it becomes more

ostly to make a suboptimal LRU definition.

With increasing asset price, c0, we found an average reduction in

he cost increase for both heuristics. Increasing c0 has the inverse ef-

ect of ci or λi. The reduction in the cost increase results because for

ore expensive assets the costs of the fleet are higher, and the rel-

tive weight of the LRU replacement costs becomes smaller. Finally,

hanges in w do not lead to large cost increases. The reason is that

ages represent a relatively small contribution to the total costs.

Fig. 6 shows the main effects plot of the cost increase due to an

ncrease in the number of indenture levels, |L|, from three to six in-

entures (settings 1–4) for PS2. Increasing |L| creates more opportu-

ity for allocating cheaper repair options in the optimal solution. We

nd that the number of LRUs in the optimal solution has large varia-

ions within each setting, while remaining almost unchanged for both

euristics, e.g., for |L| = 6, problem instances range from 478 LRUs

closer to the large heuristic) to 1476 LRUs (closer to the small heuris-

ic). Both heuristics result in increased costs.

Fig. 7 shows the main effects plot of the cost increase given the

arent item cost settings for PS3. The differences between the average

ost of the parent between settings

∑
j∈�i

c j

|�i| and max cj is very small,

hich explains why they result in very similar cost increases. With

j∈�i
c′

j
, more small items are defined as LRU in the optimal solution.

his makes a small cost increase for the small heuristic, but makes a

uge cost increase for the large heuristic.

Summarizing, the cost of parent assemblies relative to child items

an have a huge influence on the cost increases. Therefore, if parents
Fig. 6. Average percentage cost increase for increasing indenture levels of PS2.
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p

ecome more expensive compared to their children, there is more to

ain by making optimal LRU definitions, and these optimal definitions

nclude smaller items.

. Conclusions

In this paper we have discussed a problem within maintenance

ptimization: the optimal selection of replacement level within the

ndenture structure of capital assets. To the best of our knowledge,

his problem has not received attention in the literature. We have

resented the LRU definition problem as a decision on whether or

ot to replace a parent assembly or a child item, upon failure of that

hild item. The LRU definition problem explicitly accounts for the

tructural dependency existing between items within the indenture

tructure of capital assets. In practice, the LRU definition decision is

sually made ad-hoc, or based only on engineering/technical criteria.

urthermore, many maintenance repair decisions, such as the Level

f Repair Analysis decisions, assume the LRU definitions implicitly.

We have shown that the LRU definition problem is NP-hard, that

t can be optimized using an MILP model, and that significant cost

eductions can be achieved when compared to two heuristics com-

only used in practice. This provokes further research about the ways

o improve LRU decisions in practice. Some of the assumptions in the

urrent model of the LRU definition problem may be relaxed, espe-

ially that of sequential maintenance.

The model can also be extended by incorporating limited labor

apacity. We have seen that wage differences do not significantly in-

uence in LRU definitions. However, we have also seen in practice a

rowing concern for labor scarcity in the maintenance industry. Lim-

ted manpower (working hours per skill sets) could be an additional

onstraint in the model. Increasing task frequency builds routine, and

elps prevent costly mistakes in maintenance work. A lower bound

n replacement frequency can be added as constraint.

Proceeding in the direction of combining the LRU definition

roblem with other problems would be useful to support the joint

aintenance and logistics decisions for re-defining LRUs, for example

t NedTrain. One way would be to combine it with LORA, e.g., the

ork by Basten et al. (2011). This means combining the MILP model

or the LRU definition problem with the MILP model for the LORA

roblem. It may also be beneficial to help maintenance assessment

y combining the LRU definition problem with the joint optimization

f level of repair analysis (LORA) and spare parts stocking (see Section

.4). One way would be by extending the work by Basten et al. (2012).

his means combining the MILP model for the LRU definition prob-

em with the MILP model for the LORA problem. Solving that MILP

rst and then a spare parts stocking model. Using a feedback loop

o the MILP model leads to an iterative heuristic to solve the joint

roblem.
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Appendix A. Linearization

In this appendix, we linearize the mathematical model described

in Section 4.2. The objective function, and Constraints 2–4, contain

products of the cumulative failure rate λi and the decision variable Xi.

This product is a nonlinear expression. We linearize these expressions

by introducing an auxiliary variable ρ i that is equal to λiXi. We further

define �i as the failure intensity of item i ∈ I, including the failure in-

tensity of all its descendants. It is a Big M variable and it is computed

recursively: �i = mi + ∑
j∈�i

� j . The linearized LRU definition prob-

lem is shown below. The objective function and constraints A.2 to A.4

are the same as the objective function and constraints 2 to 4 in the

original model, with λiXi being replaced by ρ i. Constraints A.5 to A.8

are added.

minimize c0N +
∑
i∈I

ciρi (A.1)

subject to N −
∑
i∈I

riρi ≥ k (A.2)

λi = mi +
∑
j∈�i

(λ j − ρ j),∀i ∈ I (A.3)

λi ≤ ρi +
∑
j∈Ai

ρ j,∀i ∈ I (A.4)

ρi ≤ �iXi,∀i ∈ I (A.5)

ρi ≤ λi,∀i ∈ I (A.6)

ρi ≥ λi − �i(1 − Xi),∀i ∈ I (A.7)

ρi ≥ 0,∀i ∈ I (A.8)

N ∈ N (A.9)

Xi ∈ {0, 1},∀i ∈ I. (A.10)

Appendix B. Proof that the LRU definition problem is NP-hard

We show that the binary knapsack problem (BKP) can be reduced

to the LRU definition problem in polynomial time. Since the BKP is

known to be NP-hard, see for example Martello and Toth (1990, p. 6),

this proofs that also the LRU definition problem is NP-hard.

The BKP is the problem of selecting items j ∈ J to put in a knapsack

with a fixed capacity C, such that a profit is maximized. Each item j ∈ J

gives a profit pj and has a weight wj. An item j ∈ J is selected to be put

in the knapsack if x j = 1; x j = 0 otherwise. The mathematical model
ormulation is then

minimize
∑
j∈J

p jx j

ubject to
∑
j∈J

wjx j ≤ C

xj ∈ {0, 1},∀ j ∈ J

We next construct an instance of the LRU definition problem. We

et k = 1 and below we will show that as a result of our formula-

ion, N = 2. For now, we thus assume that k − N = −1. We define

product structure with one dummy component, indicated by −1,

hat has |J| subcomponents; to be more precise, �−1 = J. We define

pmax = max
j∈J

{p j} and set c−1 = pmax and m−1 = 0. We then set, for i

J, mi = 1, ci = pmax − pi, and ri = wi/C. We come back to r−1, but

e assume for now that r−1 = 0. The LRU definition problem for this

nstance is then:

inimize 2c0 + pmaxλ−1 +
∑
i∈J

(pmax − pi)Xi (B.1)

ubject to
∑
i∈J

wi

C
Xi ≤ 1 (B.2)

λ−1 =
∑
i∈J

(1 − Xi)

λi = 1,∀i ∈ J (B.3)

λi ≤ Xi + λ−1X−1 (B.4)

Xi ∈ {0, 1},∀i ∈ J ∪ {−1} (B.5)

To see that the objective function is correct, there are two things

o notice. Firstly, notice that we omit the term X−1 from the objec-

ive function because X−1 = 0 ⇐⇒ λ−1 = 0, while X−1 = 1, other-

ise. Secondly, notice that we omit the term λi from the objective

unction because λi = 1 for i ∈ J as a result of Constraint (B.3). Using

hat λ−1 = ∑
i∈J(1 − Xi), following Constraint (B.3), and that Xi ∈ {0,

}, we can rewrite the objective function to become:

inimize 2c0 + pmax|J| −
∑
i∈J

piXi,

nd since the first two terms are constant, this is equivalent to:

aximize
∑
i∈J

piXi.

y further noticing that in Constraint (B.2) we can multiply both sides

f the equation by C and that Constraints (B.3) and (B.4) are basically

sed for book keeping, we see that we have constructed an instance

f the LRU definition problem that, when solved, gives the solution for

ur original binary knapsack problem. (Notice that to find Constraint

B.2) we have used that we can make both sides positive instead of

egative, which means that the inequality is reversed.)

The only point remaining is that we need to ensure that N = 2. We

an achieve this by, on the one hand, ensuring that there is always a

trictly positive (small) workload, so that N > k = 1, and on the other

and, setting c0 ≥ pmax|J| so that N ≤ 2. Ensuring that there is always

small workload can be achieved by setting r−1 = ε and setting ri =
+ wi(1 − ε|J|)/C, with ε|J| << min

i∈J
{wi}, and 0 < ε|J| < 1. Instead of

q. (B.2) above, Eq. 2 in the LRU definition model will then become
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Table D.5

LRU requirements at Thales.

Criteria An LRU shall be...

Mandatory Criteria

Structure Physically separable from the asset

Identification Uniquely identifiable for codification as a spare part

Testing Independently testable and reproducible

Task Replaced using prescribed maintenance procedures

Preferred Criteria

Fault detection Detected and localized by use of built-in testing

Handling Sized not to exceed the following limits (95th percentile, weighed with the failure ratesa): weight of one LRU is lower than 16 kilograms,

dimensions (millimeter) of one LRU are lower than 600 × 450 × 450. Remaining LRUs (max. 5th percentile) shall be in accordance with the

requirements of MIL-STD-1472F, §5.9.11

Weight Of a target weight of less than 10 kilograms. If the LRU weight is between 10 kilograms and 25 kilograms, provisions shall be made for

two-handed transportation. If the weight is between 25 kilograms and 45 kilograms, transportation by two persons or hoisting facilities shall

be in place. If the LRU weight exceeds 45kg, the LRU shall be equipped with hoisting facilities

Interface Secured in place by mechanical fastening (clip or screw) to a maximum of 4

Interface (electric) Connected via free mounted plug and socket connectors, to a maximum of 3

Interface (fluid) Provided with “quick disconnect” type liquid or air connections

Reliability Every equipment, assembly, or part contributing to the asset MTBF with a failure rate of more than 2 per million hours

Task Replaced within a time of 30 minutes (hands-on-tool-time 95th percentile, weighed with the failure ratesa)

Adjustment Pre-tuned, so that it can be replaced without readjustment

a At least 95 percent of all maintenance actions should conform to this requirement.
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Table E.6

Cost increases for settings of parameters in all three problem sets.

PS Par. Set. Cl vs C∗( percent) Csvs C∗( percent)

min mean max min mean max

|�0| 1 5 62 132 4 32 68

2 10 62 117 7 33 64

|�i| 1 5 49 113 4 28 61

2 19 75 132 11 38 68

fc 1 5 45 81 7 45 68

2 14 79 132 4 21 33

c′
i

1 5 55 130 4 29 66

2 21 69 132 12 37 68

1 mi 1 5 56 131 4 29 66

2 19 68 132 11 36 68

ri 1 5 62 132 4 33 68

2 5 62 132 4 33 68

k 1 5 62 132 4 33 68

2 5 62 132 4 33 68

c0 1 15 67 132 10 35 68

2 5 57 131 4 30 67

w 1 5 63 132 4 33 68

2 5 62 132 4 32 68

2 |L| 1 5 47 113 4 27 61

2 13 73 133 12 48 86

3 28 88 141 25 62 97

4 39 113 179 34 78 126

3 c′
i
a 1 5 60 132 4 27 68

2 5 60 132 4 27 68

3 24 202 423 5 33 61

a Setting 1, 2 and 3 are c′
i
= fc

|�i |
∑

j∈�i
c′

j
, c′

i
= fc max c′

j
| j ∈ �i, and c′

i
=

fc

∑
j∈�i

c′
j
, respectively, for all i ∈ I|�i 	= ∅.

R

B

B

B

B

B

notice that λ−1 = ∑
i∈J(1 − Xi)):

N −
∑
i∈J

[
ε + wi(1 − ε|J|)

C

]
Xi − ε

∑
i∈J

(1 − Xi) ≥ k

ε|J| +
∑
i∈J

wi(1 − ε|J|)
C

Xi ≤ N − k,

hich ensures that there is always a small positive workload, while

he same optimal solution will still result.

ppendix C. Problem instance generator

In this appendix, we explain the problem instances generator. The

ettings that we use for the parameters are listed in Table 2 in Section

.1. In the explanation here, we assume setting 1 for each parame-

er. The number of items per indenture level are given in Table 1 in

ection 5.1. Each item at indenture level L + 1 is randomly assigned to

parent (at indenture level L) using a uniform distribution on the par-

nt indenture’s index range. The number of children per parent will

hus differ per parent. The annual demand for an item, mi, is drawn

er item from a uniform distribution on the interval [0.01; 0.1]. The

eaf item’s replacement costs, i.e., ci, for i ∈ I | �i = ∅, are drawn from

shifted exponential distribution with shift factor 1000 and rate pa-

ameter 7/(10,000 − 1000). As a result, we do not have items with

price below 1000 euros and approximately 5 percent of the items’

rices exceed 10,000 euros. Therefore, there are typically more cheap

tems than expensive items. The parameter fc is drawn from a uniform

istribution on the range [0.5; 1.5]. The item replacement lead time

er hour, ri, is drawn from a uniform distribution on the range [0.25;

]. Asset prices are drawn from a uniform distribution on the range

000 euros × [200; 400].

ppendix D. LRU requirements at Thales: mandatory and

referred criteria

Table D.5 shows a summary of the LRU requirements at Thales,

ncluding mandatory and preferred criteria.

ppendix E. Results summary

Table E.6 shows the results for PS1, PS2 and PS3. We only show the

ull list of results for parameter settings in PS1, because these param-

ter settings had similar results in PS2 and PS3.
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