
Continuous-wave laser generated jets for needle free applications
Carla Berrospe-Rodriguez, Claas Willem Visser, Stefan Schlautmann, Ruben Ramos-Garcia, and David
Fernandez Rivas 
 
Citation: Biomicrofluidics 10, 014104 (2016); doi: 10.1063/1.4940038 
View online: http://dx.doi.org/10.1063/1.4940038 
View Table of Contents: http://scitation.aip.org/content/aip/journal/bmf/10/1?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Thermally multiplexed polymerase chain reaction 
Biomicrofluidics 9, 044117 (2015); 10.1063/1.4928486 
 
Microfluidic sorting of protein nanocrystals by size for X-ray free-electron laser diffraction 
Struct. Dyn. 2, 041719 (2015); 10.1063/1.4928688 
 
Increasing label-free stem cell sorting capacity to reach transplantation-scale throughput 
Biomicrofluidics 8, 064106 (2014); 10.1063/1.4902371 
 
Parallel generation of uniform fine droplets at hundreds of kilohertz in a flow-focusing module 
Biomicrofluidics 7, 034112 (2013); 10.1063/1.4811276 
 
Biochip/laser cell deposition system to assess polarized axonal growth from single neurons and neuron/glia pairs
in microchannels with novel asymmetrical geometries 
Biomicrofluidics 5, 013408 (2011); 10.1063/1.3552998 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

201.139.100.186 On: Wed, 13 Jan 2016 18:24:54

http://scitation.aip.org/content/aip/journal/bmf?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/311151471/x01/AIP-PT/BMF_ArticleDL_111815/AIP-2639_EIC_APL_Photonics_1640x440r2.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=Carla+Berrospe-Rodriguez&option1=author
http://scitation.aip.org/search?value1=Claas+Willem+Visser&option1=author
http://scitation.aip.org/search?value1=Stefan+Schlautmann&option1=author
http://scitation.aip.org/search?value1=Ruben+Ramos-Garcia&option1=author
http://scitation.aip.org/search?value1=David+Fernandez+Rivas&option1=author
http://scitation.aip.org/search?value1=David+Fernandez+Rivas&option1=author
http://scitation.aip.org/content/aip/journal/bmf?ver=pdfcov
http://dx.doi.org/10.1063/1.4940038
http://scitation.aip.org/content/aip/journal/bmf/10/1?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/bmf/9/4/10.1063/1.4928486?ver=pdfcov
http://scitation.aip.org/content/aca/journal/sdy/2/4/10.1063/1.4928688?ver=pdfcov
http://scitation.aip.org/content/aip/journal/bmf/8/6/10.1063/1.4902371?ver=pdfcov
http://scitation.aip.org/content/aip/journal/bmf/7/3/10.1063/1.4811276?ver=pdfcov
http://scitation.aip.org/content/aip/journal/bmf/5/1/10.1063/1.3552998?ver=pdfcov
http://scitation.aip.org/content/aip/journal/bmf/5/1/10.1063/1.3552998?ver=pdfcov


Continuous-wave laser generated jets for needle free
applications

Carla Berrospe-Rodriguez,1,a) Claas Willem Visser,2 Stefan Schlautmann,3

Ruben Ramos-Garcia,1 and David Fernandez Rivas3

1Departamento de �Optica, Instituto Nacional de Astrof�ısica, �Optica y Electr�onica, Apartado
Postal 51 y 216, 72000 Puebla, Pue., Mexico
2Physics of Fluids Group, MESAþ Institute and Faculty of Science and Technology,
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
3Mesoscale Chemical Systems Group, MESAþ Institute and Faculty of Science and
Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

(Received 10 November 2015; accepted 5 January 2016; published online 13 January 2016)

We designed and built a microfluidic device for the generation of liquid jets

produced by thermocavitation. A continuous wave (CW) laser was focused inside a

micro-chamber filled with a light-absorbing solution to create a rapidly expanding

vapor bubble. The chamber is connected to a micro-channel which focuses and

ejects the liquid jet through the exit. The bubble growth and the jet velocity were

measured as a function of the devices geometry (channel diameter D and chamber

width A). The fastest jets were those for relatively large chamber size with respect

to the channel diameter. Elongated and focused jets up to 29 m/s for a channel di-

ameter of 250 lm and chamber size of 700 lm were obtained. The proposed CW

laser-based device is potentially a compact option for a practical and commercially

feasible needle-free injector. VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4940038]

I. INTRODUCTION

Needle injection has been the main drug delivery mechanism for nearly two centuries.

However, needles constitute serious health problems such as inadequate disposal, waste contam-

ination, and risk of infection.1 In particular, they present a great danger for health care workers

worldwide. It is estimated that nearly 2� 106 of them experiences needle-stick incidences each

year, which puts them at risk of diseases such as AIDS (Acquired Immune Deficiency

Syndrome) and hepatitis, among others.2,3 Pain and needle-phobia are also problematic issues

since patients avoid medical care for these reasons.4

Nowadays, there are several needle-free systems aimed at solving the problems mentioned

above.5 Commercial systems include jet injectors,6–12 powder injectors,13,14 or monolithic formula-

tions.15 Moreover, topical applications like thermal ablation16,17 and ultrasound,18 as well as micro-

needle mechanisms,19–21 are still under development phase. Each system solves a challenge while

having particular disadvantages; for example, liquid injectors can cause nozzle splash-back con-

tamination from the skin; powder injectors can burn and bleach the skin; despite being painless,

microneedles do not solve waste contamination problem and spreading of diseases.22,23

Recently, fast liquid microjets were generated by the expansion of a vapor bubble induced

by a focused pulsed laser. These jets have been studied as potentially efficient drug delivery

system. Microjets with velocities above 200 m/s and penetration depths up to 4 mm have been

reported.24,25 Such systems possess a kinematic focusing of the liquid with a sharp tip, prevent-

ing back-splash contamination. However, the laser is absorbed by the medicine-containing liq-

uid, and therefore probably affects the chemistry of the injected material in an undesired
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manner. Another pulsed laser-based jet injector with speeds up to 50 m/s and volume of 2100

nL has been developed to prevent this issue.26–30 Here, the container where cavitation occurs,

and the nozzle where the drug is stored, were separated by a thermal resistant membrane.

Although these investigations hold promising results for needle free technology, the use of

pulsed laser as cavitation source delays the development of inexpensive and portable devices.

The dimensions of the commonly used Nd:YAG or Er:YAG lasers are impractically large,

besides the requirement of a cooling system and a powerful source. Even though some pulsed

laser systems are now more compact, they are still too large to integrate in portable devices,

unlike near infrared (NIR) semiconductor laser with relatively high power. Furthermore, pulsed

lasers are more expensive than continuous wave (CW) lasers since they require advanced optics

and the use of special materials.

Therefore, to exploit the full benefits of laser-based injector, their cost, volume, and operation

facilities need to be reduced. In fact, CW lasers have this potential. Liquid elongated jets were

obtained focusing a CW laser into a droplet of copper nitrate saturated solution.31 However, the

jet speed (�10 m/s) was still insufficient to cross the skin barrier (stratum corneum).27

In this work we present, to the best of our knowledge, the first microfluidic device to pro-

duce elongated liquid jets by CW-laser induced thermocavitation with speeds above the thresh-

old to break the stratum corneum (uttermost epidermal layer), which is the major barrier to

chemical transfer through the skin. For a typical skin strength of 20 MPa, a minimum jet veloc-

ity of 14 m/s is needed.27 The device focuses the bubble expansion with a specially designed

geometry, leading to a liquid jet of 29 m/s. Thermocavitation produces jet speeds comparable

with those by pulsed laser, opening the possibility to develop an inexpensive portable and nee-

dle free injector.

II. MATERIALS AND METHODS

A. Microfluidic cavity design and fabrication

Microfluidic devices were designed and fabricated in silicon and glass substrates under

clean-room conditions. The samples are constituted by two parts: the chamber (where the cavi-

tation bubble expands) and the channel (for liquid propagation and confinement), as shown in

Figure 1(a). The device was fabricated with two different materials due to design characteris-

tics. The chamber was etched in glass because isotropic etching allows fabrication of spherical-

like geometries and optical access. This shape is important to allow bubble expansion but also

to focus the shock waves at the channel entrance. On the other hand, silicon is a suitable mate-

rial to use for straight channel fabrication.

Microchannels were micro-machined on double-side polished silicon wafers with (100)

crystallographic orientation (SCHOTT MEMpax, Schott AG). The silicon channels with 500 lm

length and a diameter of D were etched by means of a plasma dry-etching machine (Adixen

AMS 100 SE, Alcatel). The glass substrates were made of Borofloat wafers, on which the

chamber was wet-etched with hydrogen fluoride solutions. A chamber with 200 lm depth and a

length of A was designed to allow the bubble to expand after its creation. Both substrates were

put together with anodic bonding. The bonded wafers were then diced in square chips with a

side of 10 mm.

The glass-silicon interface was chosen to avoid energy dispersion due to material deforma-

tion and surface detachment, as, for example, in polymer materials, such as Polydimethylsiloxane

(PDMS).32,33 Furthermore, their low cost and ease of production with microfabrication techniques

are additional advantages.

The geometrical parameters were classified by the chamber width A and the channel diame-

ter D. For example, A700D250 represents a device with A¼ 700 lm and D¼ 250 lm.

B. Optical setup

The setup depicted in Figure 1(b) was used to study the formation and growth of the bub-

ble. An infrared collimated tunable laser, operating at k¼ 790 nm, was focused at the bottom of

014104-2 Berrospe-Rodriguez et al. Biomicrofluidics 10, 014104 (2016)
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the chamber with a 100 mm concave lens. Due to visualization limitations, the lens was ori-

ented at 27� with respect to the device normal. The tilted focusing turns in to an angle of 18�

inside the surface, as a consequence of light refraction, producing a slightly asymmetric super-

heated volume. However, once the bubble is created, its expansion becomes symmetric. With

this configuration, it was possible to record the dynamics of the bubble wall inside the chamber.

The device was illuminated by a white light source (Olympus ILP-1) located either at the top

or the bottom from the channel and chamber, respectively. The bubble expansion was recorded

at 54 000 frames per second (fps) with a 5� microscope objective coupled to a fast camera

(FASTCAM SA-X2 Photron) by a plane mirror. An infrared filter was used to avoid saturation

of the CCD camera.

In each experiment, the chamber was filled by depositing a 25 ll drop of copper nitrate sat-

urated solution (13.78 g in 10 ml of water) at the exit of the device, with an optical absorption

coefficient of 130 cm�1 for the wavelength used. The device was then placed into a vacuum

machine to introduce the liquid inside of the cavity, avoiding the formation of air bubbles in

the chamber. With the help of a microscope, the residual solution outside the channel was

removed with the tip of an absorbing tissue until the level was just below the channel exit.

The recordings of the liquid jet ejection from the channel were performed with the setup

depicted in Figure 1(c). The laser was focused with a 10� microscope objective producing a

beam waist of 17 lm (FWHM: Full width at half-maximum criteria) at the bottom of the cham-

ber. The light source and the camera were located at the exit of the channel to observe the jet

propagation. The image sequences were recorded at 180 000 fps. In order to capture the cavita-

tion event in both experimental set-ups, a function generator was used to synchronize the laser

with the camera by a trigger impulse of s¼ 500 ms. During each laser illumination time, the

liquid was superheated, a bubble was created, and as it expanded, liquid was pushed out of the

channel. The expulsion of the jet could be repeated at least six times before the cavity was

completely emptied. The results presented in this work all correspond to the first cavitation

event.

For both experimental set-ups (bubble expansion and jet propagation), the device was

placed in a holder with a xyz linear translation stage (micrometer precision) to align the center

of the chamber with the center of the white light source, which was at the same time aligned

with the spot of the infrared laser.

III. RESULTS AND DISCUSSION

Due to the absorption of laser light at the bottom wall of the device, the liquid is heated up

to its superheat limit (270–300 �C), leading to an explosive phase transition. As a consequence,

a half-hemispheric bubble in contact with the chamber surface is created.34,35 The expansion of

FIG. 1. (a) Artistic representation of the glass-silicon device cross section, geometry designed for thermocavitation jets

experiments. The device is axisymmetric. (b) Setup for the bubble growth visualization inside the chamber device for top

and bottom illumination. (c) Setup for the visualization of the jet.
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the bubble causes the displacement of the liquid outside of the device, through the channel, in

the form of a jet.

In order to understand and quantify the mechanism of jet production, the bubble growth

and jet formation were analyzed as explained afterwards. The data points and the error bars

plotted below represent the mean value of a total of four measurements (with variations smaller

than 10%) and the uncertainty of these measurements, respectively.

A. Bubble dynamics inside the cavity

The dynamics of bubble expansion was recorded with bottom illumination, as shown in

Figure 2(a). Initially, the bubble reaches a maximum diameter in the chamber at t ¼ 111 ls;

however, it continues growing along the channel, reaching a maximum size at t¼ 185 ls. This

can be noticed since the top of the channel is visible, indicated by the white arrow. Due to the

FIG. 2. (a) Bubble expansion inside the chamber for the device A700D300: bottom illumination. The dashed and dotted

white circle delimits the area of the chamber and channel, respectively. The yellow continuous circle indicates the bubble

wall and the red continuous circle the partially emptied chamber. (b) Artistic representation of the cross section for the bub-

ble dynamics. (c) Bubble diameter growth as a function of time for laser intensity I¼ 1.5� 104 W/cm2.
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device configuration, the collapse of the bubble is not observable in the optical setup. In fact,

what it is being observed at t¼ 1573 ls is the partially emptied channel, as the air replaces the

expelled liquid. The bubble dynamics is better understood looking at the artistic representation

in Figure 2(b).

The bubble expansion in the chamber as a function of time, obtained from the image

sequence of Figure 2(a), is shown in Figure 2(c). The main bubble growth occurs along the

channel, producing a water jet expelled at different speeds as is shown later. After t¼ 185 ls,

the diameter decreases, which may indicate the collapse of the bubble; however, it was not pos-

sible to measure the whole event due to the device configuration, as referred to above.

The influence of the geometrical design parameters, such as chamber A and channel

width D, on the dynamics and size of the bubble were further investigated. The bubble

expansion in time for different devices, presented in Figure 3(b), was obtained from image

sequences as the one shown in Figure 3(a). The diameter of the bubble in the chamber was

measured until its maximum value was reached. In all geometries, a faster growth occurs

during the first 55 ls approximately, followed by slower expansion as a result of liquid

ejection. Despite having space to expand in the chamber, in all the cases, the maximum

bubble diameter was approximately the same size as the channel width. This is due to the

main expansion occurring along the channel. However, the growth rate is proportional to

the chamber width, the bigger the chamber, the faster the bubble grows. The bubble life-

time increases by decreasing the chamber width, similar to the results reported in

literature.36

FIG. 3. (a) Bubble expanding inside the chamber device A900D500: 1. Top illumination and 2. Bottom illumination. The

white dotted and dashed circle delimits the area of the channel and chamber, respectively. The yellow continuous circle

delimits the outer edge of the bubble. (b) Bubble diameter expansion against time for laser intensity I¼ 1.5� 104 W/cm2

until it reaches a maximum size in the chamber.).
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B. Jet formation by thermocavitation

Initial dynamics of the jet produced by the bubble growth for different channel widths are

shown in Figure 4(a). The image sequences present a common characteristic: a focused geome-

try (cone shaped) of the fluid is observed. In all cases, the tip of the jet is smaller than the

channel width, indicated by the broken lines at the bottom of the jet. As it grows, the jet adopts

the shape of a uniform cylindrical column. Sharper jet tips are observed for smaller channels.

In particular, for A700D250 (Figure 4(a-iii)), the angle is steep, and the liquid is almost a col-

umn from the beginning. It is expected that the increase in tip sharpness for smaller channels

was caused by the increased curvature of the free surface, similar to previous results reported.24

However, due to the lack of visualization of the meniscus in the silicon channel, future research

will be required to validate this mechanism.

The propagation of the liquid jet for times after 100 ls is shown in Figure 4(b). An elon-

gated liquid column is observed after its formation at 312 ls. Before 702 ls of propagation, the

jet column reaches its maximum size and breaks into droplets from the back of the tip in the

direction of jet displacement. In this particular case, the length of the jet before its break up

was more than 3.5 mm.

The jet velocity as a function of time for different devices is presented in Figure 5(a). The

speed increases as the channel diameter decreases; for A800D300, a maximum velocity of

27.5 m/s was measured, while for A800D400, it was 20.5 m/s. In all the devices, the speed of

the liquid decreases rapidly within the first 16 ls, decaying slower afterwards and reaching a

constant value around 25 ls of propagation. For smaller channels, the jet decelerates more rap-

idly because there is more resistance to flow.

The effect of the chamber width on the jet velocity is shown in Figure 5(b). For devices

with the same channel dimensions, a faster jet is observed for bigger chambers. As was

FIG. 4. Image sequences recorded at 180 000 fps for liquid jets generated with laser intensity I¼ 2.6� 104 W/cm2, as a con-

sequence of the bubble growth in the chamber. At 16.5 ls of propagation, the tip of the jet from A700D250 is already out of

the field of view. (b) Propagation of the jet after its formation. Break-up of the liquid column at t¼ 702 ls and droplet for-

mation at t¼ 858 ls.
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mentioned in Section III A, the bubble expansion rate increases as the chamber width increases,

leading therefore to a faster jet. This result indicates that the jet velocity not only depends on

the channel diameter but it also depends on the chamber dimensions.

The maximum speed as function of channel diameter is plotted in the inset frame of Figure

5(c). A maximum speed of 29 m/s was reached for a diameter of 250 lm, exceeding the velocity

to produce skin erosion (13 m/s) (Ref. 27) by a factor of�2. In order to evaluate the combined

effect of the channel diameter and the chamber width on the velocity of the jet, a dimensionless

parameter named constriction ratio m ¼ D=A was defined. The velocity of the jet at different val-

ues of m is shown in Figure 5(c). As the constriction ratio is reduced, the velocity of the liquid

increases. A data fitting curve shows a behavior of Vjet ¼ am�1, where a ¼ 10:660:12. This is

similar to previous results,24 were it was found a jet velocity proportional to D�1 for a given

energy pulse in capillary tubes with diameters bigger than 50 lm.

The jet velocity for different laser intensities of the device A800D400 is shown in Figure

5(d). At I¼ 2.6� 104 W/cm2 (P¼ 116 mW and beam waist of 17 lm), the jet reached a maxi-

mum velocity around 21 m/s; when the intensity was increased to 3� 104 W/cm2 (P¼ 150 mW

and beam waist of 17 lm) the velocity dropped to 19 m/s. This is remarkable since for pulsed

lasers a linear dependence with the energy pulse was found.24 A future study of the jet velocity

as a function of laser intensity would be therefore highly interesting.

The jet velocities measured with this microfluidic device are still below those obtained by

pulsed laser systems, but of comparable order of magnitude. For example, using an Er:YAG

FIG. 5. Velocity of the jet for laser intensity I¼ 2.6� 104 W/cm2, extracted from recorded images at 180 000 fps for: (a)

Devices sharing same chamber size A800. (b) Devices sharing same channel size D300. (c) Maximum speed of the jet

measured at�6 ls as a function of the constricted ratio m ¼ D=A (logarithmic scale). The dashed line shows a

Vjet ¼ 10:6 m�1. The inset chart shows the maximum speed of the jet against channel diameter Dch. (d) Jet velocity against

time at I¼ 2.6� 104 W/cm2 and 3� 104 W/cm2 for device A800D400.
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laser, jet velocities up to 50 m/s were reached for a nozzle diameter of 150 lm with a pulse

energy of 950 mJ.27 With a Nd:YAG laser, jet velocities of 70 m/s were reached with the same

nozzle diameter.28 It is expected that the physical mechanisms (energy conversion from light

into vapor, from vapor into motion, and flow focusing) leading to the jet expulsion are scale-

invariant, as was demonstrated for a closely related case.24 By extrapolating the curve in Figure

5(c), velocities around 100 m/s for m¼ 0.1 are predicted.

The results in this work show the potential of needle-free injection by using CW lasers. In

future work, CW lasers with different wavelengths could be used to avoid the need of a light-

absorbing dye. In particular, for wavelengths between 3 lm and 100 lm, the optical absorption

coefficient is comparable to or shorter than �130 cm�1, as used here. Furthermore, this investi-

gation shows that smaller channel diameters likely yield higher jet velocities, to enable medi-

cine delivery at controlled depths in the skin or the subcutaneous tissue. We believe that this

approach to induce jets with CW lasers will eventually enable the development of commercially

feasible, portable jet injectors.

IV. CONCLUSION

A glass-silicon microfluidic device for continuous wave laser generated jets was designed

and tested. The system is integrated by a chamber, where the bubble expands, and a channel to

focus the liquid jet through the exit. The bubble growth in the chamber is restricted to the chan-

nel diameter despite having more space to expand. However, a bubble growth rate proportional

to the chamber width was found. As the bubble grows, it induces an elongated and focused jet

that exits the microfluidic device through the channel which connects the chamber to the ambi-

ent air. The jet velocity was measured and found to follow a scaling Vjet � m�1, where m ¼ D
A

is the ratio between the chamber width and the channel diameter. Here, we observed maximal

jet velocities of 29 m/s, which is sufficient to break the stratum corneum. However, in order to

penetrate the skin dermis, further studies with new microfluidic designs will be needed to obtain

higher jet speeds. Therefore, in future work, devices with lower values of m will be tested with

the aim to enable velocities of up to 200 m/s, which are usually applied for needle-free injection

drug.
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