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The semiconducting two-dimensional transition metal dichalcogenides MX2 show an abundance of one-
dimensional metallic edges and grain boundaries. Standard techniques for calculating edge states typically model
nanoribbons, and require the use of supercells. In this paper, we formulate a Green’s function technique for
calculating edge states of (semi-)infinite two-dimensional systems with a single well-defined edge or grain
boundary. We express Green’s functions in terms of Bloch matrices, constructed from the solutions of a quadratic
eigenvalue equation. The technique can be applied to any localized basis representation of the Hamiltonian. Here,
we use it to calculate edge states of MX2 monolayers by means of tight-binding models. Aside from the basic
zigzag and armchair edges, we study edges with a more general orientation, structurally modifed edges, and grain
boundaries. A simple three-band model captures an important part of the edge electronic structures. An 11-band
model comprising all valence orbitals of the M and X atoms is required to obtain all edge states with energies in
the MX2 band gap. Here, states of odd symmetry with respect to a mirror plane through the layer of M atoms
have a dangling-bond character, and tend to pin the Fermi level.
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I. INTRODUCTION

In the wake of graphene, a whole new class has emerged
of materials that are essentially two dimensional (2D) in
nature [1,2]. The subset of materials with honeycomblike
structures alone contains metals such as graphene, insulators
such as boron nitride (h-BN), and semiconductors such as
the transition metal dichalcogenides (MX2; M = Mo,W, X =
S,Se,Te) [3,4]. It becomes more and more feasible to grow
nanostructures and in-plane heterostructures of 2D materials
in a controlled way [5–11]. As a result, the electronic structure
of edges and grain boundaries attracts increasing attention.

Graphene edges, for instance, are predicted to have re-
markable one-dimensional electronic and magnetic properties
[12,13]. The edges and grain boundaries of MX2 sheets are
generally metallic [10,14–20]. As the bulk 2D MX2 materials
are semiconducting, the metallicity is truly localized at the
edge or grain boundary, where one could see manifestations
of the peculiar spectral and transport properties of one-
dimensional (1D) metals [21]. In chemistry, MoS2 edges have
been identified as sites that show a special catalytic activity
[14,16,22]. Such experimental developments have motivated
a large number of calculations on the electronic structure of
edge states, both first-principles calculations, as well as model
calculations.

The electronic structure of graphene edges in particular
have been studied extensively. As graphene has a relatively
simple electronic structure, some features of the edge states
in graphene can be studied by analytical or simple numerical
techniques [23–25]. The edges of MoS2 have attracted renewed
attention recently [14–20,26–33]. Here, the complexity of the
electronic structure requires more extensive models, even for
relatively simple modeling at the tight-binding level [34,35],
or at the continuum level [36,37]. A standard technique for
calculating edge states uses supercells to model nanoribbons
of a finite width. Drawbacks of this approach are that the
electronic structure of the edge states is mixed with that of
the bulklike interior of the nanoribbon, and that the two edges

of the nanoribbon can interact electronically. The ribbon has
therefore to be sufficiently wide in order to electronically
separate the two edges from one another and from the bulk. It
may require the use of large supercells, which in particular
if the materials are modeled from first principles leads to
time-consuming calculations and complicates analysis of the
results.

Green’s function techniques constitute an alternative ap-
proach. They enable calculations on semi-infinite structures
with a single well-defined edge, or on infinite structures
containing a single grain boundary, and they generally do not
require the use of large supercells. Green’s function techniques
have been pioneered for calculations on surface states of
three-dimensional (3D) materials [38–42]. Here, we formulate
a special Green’s function technique for calculating edge and
grain boundary states. This technique is inspired by the Green’s
function formalism that has been introduced for calculating
electronic transport through nanostructures [43–47].

We express both edge Green’s functions and bulk Green’s
functions in terms of Bloch matrices, which are constructed
from the eigenvalues and eigenfunctions of a quadratic eigen-
value problem [43–48]. Structural and chemical modifications
at the edges and grain boundaries are then tackled by
connecting the modified edges to semi-infinite bulk structures.
The method allows for a clean separation of edge and bulk
properties at a moderate computational cost.

Our Green’s function approach requires a representation of
the Hamiltonian on a localized basis, such as atomic orbitals
or Wannier functions, or a real-space grid. It can be applied
to tight binding as well as first-principles models. In this
paper, we illustrate its use on tight-binding models for MX2

monolayers, MoS2 in particular. We apply the approach to
the three-band model for the simplified electronic structure of
MoS2, developed by Mattheis [49] and Liu et al. [34]. We study
the electronic structures of the elementary (zigzag, armchair)
MoS2 edges, and of edges of a more general orientation.
We illustrate the effect on the electronic structure of edge
modifications and of the formation of grain boundaries. For
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comparison, we also study edges within an 11-band model
comprising all MoS2 valence orbitals, developed by Cappelluti
et al. [50].

The paper is organized as follows. In Sec. II A, we formulate
the technique of calculating Green’s functions using Bloch
matrices. How to apply this technique to MX2 edges and grain
boundaries is described in Sec. II B. The tight-binding models
are discussed in Sec. II C and Appendixes A and B. We discuss
results obtained with these models for MX2 edges and grain
boundaries in Secs. III A and III B.

II. THEORY

A. Green’s functions

We divide the 2D layers into 1D strips (see Fig. 1) [40].
Assuming translational symmetry with period a along the strip,
the Hamiltonian matrix can be labeled by a Bloch wave number
−π

a
< k � π

a
. For clarity of notation, we suppress the label k

in the following. The thickness of the strips is chosen such that
a direct interaction exists between neighboring strips only.
We label the strips by an index i, and divide the Hamiltonian
matrix into blocks Hi,j , with an i,j = −∞, . . . ,∞ for an
infinite system. Having only nearest-neighbor interactions
between strips means that the Hamiltonian matrix is block
tridiagonal, i.e., Hi,j = 0; j �= i,i ± 1. For a unit cell in the
strip containing N orbitals, all these matrix blocks are N × N .

The columns of the retarded Green’s function matrix blocks
Gi,j obey

− Hi,i−1Gi−1,j + (E+I − Hi,i)Gi,j − Hi,i+1Gi+1,j = Iδij ,

(1)

where I is the N × N identity matrix, and E+ = E + iη with
η the usual infinitesimal positive real number. Note that we
assume a representation based upon an orthogonal basis set.
We are foremost interested in the layer-resolved density of
states, given by the usual expression ni = −π−1ImTrGi,i .
Obviously, besides on the Bloch wave number k, the Green’s
function matrix also depends on the energy E. Again, for ease
of notation we often omit both these labels in the following.

FIG. 1. A 2D layer is divided in 1D strips. Translation symmetry
along the strips gives the Bloch wave number k. Translation symmetry
between the strips results in identical on-strip Hamiltonian matrix
blocks H(k) and hopping matrix blocks B(k).

In an infinite system with translational symmetry between
the layers, the strips are identical, and Eq. (1) becomes

− BGi−1,j + (E+I − H)Gi,j − B†Gi+1,j = Iδij , (2)

with B = Hi,i−1, H = Hi,i , and B† = Hi,i+1 for i =
−∞, . . . ,∞ (see Fig. 1). For a left semi-infinite system with
i = −∞ to i = 0, the equations remain the same, except for
the i = 0 equation, which becomes

− BGL
−1,j + (E+I − H)GL

0,j = Iδ0j . (3)

In surface science, the matrix block gL = GL
0,0 is called the

surface Green’s function. In the context of 2D structures, we
call it the edge Green’s function.

In a similar way, for a right semi-infinite system with i =
0, . . . ,∞, only the equation for i = 0 is different from the bulk
equation (2),

(E+I − H)GR
0,j − B†GR

1,j = Iδ0j , (4)

with the matrix block gR = GR
0,0 the edge Green’s function.

Note that if the 2D layer has no twofold symmetry, such as
inversion, a mirror plane perpendicular to the 2D layer, or
a twofold rotation axis perpendicular to the 2D layer, then
gR �= gL, i.e., a right edge is different from a left edge.

The density of states of the edge strip of a left/right semi-
infinite system is given by

n
(S)
L/R =

N∑
α=1

nα; nα = −π−1Im[gL/R]α,α, (5)

where nα is the density of states projected on a single orbital
α.

Partitioning the infinite system into a right and a left semi-
infinite half, the on-strip matrix blocks of the Green’s function
of the infinite system can be expressed as

Gi,i = [
g−1

L − B†gRB
]−1

. (6)

1. Eigenmodes and Bloch matrices

We will express the Green’s function matrices of (semi-
)infinite systems in terms of Bloch matrices [43]. Equation
(2) for i �= j is the same as the Schrödinger equation in tight-
binding representation

− Bci−1 + (EI − H)ci − B†ci+1 = 0, (7)

where ci is the N -dimensional vector of orbital coefficients
of the wave function on strip i. With translational symmetry
between the strips, the elementary solution is a Bloch wave,
and ci+1 = λci , with λ a complex constant. For an infinite
system this holds for all i, and for a left (right) semi-infinite
system for i < 0 (i > 0). Using this relation as an ansatz in
Eq. (7) gives a quadratic eigenvalue equation in λ of dimension
N :

A(λ)u = 0; A(λ) = −B + λ(EI − H) − λ2B†. (8)

As A(λ) = λ2A†(1/λ∗), if λ is a root of det A(λ), then so
is 1/λ∗. Numerically, the solutions are usually found by
solving an equivalent linear generalized eigenvalue equation
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of dimension 2N [48]:[(
I 0

EI − H −B

)
− λ

(
0 I

B† 0

)]
z = 0, (9)

which resembles the eigenvalue equation for the transfer
matrix [40,41,51–54].

The maximally 2N solutions of this equation can be
divided into two classes, i.e., right-going modes and left-going
modes, labeled, respectively, by + and − superscripts in the
following. Right-going modes are either evanescent waves that
decay to the right |λ+

n | < 1 or waves that travel to the right,
meaning |λ+

n | = 1 and a positive group velocity. Left-going
modes either decay to the left |λ−

n | > 1 or travel to the left
|λ−

n | = 1 with negative group velocity. With un the eigenvector
belonging to the eigenvalue λn in Eq. (9), the group velocity
is given by [45]

vn = −2a

�
Im[λnu†

nB†un]. (10)

Only for traveling waves is the group velocity nonzero.
We divide the eigenvectors into a set of N+ right-going

modes u+
n and a set of N− left-going modes u−

n . The evanescent
waves always come in pairs of a right-going and a left-going
mode, i.e., if λ+

n is the eigenvalue of a right-going mode, then
λ−

n = 1/(λ+
n )∗ gives a left-going solution. Traveling waves do

not necessarily come in such pairs, and the numbers of right-
and left-going traveling waves may be different. Neither right-
going modes nor left-going modes necessarily form a complete
set in N -dimensional space, nor are they an orthogonal set in
general.

One can use these two sets of modes to form the two N ×
N± matrices

U± = (u±
1 ,u±

1 , . . . ,u±
N± ), (11)

and construct the two Bloch matrices

F± = U±�±Ũ±, (12)

where �± are the N± × N± diagonal matrices with the
eigenvalues λ±

n on the diagonal, and Ũ± are the N± × N

(pseudo)inverses of U± [55]. The Bloch matrices have the
convenient property

(F±)p = U±(�±)pŨ± (13)

for any integer p, as Ũ±U± = IM± , the M± × M± identity
matrix, with M± � N±. It follows that

ci = (F+)ic+
0 + (F−)ic−

0 (14)

satisfies the tight-binding equation (7), where c±
0 set the

boundary conditions in strip number 0. We assume that all
relevant solutions can be expressed this way.

2. Green’s functions in terms of Bloch matrices

The general expression of Eq. (14) also applies to the
columns of the Green’s function matrices [compare Eqs. (2)
and (7)]. The boundary conditions require that a retarded
Green’s function comprises traveling waves moving outwards
from its point source and/or evanescent waves decaying away
from the source. For left and right semi-infinite systems, this

gives

GL
i,0 = (F−)igL, i < 0 (15)

GR
i,0 = (F+)igR, i > 0. (16)

Using Eq. (15) in Eqs. (2) and (3) then leads to

[−B(F−)−1 + E+I − H]gL = I,

[−B(F−)−1 + E+I − H − B†F−](F−)−1gL = 0. (17)

Solving these two equations gives the edge Green’s function
of a left semi-infinite system as

gL = [B†F−]−1, (18)

where the inversion should be treated as a pseudoinversion if
B† is singular [55]. Using Eq. (16) in Eqs. (2) and (4) gives the
edge Green’s function of a right semi-infinite system

gR = [B(F+)−1]−1. (19)

Finally, using Eq. (6) gives the on-strip Green’s function matrix
block of an infinite system

Gi,i = [B†F− − B†F+]−1. (20)

3. Ideal edge states

One cannot have traveling Bloch waves for energies in
the band gap of a semiconductor. In semi-infinite systems
one can, however, have solutions in the form of evanescent
states that originate from the edge of the system. One can
find the energies of these edge states from the edge Green’s
functions [Eqs. (18) and (19)], which have isolated poles at
these energies. Obviously in numerical calculations one has to
work at complex energies E + iη to avoid these poles, but η

can be chosen small.
Alternatively, edge states can be obtained from the solutions

of the eigenvalue problem [Eq. (8)], solved at real energies E

[40,53,56,57]. As edge states should decay away from the
edge, only the u−

n modes can contribute to an edge state
for a left semi-infinite system, and only the u+

n modes for a
right semi-infinite system. An edge state of a left semi-infinite
system has amplitude zero beyond the edge of that system,
i.e., c1 = F−c−

0 = 0 [Eq. (14)]. This means rank(F−) < N−,
the number of left-going solutions of Eq. (8). Because
rank(F−) = rank(U−) [see Eq. (12) with rank(�−) = N− and
rank(U−) = rank(Ũ−)], a necessary and sufficient condition
for the existence of an edge state is that the eigenmodes u−

n

are linearly dependent. A similar reasoning holds for the edge
states of a right semi-infinite system. The number of edge states
at a particular energy E and wave number k of a left/right semi-
infinite system is then given by N

L/R

edge = N−/+ − rank(U−/+).

4. Ideal grain boundaries

A model for an ideal grain boundary is shown in Fig. 2.
Space is divided into two parts with B′ the hopping matrix
block connecting the left and right halves. We assume that the
on-strip Hamiltonian matrix blocks of all the strips in the left
half are given by HL right up to the boundary, and that the
hopping matrix blocks between all nearest-neighbor strips in
the left part are given by BL. The corresponding matrix blocks

205444-3



MOJTABA FARMANBAR, TAHER AMLAKI, AND GEERT BROCKS PHYSICAL REVIEW B 93, 205444 (2016)

FIG. 2. Grain boundary between a left semi-infinite system with
on-strip Hamiltonian matrix blocks HL(k) and hopping matrix blocks
BL(k) and a right semi-infinite system with matrix blocks HR(k) and
BR(k). The coupling between left and right parts is given by the
hopping matrix block B′(k).

for the right half are HR and BR , respectively. The Green’s
function matrix blocks gI

L and gI
R pertaining to the two strips

just left and right of the grain boundary interface can be derived
like Eq. (6):

gI
L = [

g−1
L − B′†gRB′]−1

, (21)

gI
R = [

g−1
R − B′gLB′†]−1

, (22)

where gL and gR are the edge Green functions of the left and
right semi-infinite systems, respectively. With Eqs. (18) and
(19), one can express the interface Green’s functions in terms
of Bloch matrices

gI
L = [B†

LF−
L − B′(BR(F+

R )−1)−1B′†]−1, (23)

gI
R = [BR(F+

R )−1 − B′(BLF−
L )−1B′†]−1. (24)

5. Modified edges

So far, we have assumed that all layers are identical right
up to an edge or grain boundary. The formation of an edge
or boundary often involves an electronic and a structural
reconstruction, which makes the Hamiltonian matrix blocks
of the strips adjacent to an edge or grain boundary different
from those of the bulk strips.

We illustrate this on a left semi-infinite system with an edge
layer (i = 0) that is different from the bulk. The tight-binding
equations for the two layers closest to the edge are

− Bc−2 + (EI − H)c−1 − B′†c0 = 0,

−B′c−1 + (EI − H′)c0 = 0, (25)

where H′ �= H is the onsite Hamiltonian of the edge layer, and
B′ �= B is the coupling of this layer to the rest of the system
(see Fig. 3). Using c−2 = (F−)−1c−1 [see Eqs. (14) and (15)]
transforms Eq. (25) into(

EI − H − B(F−)−1 −B′†

−B′ EI − H′

)(
c−1

c0

)
=

(
0

0

)
. (26)

FIG. 3. Left semi-infinite system with a modified edge. H(k) and
B(k) are the matrix blocks of the unperturbed system; H′(k) and B′(k)
are the matrix blocks of the perturbed edge strip.

In the terminology used in nonequilibrium Green’s function
(NEGF) transport calculations, the term �L(E) ≡ B(F−)−1 is
called the self-energy of the left lead [45]. The Green’s function
matrix blocks pertaining to the two layers closest to the edge
are then given by

GL =
(

EI − H − B(F−)−1 −B′†

−B′ EI − H′

)−1

. (27)

The Green’s function gives the density of states in the usual
way [cf. Eq. (5)]. The density of states is zero for energies
inside the band gap, except for isolated poles at particular
energies, which represent the edge states of the modified
edges. This formalism can be adapted in an obvious way to
model modified edges of right semi-infinite systems, or grain
boundaries where the strips left and right of the interface are
modified.

6. Charge-neutrality level

Experimentally, the Fermi level in MX2 compounds is often
determined by unintentional doping due to defects [58–60]. In
addition, as MX2 compounds are polar materials, an internal
electric field is created if a crystallite is terminated by polar
edges [61,62]. Such an electric field can cause a long-range
charge transfer between different edges, even if the bulk
material does not contain any impurities. The position of the
Fermi level can then become dependent on the size and the
shape of the sample, which makes the intrinsic Fermi level an
ill-defined quantity.

Each edge or grain boundary has a well-defined energy level
at which that edge or grain boundary is electrically neutral, the
charge-neutrality level (CNL). We use the CNL as a reference
point in the following. The charge-neutrality level ECNL is
defined as the energy at which

N (ECNL) = Nstrip, (28)

where Nstrip is the number of electrons that makes the strip
neutral, and N (E) is the electron counting function

N (E) =
∫ E

−∞
n(E′)dE′, (29)
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FIG. 4. Top view of the MX2 lattice with M and X atoms in
purple and yellow, respectively. The lattice vectors a1 and a2 are
indicated by arrows. The M and X zigzag edges run parallel to a2

and are the edges of right and left semi-infinite systems, respectively.
The armchair edge runs parallel to 2a1 + a2.

with n(E) the k-integrated density of states

n(E) = a

2π

∫ π
a

− π
a

n(E,k)dk. (30)

The k-resolved density of states n(E,k) can be obtained from
Eq. (5) for edge strips, and a similar expression for a bulk strip.

B. M X2 edges

The hexagonal lattice of MX2 is shown in Fig. 4. We specify
an edge starting from a supercell spanned by vectors T1 and
T2. This supercell is used to define a semi-infinite system,
choosing one of the vectors as the translation vector parallel
to the edge.

1. Zigzag and armchair edges

Similar to graphene, the basic-type edges of the MX2 lattice
are the zigzag and armchair edges as defined in Fig. 4. A zigzag
edge is defined by T1 = a1 and T2 = a2, with T2 as the vector
parallel to the edge. The matrix blocks discussed in Sec. II A
become

H = H0,0 + H0,1e
i2πk + H0,−1e

−i2πk, (31)

B = H−1,0 + H−1,−1e
−i2πk, (32)

where Hp,q denotes the real-space Hamiltonian matrix block
that describes the interaction between atoms in the unit cell
situated at the origin and atoms in the unit cell situated at
pa1 + qa2. The matrix elements of Hp,q depend on the specific
tight-binding model that is used to represent the electronic
structure of MX2. They are given in the Appendixes.

Note that by solving the quadratic eigenvalue equations (8)
and (9), one has simultaneous access to the Green’s functions
of the edges of a right and a left semi-infinite system via
Eqs. (18) and (19). Unlike graphene, the MX2 monolayer
lacks inversion symmetry, which means that the zigzag edge
termination of a right semi-infinite system is different from
that of a left semi-infinite system (see Fig. 4). The zigzag edge
of a right semi-infinite system is terminated by metal atoms.

We call this the M edge, consistent with previous studies on
MoS2, where it is called the Mo edge [14–16]. The zigzag
edge of a left semi-infinite system is then called the X edge,
as it is terminated by chalcogen atoms. In previous studies on
MoS2, it has been called the S edge.

An edge in armchair orientation can be constructed from
T1 = 2a1 + a2 and T2 = a2 with T1 the translation vector
parallel to the edge (see Fig. 4). The corresponding supercell
is twice as large as the unit cell, so the dimension of the matrix
blocks defining the edge are twice the dimension of the blocks
defining the zigzag edge

H =
(

H0,0 H1,1 + H−1,0e
−i2πk

H1,0e
i2πk + H−1,−1 H0,0

)
, (33)

B =
(

H0,−1 H1,0 + H−1,−1e
−i2πk

0 H0,−1

)
. (34)

Note that the termination at the edge is controlled by the
contents of the cell used to define the primitive vectors a1,a2.
In particular, the cell defined in Fig. 4 does not lead to a pristine
armchair edge, but one with additional M or X atoms attached
to the edge. It is straightforward to remove these atoms and
by applying the technique outlined in Sec. II A 5 obtain the
electronic structure of a pristine armchair edge.

2. General edges

Edges with a somewhat more general orientation are defined
by the supercell

T1 = m(a1 + a2) + n(2a1 + a2); T2 = a2, (35)

with T1 the translation vector parallel to the edge, defined as m

zigzag vectors plus n armchair vectors (see Fig. 5). The angle
with the direction of a2 is given by

θ = arccos

(
1
2m√

m2 + 3mn + 3n2

)
. (36)

Because of the symmetry of the lattice, one only has to cover
the 30◦ angle between a zigzag orientation m = 1, n = 0, θ =
60◦, and an armchair orientation m = 0, n = 1, θ = 90◦. Left
and right edges (M-type and X-type edges) are then obtained
by using T2 = a2 and T2 = −a2, respectively.

A series of edge orientations is obtained by setting n = 1
and varying m, where the translation vector along the edge

FIG. 5. Left: generalized zigzag edge parallel to T1 = 3(a1 +
a2) + (2a1 + a2). Right: generalized armchair edge parallel to T1 =
(a1 + a2) + 2(2a1 + a2).
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is the sum of m zigzag vectors and one armchair vector.
We call this a generalized zigzag edge (see Fig. 5). The
supercell defined by the lattice vectors [Eq. (35)] contains
m + 2 unit cells. For instance, values m = 1, 2 give angles θ =
79.1◦, 70.9◦, respectively. The construction of the Hamiltonian
matrix blocks defining the edge is straightforward. As an
example, the Hamiltonian matrix blocks for m = 2, n = 1 are

H =

⎛⎜⎜⎜⎝
H0,0 H1,1 0 H−1,0e

−i2πk

H−1,−1 H0,0 H1,1 0

0 H−1,−1 H0,0 H1,1

H1,0e
i2πk 0 H−1,−1 H0,0

⎞⎟⎟⎟⎠,

(37)

B =

⎛⎜⎜⎜⎝
H0−1 H1,0 0 H−1,−1e

−i2πk

0 H0,−1 H1,0 0

0 0 H0,−1 H1,0

0 0 0 H0,−1

⎞⎟⎟⎟⎠. (38)

To generate edges with an orientation closer to the armchair
edge (θ = 90◦), one can use the series with m = 1 and vary
n. The translation vector parallel to the edge is then the sum
of one zigzag vector and n armchair vectors, which we call
a generalized armchair edge (see Fig. 5). The supercell then
contains 2n + 1 unit cells. As an example, m = 1, n = 3 gives
θ = 85.3◦. The edge termination can be controlled by adding
and removing atoms at the edge, and apply the technique
outlined in Sec. II A 5.

C. Tight-binding models

In most of the calculations shown here, we use tight-binding
models with spin degeneracy, where spin-orbit coupling (SOC)
is neglected. Including SOC changes the edge bands very little
for MX2 compounds containing light elements. For instance,
SOC gives a �50 meV splitting in the edge bands of MoS2,
which is a small number relative to the dispersion of those
bands. SOC gives a larger effect for heavy elements. The SOC-
induced splitting in the edge band of WTe2 is �190 meV.
The effects of SOC are demonstrated in Appendix C. In the
following, we proceed with Hamiltonians without SOC terms.

The main contributions to the valence and conduction bands
of MX2 around the band gap come from the valence d shell of
the M atom and the p shell of the X atoms. A minimal basis set
then comprises 11 orbitals: 5 metal d orbitals, and 6 p orbitals
of the two chalcogen atoms [50]. Monolayer MX2 has D3h

point-group symmetry. The trigonal prismatic coordination of
the metal atom splits the d states into three groups: A

′
1{d3z2−r2},

E
′ {dxy,dx2−y2}, and E

′′ {dxz,dyz}. The six p orbitals of the
two chalcogen atoms split into the groups A

′
1{p−

z =
pz(X1) − pz(X2)}, E

′ {p+
x = px(X1) + px(X2),p+

y =
py(X1) + py(X2)}, A

′′
2{p+

z = pz(X1) + pz(X2)}, and
E

′′ {p−
x = px(X1) − px(X2),p−

y = py(X1) − py(X2)}. Mirror
symmetry in the plane of the metal atoms σh allows for
hybridization between orbitals that are even with respect to
σh, i.e., A

′
1 and E

′
orbitals, or between orbitals that are odd,

i.e., A
′′
2 and E

′′
orbitals.

The set of orbitals with even symmetry thus comprises the
six orbitals d3z2−r2 , dxy, dx2−y2 , p−

z , p+
x , and p+

y , and the set
with odd symmetry the five orbitals dxz, dyz, p+

z , p−
x , and

p−
y . As the even/odd symmetry is conserved for the edges and

grain boundaries considered in this paper, all corresponding
Hamiltonian matrices are blocked, and the even/odd solutions
can be obtained separately. The matrix blocks Hp,q required for
constructing the Hamiltonian matrices of Sec. II B are given
in Appendix B. The values of the tight-binding parameters
have been obtained by fitting the bulk band structure to bands
obtained from density functional theory (DFT) calculations
with the generalized gradient approximation (GGA/PBE)
functional [63]. For the even states we use the parameters
given by Rostami et al. [64], and for the odd states we use the
parameters given in Appendix B.

The 11-band model can be simplified further. From early
theoretical studies and recent first-principles calculations, one
observes that the MX2 bands at the top of the valence band
and at the bottom of the conduction band are dominated by
the metal d orbitals, in particular those with even symmetry,
i.e., d3z2−r2 , dxy , and dx2−y2 [49,50,65]. Contributions to the
bands around the gap from the dxz and dyz orbitals and
from the chalcogen p orbitals are much smaller. Matheiss
has constructed an effective tight-binding model for MX2,
where only the metal sites are taken into account explicitly
[49]. These sites form a two-dimensional triangular lattice,
and the presence of the X atoms lowers the symmetry of
this lattice from D6h to D3h. The metal orbitals with even
symmetry d3z2−r2 , dxy , and dx2−y2 are used to construct an
effective three-band model. The matrix blocks Hp,q of this
model are given in Appendix A. We use the parameters given
by Liu et al. [34], which have been obtained by fitting the bulk
bands to GGA/PBE results.

III. RESULTS

A. Three-band model

1. Zigzag and armchair edges

The eigenvalues and eigenvectors of Eq. (8) are used to
construct the Bloch matrices [Eq. (12)]. The bulk density of
states n(k,E) is shown in Fig. 6(a), as calculated from the
Green’s function matrix of a bulk strip [Eqs. (2) and (20)],
in the zigzag edge orientation. In the three-band model, the
lowest band is the valence band, and the overlapping two
upper bands form the conduction band. Note that the zero
of energy is chosen at the top of the valence band. The same
Bloch matrices give access to the Green’s function matrices
of the zigzag edge strips [Eqs. (18) and (19)]. Here, gR(k,E)
and gL(k,E) are the energy and k-resolved Green’s function
of the M edge and the X edge, respectively (see Fig. 4). Again
using MoS2 as an example, the associated densities of state
nR(k,E) and nL(k,E) of the Mo edge, respectively the S edge,
are shown in Figs. 6(b) and 6(c).

The Mo edge has a prominent edge state inside the bulk
band gap dispersing upwards from k = 0 to 1

2 . The S edge has
an edge state that starts in the bulk conduction band at k = 0,
and disperses downward to k = 1

2 . In surface physics, such
states are termed Shockley states [66]. These edge states are
also found in the more detailed 11-band model with a similar
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FIG. 6. (a) k-resolved density of states (DOS) per MoS2 unit of bulk MoS2 in the three-band tight-binding model, with the k vector parallel
to the zigzag edge, and the zero of energy at the top of the valence band. The DOS is plotted on a logarithmic scale (right-hand side n denotes
amplitude 10−n) using a broadening parameter η = 0.05 eV [Eq. (1)]. (b), (c), (d) k-resolved DOSs of the Mo edge, the S edge, and the armchair
edge, respectively. (e), (f), (g), (h) k-integrated DOS per MoS2 unit of bulk MoS2, the Mo edge, the S edge, and the armchair edge, all plotted
on a linear scale (η = 0.05 eV). The red solid lines give the counting function and the green dashed lines indicate the charge-neutrality level
(CNL) [Eqs. (28)–(30)].

dispersion (see Sec. III B). The latter model shows a richer
edge state structure, originating from bands that are omitted
in the simple three-band model. Nevertheless, the three-band
model finds prominent Mo-edge and S-edge states with the
correct dispersion. Edge states are also found at energies close
to ∼3 eV, which is in the hybridization gap between the two
conduction bands.

The structure of a bulk strip in armchair orientation has a
mirror plane perpendicular to the MX2 plane and along the
armchair orientation (see Fig. 4). It follows that the densities
of states of right and left edges, nR(k,E) and nL(k,E), are
identical for the armchair orientation. The k-resolved density
of states of the MoS2 armchair edge [Eqs. (33) and (34)]
is shown in Fig. 6(d). There are two clear edge states with
energies in the band gap. One edge state is just below the
conduction band and roughly follows the dispersion of the
conduction band edge, whereas the other one is positioned at
∼0.5 eV above the valence band, following the dispersion of
valence band edge.

The k-integrated densities of states [Eq. (30)] of a bulk
MoS2 strip in zigzag orientation, the Mo edge, the S edge, and
the armchair edge, are given in Figs. 6(e)–6(h), respectively.
These densities of states show the van Hove singularities at the
band edges that are typical of 1D structures. With the zero of
energy at the top of the valence band, the bulk valence band lies
in the energy range −0.5–0.0 eV, and the two conduction bands
in the range 1.6–3.5 eV [see Fig. 6(e)]. The Mo edge shows
edge bands in the energy range 0.1–1.4 eV, and around 3 eV.

The S edge has an edge band starting at 0.5 eV, which merges
with the conduction band at higher energies, and additional
edge states with energies 2.7–3.0 eV. The armchair edge has
two edge bands in the gap in the energy ranges 0.3–0.6 and
1.4–2.0 eV, respectively, and an edge state around 3.1 eV.

Also shown in Figs. 6(e)–6(h) are the electron counting
function (red curves) [Eq. (29)] and the charge-neutrality level
(CNL; green lines) [Eq. (28)]. Obviously, for the bulk the CNL
is at the top of the valence band [see Fig. 6(e)]. The position of
the CNL at the Mo edge corresponds to a 2

3 filled edge band in
the gap [see Fig. 6(f)]. One might interpret this as effectively
two-thirds of the bonds being broken for a Mo atom at the
Mo edge. Likewise, the position of the CNL at the S edge
corresponds to a 1

3 filled edge band in the gap [see Fig. 6(g)].
This correlates with one-third of the bonds being broken for a
Mo atom at the S edge. The supercell of the armchair edge has
two Mo atoms along the edge, where the local environments of
one is similar to that of a Mo atom at an Mo-edge, and the local
environment of the other is similar to that of a Mo atom at the S
edge (see Fig. 4). Summing the 2

3 and 1
3 edge state occupations

at the Mo and S edges, one predicts that the armchair edge has
one completely filled edge band. The calculated CNL shows
that this is indeed the case; the armchair edge has one fully
occupied edge band, and one empty edge band [see Fig. 6(h)].

The CNLs of all three basic edges are quite close [cf.
Figs. 6(f)–6(h)]. This is an artifact of the three-band model,
and of disregarding the odd bands in particular. The latter
play an important role in setting the CNLs in MX2 edges, as
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FIG. 7. (a), (b) k-resolved DOSs of the W edge and the Te edge
within the three-band tight-binding model of H−WTe2. (c), (d) k-
integrated DOSs of the W edge and the Te edge. The same conventions
and parameters are used as in Fig. 6.

we will discuss in Sec. III B. In polar lattices such as MX2

the CNL does not fix the intrinsic Fermi level, unlike in a
nonpolar lattice such as graphene [61,62]. In a finite-sized
MX2 sample, electrons can be redistributed among all the
edges in the sample, driven by the internal electric field set up
by the intrinsic polarization of the material.

So far, we have focused on edges of MoS2, but all MX2

compounds with a similar structure (D3h point group, trigonal
prismatic coordination of M atoms by X atoms) have similar
edge structures. Figure 7 shows the densities of states of the
W and Te zigzag edges of H−WTe2 as an example. These
densities of states are very similar to those of the corresponding
Mo and S edges of MoS2 [see Figs. 6(b), 6(c), 6(f), and 6(g)].
The band gap of bulk WTe2 is somewhat smaller than that
of MoS2, and the band widths are somewhat larger. WTe2

has a band gap of 1.1 eV (GGA/PBE), a valence band in the
range −0.7–0.0 eV, and conduction bands in the range 1.1–3.7
eV. The W edge has a state in the gap in the energy range
0.0–1.4 eV, and the Te edge has a state in the gap in the range
0.5–2.0 eV. As is the case for the bulk bands, the band widths of
these edge states are somewhat larger than the corresponding
states in MoS2.

2. General edges and grain boundaries

The electronic structure of the more general edges defined in
Sec. II B 2 can be calculated along the same lines. Figures 8(a)
and 8(b) give the densities of states of generalized zigzag
edges of MoS2 with translation vectors along the edge defined
by m = 1 and 3, respectively, and n = 1 [see Eq. (35) and
Fig. 5]. The generalized zigzag edge has a rich structure of
edge states within the bulk band gap. The peak at 0.4 eV in
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FIG. 8. k-integrated DOSs of the generalized zigzag edges
defined by Eq. (35) with (a) m = 1, n = 1 and (b) m = 3, n = 1,
and of the generalized armchair edges with (c) m = 1, n = 2 and (d)
m = 1, n = 3.

Figs. 8(a) and 8(b) results from the armchair part of this edge
[compare to Fig. 6(h)]. The band in the range 0.5–1 eV in
8(a), and the structure of bands in the range 0.8–1.9 eV in 8(b)
originates mainly from the zigzag parts.

The counting system for the three-band model, as outlined
in the previous section, gives a filling 2

3 per Mo atom at a Mo
edge and a filling 1 per two Mo atoms at an armchair edge. For
a generalized zigzag edge one would then predict the CNL to
correspond to 2m/3 + n filled edge states. This would mean
that the CNL is inside an edge band, unless m is a multiple of
three. This is confirmed by a calculation of the CNL according
to Eq. (28). In Fig. 8(a), where m = 1, the position of the CNL
corresponds to a 2

3 filled edge band, whereas in Fig. 8(b), where
m = 3, the CNL is in a gap between two edge states. The gaps
between the edge states of the general edges are quite small,
however. In a sample that involves long-range charge transfer
between the edges, as discussed above, these semiconducting
edges easily become doped.

Figures 8(c) and 8(d) show the densities of states of
generalized armchair edges of MoS2, with translation vectors
along the edge with m = 1 and n = 2 and 3, respectively [see
Eq. (35) and Fig. 5]. Again, this general edge has a rich
structure of states within the bulk band gap. In particular,
the peaks around 0.4 and 1.7 eV have a strong armchair
character. The counting model gives 1/3 + n filled edge states,
so it predicts that the CNL always lies inside an edge band.
Calculations of the CNL according to Eq. (28) confirm this,
as shown in Figs. 8(c) and 8(d). In conclusion, within the
three-band tight-binding model, pristine charge-neutral edges
are metallic for most edge orientations.

A similar analysis can be applied to the states found at grain
boundaries. We illustrate the use of Eq. (21) for calculating
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FIG. 9. (a) k-resolved DOS of a model grain boundary between
a Mo edge and a S edge, with a coupling between the edges
α = 0.2 [Eq. (32)]. (b) k-resolved DOS with α = 0.8. (c), (d) The
corresponding k-integrated DOSs.

the states at grain boundaries using a simple grain boundary
in MoS2. It consists of a left semi-infinite part, terminated by
a S edge, connected to a right semi-infinite part, terminated by
a Mo edge. As hopping matrix defining the coupling between
left and right parts (Fig. 2), we choose a scaled version of the
bulk hopping matrix [Eq. (32)]:

B′ = αB; 0 � α � 1. (39)

Obviously, α = 0 gives two uncoupled S and Mo edges with
corresponding edge states [Figs. 6(b), 6(c), 6(f), and 6(g)],
whereas α = 1 gives the bulk electronic structure [Figs. 6(a)
and 6(e)] without any edge states. The values 0 < α < 1
then represent a simple model for a weak link with zigzag
orientation.

Figure 9(a) gives the k-resolved density of states for α =
0.2, which represents a relatively weak coupling between the
left and right parts. In the band gap one observes the two edge
bands that are typical of the Mo edge and the S edge [see
Figs. 6(b) and 6(c)]. Due to the coupling between the S and
Mo edges at the grain boundary, the two bands interact, which
results in an avoided crossing between the two edge states
at k ≈ 0.35 and E ≈ 1 eV. The avoided crossing creates an
energy gap in the range 0.7–1.2 eV, which is clearly visible
in the k-integrated density of states for α = 0.2, shown in
Fig. 9(c). The counting model predicts 2

3 , respectively 1
3 , filling

per Mo atom of an edge state at the Mo edge and the S edge,
if the grain boundary is charge neutral. This implies that the
lower edge band is fully occupied, whereas the upper edge
band is empty. A calculation of the CNL according to Eq. (28)
confirms this [see Fig. 9(c)].

Figure 9(b) gives the k-resolved density of states for a
strong coupling between the left and right parts, α = 0.8. The

interaction between the two edge bands is now much stronger
than for the case discussed in the previous paragraph, which
results in a much larger gap in the range 0.2–1.6 eV [see
Fig. 9(d)]. The two edge bands are pushed toward the valence
band and the conduction band, respectively, and they more
closely follow the dispersions of the valence and conduction
band edges. The occupancy of a charge-neutral grain boundary
is the same as before, i.e., a fully occupied lower edge band
and an empty upper edge band.

As a final point in this section we illustrate the technique
introduced in Sec. II A 5 for handling edges that involve an
electronic or a structural reconstruction. For the zigzag edges,
we have found a 2

3 , respectively 1
3 , occupied edge band for

the Mo edge and the S edge. It suggests that a reconstruction
that triples the translational period along the edge may lead
to fully occupied edge states for both edges. As a proof of
principle, we test a very simple reconstruction, where one in
three Mo atoms at the Mo edge or the S edge has a different
onsite energy. The Green’s function matrix is calculated from
Eq. (25). The densities of states of the modified edge layers
are shown in Figs. 10(a) and 10(c) for the Mo edge and 10(b)
and 10(d) for the S edge. Obviously increasing the periodicity
from 1× to 3× folds the edge band, so one observes three
edge states instead of one. Decreasing the onsite energy of
every third Mo atom at the edge by 1 eV introduces energy
gaps between the edge states.

By calculating the CNL, we observe that at the Mo edge the
two lowest edge bands, starting at 0.4 and 0.7 eV in Figs. 10(b)
and 10(d), are filled, whereas the third band, starting at 1.1 eV,
is empty. The lowest edge band of the S edge at 0.0 eV
[Figs. 10(a) and 10(c)] is filled, whereas the two upper bands,
starting at 0.9 and 1.6 eV, respectively, are empty.

FIG. 10. (a), (c) k-resolved and k-integrated DOS of a Mo edge
with a 3× reconstruction, where the onsite energy of every third Mo
atom is 1 eV lower than that of the other two; (b), (d) the same
information for the S edge.
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B. 11-band tight-binding model

As discussed in Sec. II C, the 11-band tight-binding model
of MX2 uses a basis set composed of the 5 valence d orbitals
of the M atom and the 6 valence p orbitals of the two
X atoms. Because mirror symmetry σh in the MX2 plane
holds both for monolayers as well as for edges, states that
are even or odd with respect to this mirror symmetry are
treated separately. The even symmetry set comprises the six
orbitals d3z2−r2 , dxy, dx2−y2 , p−

z , p+
x , and p+

y , and the odd
symmetry set the five orbitals dxz, dyz, p+

z , p−
x , and p−

y ,
leading to six- and five-dimensional Hamiltonian matrices,
respectively.

Again, we use MoS2 as an example of a MX2 monolayer.
The procedures for obtaining the Green’s functions and the
densities of states are the same as those described in the prev-
ious section. In the following, we will only discuss the results
obtained for the basic edges, the zigzag and the armchair edges,
and compare those to the results obtained with the three-band
model.

1. Even bands

The k-resolved density of states of the even states of a bulk
strip in the zigzag edge orientation is shown in Fig. 11(a) in
an energy region around the band gap, and the corresponding
k-integrated density of states is given in Fig. 11(e). As before,
the zero of energy is positioned at the top of the valence
band. Qualitatively, these densities of states are similar to
those of the three-band model [compare to Figs. 6(a) and 6(e)].

Quantitatively, the 11-band model gives a highest valence band
that is wider by ∼0.3 eV, whereas the two lowest conduction
bands are narrower by ∼0.5 eV in total.

Figures 11(b) and 11(f) show the k-resolved and k-
integrated densities of states of the Mo edge. There are two
prominent edge bands with energies in the MoS2 band gap. One
edge band emerges from the bulk valence band at k ≈ 0.3, and
disperses upward with increasing k to 1 eV. A second band
disperses downward from the conduction band to 1.6 eV. The
first edge band is also found in the three-band model [compare
Figs. 6(b) and 6(f)]. In the three-band model. it is found at a
slightly higher energy, such that it is completely isolated from
the bulk valence band. The second edge band is absent in the
three-band model. We will discuss the character of these bands
in more detail below. Like in the three-band model, there are
also edge states at other energies, for instance, just below the
highest valence band at ∼−1.1 eV, and in the hybridization
gaps of the conduction bands.

The k-resolved and k-integrated densities of states of the
S edge are given in Figs. 11(c) and 11(g). At energies in the
MoS2 band gap there is one prominent edge state, which starts
at k = 0 in the conduction band and disperses downward with
increasing k to 0.7 eV. The three-band model shows the same
edge state with more or less the same dispersion [compare
to Figs. 6(c) and 6(g)]. In the 11-band model this state is
somewhat more prominently isolated from the conduction
band. Unlike for the Mo edge, the 11-band model does not
give additional even edge states for the S edge in the band gap,
as compared to the 3-band model.
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FIG. 11. As Fig. 6 but for the states within the 11-band model with even symmetry with respect to a mirror plane through the plane of the
Mo atoms. (a), (b), (c), (d) k-resolved DOS per MoS2 unit of bulk MoS2, the Mo edge, the S edge, and the armchair edge, respectively. (e),
(f), (g), (h) The corresponding k-integrated DOSs of bulk MoS2, the Mo edge, the S edge, and the armchair edge. The same conventions and
parameters are used as in Fig. 6.
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Finally, Figs. 11(d) and 11(h) show the k-resolved and k-
integrated densities of states of the armchair edge. There are
three edge bands with energies in the MoS2 band gap. One
band is situated at −0.1–0.5 eV and a second edge band lies at
0.9–1.5 eV. These two edge bands roughly correspond to the
ones that are found in the three-band model of the armchair
edge [see Figs. 6(d) and 6(h)]. In the 11-band model these two
edge bands are found at a slightly lower energy in the gap. In
addition, the present model finds a third edge band in the gap,
just below the conduction band at 1.7–1.9 eV.

In conclusion, although there are quantitative differences
between the electronic structures found with the 11-band
model and the 3-band model, qualitatively they give similar
results concerning the prominent edge states of even symmetry
found in the MoS2 band gap. For the Mo edge and the armchair
edge, the 11-band model gives an additional edge state, as
compared to the 3-band model, with energies just below the
conduction band.

Figures 11(e)–11(h) also show the CNLs. One needs of
course all the bands to calculate the CNLs, including the odd
bands to be discussed in the next section. A comparison to
Fig. 6 reveals that the odd bands are in fact instrumental in
fixing the CNLs. For instance, the CNLs of the Mo edge and

the S edge differ by 1.4 eV [Figs. 11(f) and 11(g)], whereas
the corresponding CNLs in Figs. 6(f) and 6(g) differ by 0.3 eV
only. The 11-band model gives one completely occupied even
edge band for the Mo edge one, one empty one [see Fig. 11(f)].
For the S edge it gives one completely empty even edge band
[see Fig. 11(g)]. This is unlike the the three-band model, where
we found partially filled even edge bands, both for the Mo edge
and the S edge. As we will see in the next section, edge states
of odd symmetry, which are absent in the three-band model,
pin the CNLs of the Mo edge and the S edge, and make these
edges metallic. The CNL at the armchair edge is in the gap
between the two edge bands [see Fig. 11(h)], as it also is in the
three-band model [see Fig. 6(h)].

The orbital character of the edge states can be analyzed
using the projected density of states, according to Eq. (5).
The projections on the Mo d3z2−r2 orbital, the dxy and dx2−y2

orbitals, and the p orbitals of the S atoms are given in
Figs. 12(a)–12(c), respectively, for the Mo edge. The results
indicate that both edge states in the MoS2 band gap have a
mixed Mo and S character. The dominant Mo contributions
clearly come from the dxy and dx2−y2 orbitals. The upper edge
state has S p character mixed in, in particular for k < 0.4,
whereas the lower edge state has some S p character mixed

FIG. 12. Projected densities of states (PDOS) calculated according to Eq. (5). (a)–(c) For the Mo edge, projected on the Mo d3z2−r2 orbital,
the dxy and dx2−y2 orbitals, and the p orbitals of the S atoms, respectively. (d)–(f) The same information for the S edge. The PDOSs are
calculated using a broadening parameter η = 0.1 eV [Eq. (1)] and are plotted with a linear grayscale.
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FIG. 13. As Fig. 11, but for the states with odd symmetry with respect to a mirror plane through the plane of the Mo atoms.

in for k > 0.4. There is little d3z2−r2 character mixed in these
edge bands, except at the band edges.

The projected densities of states of the S edge, projected
on the same orbitals, are given in Figs. 12(d)–12(f). Also here,
the edge state in the MoS2 band gap has a mixed Mo and S
character. As for the Mo contribution, for k = 0 the dominant
character is Mo dxy and dx2−y2 . That changes somewhat for
larger k; at k = 0.5 the dominant character is Mo d3z2−r2 . The
contribution of the S orbitals is fairly constant throughout the
whole edge band.

2. Odd bands

The k-resolved and k-integrated bulk densities of states
n(k,E) corresponding to the odd states are given in Figs. 13(a)
and 13(e). The band gap between the odd states is 3.3 eV,
which is significantly larger than the gap between the even
states. The top of the highest valence band of the odd states
is approximately 0.8 eV below the top of the highest valence
band of the even states, whereas the bottom of the lowest
conduction band of the odd states is approximately 0.6 eV
above that of the even states.

The k-resolved densities of state of the odd bands are shown
in Figs. 13(b) and 13(c) for the Mo edge and of the S edge,
respectively, and the corresponding k-integrated densities of
states are shown in Figs. 13(f) and 13(g). Both edges have a
prominent edge band with moderate dispersion inside the gap
between the odd states. The edge band of the Mo edge lies
close to the conduction band between 1.3 and 1.8 eV, whereas
the edge band of the S edge is close to the top of the valence
band between −0.5 and 0.2 eV.

If we also take the bulk band structure of the even bands
into consideration [Figs. 11(a) and 11(d)], then most of the

edge band at the S edge [Figs. 13(c) and 13(g)] overlaps with
the valence band. It is still a true edge state, though, because
the interaction between the odd edge state and the even bulk
bands is symmetry forbidden. The edge band at the Mo edge
[Figs. 13(b) and 13(f)] partially overlaps with the conduction
band of the even states. Also, this is a true edge state over the
whole 1D Brillouin zone, as interaction with the bulk states is
symmetry forbidden.

Figures 13(d) and 13(h) give the k-resolved and k-integrated
densities of states corresponding to the armchair edge. These
results show two edge bands in the gap region with a modest
to small dispersion. The lowest of these edge bands has a
dispersion of 0.4 eV, and taking also the even bulk bands
into consideration, it lies in the MoS2 valence band. The
upper edge band is near dispersionless; it is found in the gap
at 1.6 eV.

The calculated CNLs are also given in Figs. 13(e)–13(h).
From these figures it becomes clear that the odd edge states
are instrumental in controlling the CNLs of the edges. The
CNL of the Mo edge is found in the edge band that is close
to the MoS2 conduction band [see Fig. 13(f)], and the CNL
of the S edge lies in the edge band close to the MoS2 valence
band [see Fig. 13(g)]. Within the 11-band model both these
edges are metallic in their charge-neutral state. The CNL of the
armchair edge lies between the two edge bands [Fig. 13(h)],
which means that the neutral armchair edge is semiconducting.

The orbital character of the odd symmetry edge states is
identified using the projected densities of state. Figures 14(a)
and 14(b) show the projections on the d and p orbitals of
the density of states of the Mo edge, and Figs. 14(c) and
14(d) show the projections for the S edge. The edge state at
the Mo edge has somewhat of a mixed character, but it is
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FIG. 14. As Fig. 12, but for the states with odd symmetry with
respect to a mirror plane through the plane of the Mo atoms.

dominated by Mo d orbitals. The edge state at the S edge
has a clear S p character. More than the even edge states
discussed in the previous section, these two odd edge states
have a “dangling-bond” character, i.e., they correspond to bulk
bonds that are broken at the edge atoms.

IV. SUMMARY AND CONCLUSIONS

Growth of 2D semiconductors, such as the transition metal
dichalcogenides MX2, commonly results in sheets that contain
quasi-1D metallic structures, which are located at the edges of
2D crystallites or at the boundaries between 2D crystal grains.
Such edges and grain boundaries form a practical realization
of 1D metals. Metallic edges have also been identified as
the active sites in MX2 catalysts. A standard technique for
modeling edge or grain boundary states starts from nanoribbon
structures, which involves using large supercells if one aims at
obtaining converged results that enable the separation between
edge and bulk properties. Moreover, as a nanoribbon has two
edges, electron transfer between the edges can occur in order
to equilibrate the system, which complicates identifying the
properties of single edges.

In this paper, we formulate a Green’s function technique
for calculating edge states of (semi-)infinite 2D systems with
a single well-defined edge or grain boundary. We express
bulk, edge, and boundary Green’s functions in terms of Bloch
matrices. The latter are constructed from the solutions of
a quadratic eigenvalue equation, which gives the traveling
and evanescent Bloch states of the system. Electronic and
structural reconstructions of edges or grain boundaries are
easily incorporated in the technique. The formalism can be
implemented in any localized basis set representation of the
Hamiltonian.

Here, we use it to calculate edge and grain boundary states
of MX2 monolayers by means of tight-binding models. A
simple three-band model is employed to explore the electronic
structures of the basic pristine zigzag and armchair edges
in MX2. Within this model, the zigzag edges are metallic
in their charge-neutral state, whereas the armchair edge is
semiconducting. The three-band model is also used to analyze
the electronic structures of MoS2 edges with a more general
orientation between zigzag and armchair; these edges are
generally metallic. The same model is applied to obtain
electronic structures of grain boundaries and of structurally
modifed edges. The inclusion of spin-orbit coupling leads to
a splitting of the edge states, which ranges from �50 meV in
MoS2 to �190 meV in WTe2. This moderate splitting does not
alter the basic character of the edge states.

The three-band model captures only part of MX2 edge
electronic structure. A more complete picture of the rich
electronic structure of MX2 edges is obtained from an 11-band
tight-binding model comprising the d metal valence orbitals
and the p valence orbitals of the chalcogen atoms. Edge states
in the band gap with even symmetry (with respect to a mirror
through the plane of M atoms) are qualitatively similar to
those found in the three-band model. As in the latter model,
charge-neutral zigzag edges are metallic and the armchair edge
is semiconducting in the 11-band model. Unlike the three-band
model, however, the charge-neutrality level is fixed by edge
states of odd symmetry in the band gap. The odd states have a
character that reflects the dangling bonds on the edge atoms,
unlike the even states, which have more of a mixed M−d and
X−p character. The odd edge states are likely to be found near
the Fermi level under experimental conditions, and can not be
discarded when modeling MX2 edges.

ACKNOWLEDGMENT

This work is part of the research program of the Foundation
for Fundamental Research on Matter (FOM), which is part of
the Netherlands Organization for Scientific Research (NWO).

APPENDIX A: THREE-BAND TIGHT-BINDING MODEL

Following Mattheis, the three-band tight-binding model
discussed in Sec. II C only explicitly uses the sublattice of the
M atoms and the d orbitals of A′

1 and E′ symmetry, i.e., the
orbitals that are symmetric with respect to σh, mirror symmetry
in the MoS2 plane [49]. We number these orbitals as

d3z2−r2 = |0〉, dxy = |1〉, dx2−y2 = |2〉. (A1)

The matrix blocks Hp,q discussed in Sec. II B are then 3 × 3
matrices, where Hp,q denotes the real-space Hamiltonian
matrix block pertaining to the interaction between atoms in the
unit cell at the origin and atoms in the unit cell at pa1 + qa2.
Using only nearest-neighbor interactions, one has |p|,|q| �
1. Defining the tight-binding parameters εi = 〈i|h|i〉, i =
0,1,2, and tij = 〈i|h|j 〉, i,j = 0,1,2, and making use of the
rotation properties of the d orbitals, one derives the matrix
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blocks

H0,0 =

⎡⎢⎣ε0 0 0

0 ε1 0

0 0 ε2

⎤⎥⎦; H1,0 =

⎡⎢⎢⎣
t00

√
3

2 t02 + 1
2 t01 − 1

2 t02 +
√

3
2 t01√

3
2 t02 − 1

2 t01
1
4 t11 + 3

4 t22

√
3

4 (t11 − t22) − t12

− 1
2 t02 −

√
3

2 t01

√
3

4 (t11 − t22) + t12
1
4 t22 + 3

4 t11

⎤⎥⎥⎦; (A2)

H0,1 =

⎡⎢⎣t00 −t01 t02

t01 t11 −t12

t02 t12 t22

⎤⎥⎦; H1,1 =

⎡⎢⎢⎣
t00 −

√
3

2 t02 − 1
2 t01 − 1

2 t02 +
√

3
2 t01

−
√

3
2 t02 + 1

2 t01
1
4 t11 + 3

4 t22 −
√

3
4 (t11 − t22) + t12

− 1
2 t02 −

√
3

2 t01 −
√

3
4 (t11 − t22) − t12

1
4 t22 + 3

4 t11

⎤⎥⎥⎦. (A3)

The hopping associated with matrix elements t00,t02,t22,t11

is even with respect to inversion and the one associated with
t01,t12 is odd. It is then easy to see that

H−p,−q = (Hp,q)T . (A4)

The values of the tight-binding parameters are taken from
Liu et al. [34], which have been obtained by fitting the tight-
binding band structure of a MX2 sheet to a DFT GGA/PBE
band structure [63], using the highest valence band and the
two lowest conduction bands in the fit. GGA/PBE gives an
optimized lattice parameter of 3.19 Å for MoS2, which is 1%–
2% larger than the reported experimental values [67–69]. With
this lattice parameter, the calculated band gap is 1.63 eV, which
is smaller than the experimental optical band gap of 1.85 eV
[70].

APPENDIX B: 11-BAND TIGHT-BINDING MODEL

The 11-band tight-binding model of MX2 uses a basis set
composed of all 5 d orbitals of the M atom, and the 6 p orbitals
of the two X atoms. Following the approach of Cappelluti
et al. [50,71], we include next-nearest-neighbor interactions,
and use the Slater-Koster two-center approximation for the
hopping matrix elements [72]. The real-space matrix blocks
Hp,q discussed in Sec. II B then have the form

H0,0 =
[

εd t0,0
dp(

t0,0
dp

)T
εp

]
, H1,0 =

[
t1,0
dd 0

0 t1,0
pp

]
,

H0,1 =
[

t0,1
dd 0(

t0,1
dp

)T
t0,1
pp

]
, H1,1 =

[
t1,1
dd 0

(t1,1
dp )T t1,1

pp

]
, (B1)

with the remaining blocks constructed according to Eq. (A4).
The bulk Hamiltonian for an infinite layer with two-
dimensional translation symmetry is written in this notation
as

H(k1,k2) = H0,0 + A + A†;

A = H1,0e
i2πk1 + H0,1e

i2πk2 + H1,1e
i2π(k1+k2). (B2)

The parameters in the model can be found by fitting the tight-
binding band structure obtained with this bulk Hamiltonian to
a band structure obtained from a DFT calculation. The model
turns out to be too restrictive to obtain a satisfactory fit for all
11 bands with one parameter set. A good fit can, however, be
obtained if we divide the bands into a set of even symmetry and
a set of odd symmetry, and use different parameters for the two
sets. Mirror symmetry σh in the MX2 plane holds for mono-
layers, as well as for edges, so states that are even or odd with
respect to σh can be treated separately. In Appendix B 1 we give
the expressions for the matrix blocks εa and tp,q

ab in Eq. (B1)
for the even states and in Appendix B 2 for the odd states.

1. Even states

The even states are composed of orbitals of E′ and A′
1

symmetry:

d3z2−r2 = |0〉, dxy = |1〉, dx2−y2 = |2〉,
1√
2

[px(X1) + px(X2)] = |3〉, 1√
2

[py(X1) + py(X2)] = |4〉, 1√
2

[pz(X1) − pz(X2)] = |5〉. (B3)

The matrix blocks εa and tp,q

ab in Eq. (B1) are then all 3 × 3:

εd =

⎡⎢⎣ε3z2−r2 0 0

0 εxy 0

0 0 εxy

⎤⎥⎦, εp =

⎡⎢⎣εpx
+ Vppπ 0 0

0 εpx
+ Vppπ 0

0 0 εpz
− Vppσ

⎤⎥⎦, (B4)

where εa are the onsite orbital energies and Vabα are the Slater-Koster two-center integrals [72]. Similarly,

t0,0
dp =

√
2

7
√

7

⎡⎢⎣ 9Vpdπ − √
3Vpdσ 3

√
3Vpdπ − Vpdσ 12Vpdπ + √

3Vpdσ

−Vpdπ − 3
√

3Vpdσ −5
√

3Vpdπ − 3Vpdσ −6Vpdπ + 3
√

3Vpdσ

−5
√

3Vpdπ − 3Vpdσ 9Vpdπ − √
3Vpdσ −2

√
3Vpdπ + 3Vpdσ

⎤⎥⎦, (B5)
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t1,0
dd =

⎡⎢⎢⎣
1
4 (3Vddδ + Vddσ ) 3

8 (−Vddδ + Vddσ )
√

3
8 (−Vddδ + Vddσ )

3
8 (−Vddδ + Vddσ ) 1

16 (3Vddδ + 4Vppπ + 9Vddσ )
√

3
16 (Vddδ − 4Vddπ + 3Vddσ )

√
3

8 (−Vddδ + Vddσ )
√

3
16 (Vddδ − 4Vddπ + 3Vddσ ) 1

16 (Vddδ + 12Vppπ + 3Vddσ )

⎤⎥⎥⎦, (B6)

t1,0
pp =

⎡⎢⎣
1
4 (3Vppπ + Vppσ )

√
3

4 (Vppπ − Vppσ ) 0
√

3
4 (Vppπ − Vppσ ) 1

4 (Vppπ + 3Vppσ ) 0

0 0 Vppπ

⎤⎥⎦, (B7)

t0,1
dd =

⎡⎢⎢⎣
1
4 (3Vddδ + Vddσ ) 3

8 (Vddδ − Vddσ )
√

3
8 (−Vddδ + Vddσ )

3
8 (Vddδ − Vddσ ) 1

16 (3Vddδ + 4Vppπ + 9Vddσ )
√

3
16 (−Vddδ + 4Vddπ − 3Vddσ )

√
3

8 (−Vddδ + Vddσ )
√

3
16 (−Vddδ + 4Vddπ − 3Vddσ ) 1

16 (Vddδ + 12Vppπ + 3Vddσ )

⎤⎥⎥⎦, (B8)

t0,1
pp =

⎡⎢⎣
1
4 (3Vppπ + Vppσ )

√
3

4 (−Vppπ + Vppσ ) 0
√

3
4 (−Vppπ + Vppσ ) 1

4 (Vppπ + 3Vppσ ) 0

0 0 Vppπ

⎤⎥⎦,

(B9)

t0,1
dp = 2

√
2

7
√

7

⎡⎢⎣ 0 −3
√

3Vpdπ + Vpdσ 6Vpdπ + 1
2

√
3Vpdσ

Vpdπ 0 0

0 −3Vpdπ − 2
√

3Vpdσ 2
√

3Vpdπ − 3Vpdσ

⎤⎥⎦,

t1,1
dd =

⎡⎢⎣
1
4 (3Vddδ + Vddσ ) 0

√
3

4 (Vddδ − Vddσ )

0 Vddπ 0
√

3
4 (Vddδ − Vddσ ) 0 1

4 (Vddδ + 3Vddσ )

⎤⎥⎦, t1,1
pp =

⎡⎢⎣Vppσ 0 0

0 Vppπ 0

0 0 Vppπ

⎤⎥⎦, (B10)

t1,1
dp =

√
2

7
√

7

⎡⎢⎣−9Vpdπ + √
3Vpdσ 3

√
3Vpdπ − Vpdσ 12Vpdπ + √

3Vpdσ

−Vpdπ − 3
√

3Vpdσ 5
√

3Vpdπ + 3Vpdσ 6Vpdπ − 3
√

3Vpdσ

5
√

3Vpdπ + 3Vpdσ 9Vpdπ − √
3Vpdσ −2

√
3Vpdπ + 3Vpdσ

⎤⎥⎦. (B11)

We use values of the parameters as obtained by Rostami et al.
from fitting the even tight-binding bands to DFT GGA/PBE
bands [64]. A lattice parameter of 3.16 Å for MoS2 has
been used in these calculations, which is 1% smaller than
the optimized GGA/PBE value, but close to the reported
experimental values. It results in a calculated band gap of
1.76 eV, which is slightly smaller than the experimental optical
band gap of 1.85 eV [70]. We have shifted the tight-binding

bands such that the zero of energy coincides with the top of
the valence band.

2. Odd states

The odd states are composed of orbitals of E′′ and A′′
1

symmetry:

dxz = |1′〉, dyz = |2′〉, 1√
2

[px(X1) − px(X2)] = |3′〉, 1√
2

[
py(X1) − py(X2)

] = |4′〉, 1√
2

[pz(X1) + pz(X2)] = |5′〉.

(B12)

The matrix blocks εa in Eq. (B1) are 2 × 2 if a = d and 3 × 3 if a = p, whereas the matrix blocks tp,q

ab are 2 × 2 if ab = dd,3 × 3
if ab = pp, and 2 × 3 if ab = dp:

εd =
[
ε′
xz 0

0 ε′
xz

]
, εp =

⎡⎢⎣ε′
px

− V ′
ppπ 0 0

0 ε′
px

− V ′
ppπ 0

0 0 ε′
pz

+ V ′
ppσ

⎤⎥⎦, (B13)

t0,0
dp =

√
2

7
√

7

[ √
3V ′

pdπ + 9V ′
pdσ −6V ′

pdπ + 3
√

3V ′
pdσ −√

3V ′
pdπ − 9V ′

pdσ

−6V ′
pdπ + 3

√
3V ′

pdσ 5
√

3V ′
pdπ + 3V ′

pdσ −V ′
pdπ − 3

√
3V ′

pdσ

]
, (B14)
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t1,0
dd =

⎡⎣ 1
4 (3V ′

ddδ + V ′
ddπ )

√
3

4 (V ′
ddδ − V ′

ddπ )
√

3
4 (V ′

ddδ − V ′
ddπ ) 1

4 (V ′
ddδ + 3V ′

ppπ)

⎤⎦, t1,0
pp =

⎡⎢⎢⎣
1
4 (3V ′

ppπ + V ′
ppσ )

√
3

4 (V ′
ppπ − V ′

ppσ ) 0
√

3
4 (V ′

ppπ − V ′
ppσ ) 1

4 (V ′
ppπ + 3V ′

ppσ ) 0

0 0 V ′
ppπ

⎤⎥⎥⎦, (B15)

t0,1
dd =

⎡⎣ 1
4 (3V ′

ddδ + V ′
ddπ )

√
3

4 (−V ′
ddδ + V ′

ddπ )
√

3
4 (−V ′

ddδ + V ′
ddπ ) 1

4 (V ′
ddδ + 3V ′

ddπ )

⎤⎦, t0,1
pp =

⎡⎢⎢⎣
1
4 (3V ′

ppπ + V ′
ppσ )

√
3

4 (−V ′
ppπ + V ′

ppσ ) 0
√

3
4 (−V ′

ppπ + V ′
ppσ ) 1

4 (V ′
ppπ + 3V ′

ppσ ) 0

0 0 V ′
ppπ

⎤⎥⎥⎦, (B16)

t0,1
dp =

√
2

7
√

7

[√
3V ′

pdπ 0 0

0 −√
3V ′

pdπ + 12V ′
pdσ 2V ′

pdπ + 6
√

3V ′
pdσ

]
, (B17)

t1,1
dd =

[
V ′

ddπ 0

0 V ′
ddδ

]
, t1,1

pp =

⎡⎢⎢⎣
V ′

ppσ 0 0

0 V ′
ppπ 0

0 0 V ′
ppπ

⎤⎥⎥⎦, (B18)

t1,1
dp =

√
2

7
√

7

[ √
3V ′

pdπ + 9V ′
pdσ 6V ′

pdπ − 3
√

3V ′
pdσ

√
3V ′

pdπ + 9V ′
pdσ

6V ′
pdπ − 3

√
3V ′

pdσ 5
√

3V ′
pdπ + 3V ′

pdσ −V ′
pdπ − 3

√
3V ′

pdσ

]
. (B19)

We obtain values of the parameters by fitting the tight-binding
bands of odd symmetry to bands obtained from a density
functional theory (DFT) calculation with the generalized
gradient GGA/PBE functional [63,73,74], using the same
lattice parameter as for the even bands. The optimal parameters
are given in Table I, and the quality of the fit can be judged
from Fig. 15.

APPENDIX C: SPIN-ORBIT COUPLING

One can straightforwardly include onsite atomic λL · S
spin-orbit coupling (SOC) in the tight-binding matrices
[34,75]. For the three-band tight-binding model this amounts
to replacing H0,0 of Eq. (A2) by

H0,0 =

⎡⎢⎣
ε0 0 0

0 ε1 ±iλ

0 ∓iλ ε2

⎤⎥⎦, (C1)

Γ K M Γ

-6

-4

-2

0

2

4

E
-E

F
(e

V
)

FIG. 15. GGA/PBE band structure (black) of the odd symmetry
bands of MoS2; (red) tight-binding fit.

where ± (∓) is for the spin-up, respectively the spin-down
component, and λ gives the strength of the SOC [34]. In the
three-band tight-binding basis Sz remains a good quantum
number, and the calculations for the spin-up and the spin-down
bands can be performed independently.

K KK

FIG. 16. (a), (b) k-resolved DOSs of the Mo edge and the S
edge within the three-band tight-binding model of MoS2, including
SOC with λ = 73 meV; (a), (b) k-resolved DOSs of the W edge
and the Te edge of H−WTe2, with λ = 237 meV. The same
conventions are used as in Fig. 6, with a broadening parameter
η = 0.01 eV.
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TABLE I. Values of the tight-binding parameters (eV) used for
the band of odd symmetry.

ε ′
px

−2.188 ε ′
pz

−0.682
ε ′
xz 0.604

V ′
ddπ −0.075 V ′

ddδ 0.051
V ′

ppσ 1.166 V ′
ppπ −0.389

V ′
pdσ 2.115 V ′

pdπ −0.626

Figures 16(a) and 16(b) give the k-resolved DOS of the Mo
and the S zigzag edges of MoS2, respectively, incorporating

SOC with λ = 73 meV [34]. Comparison to the corresponding
cases without SOC, Figs. 6(b) and 6(c) show that the effect
of SOC is fairly small. The SOC-induced splitting of the edge
states is maximally 50 meV, and is practically invisible in
Figs. 16(a) and 16(b). This splitting of course depends upon
the size of the SOC parameter λ. Figures 16(c) and 16(d) give
the k-resolved DOS of the W and the Te zigzag edges of WTe2,
respectively, where λ is a much larger 237 meV [34]. Here,
the SOC-induced splitting of the edge bands is maximally
190 meV. Apart from that, the dispersions of the bands follow
those of the corresponding edge bands without SOC [compare
to Figs. 7(a) and 16(b)].
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