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Abstract. We investigated the critical temperature Tc of SF1F2 trilayers (S is a singlet 
superconductor, F1 and F2 are ferromagnetic metals), where the long-range triplet 
superconducting pairing is generated at canted magnetizations of the F layers. We examined 
the spin-singlet and spin-triplet pairing distributions and their amplitudes as a function of the 
layers thicknesses under different values of the angle α in the SF1F2 structure to clarify which 
one of the pairing distributions and how may affect the superconducting Tc. 

1.  Introduction 
We investigated the critical temperature Tc of SF1F2 trilayers (S is a singlet superconductor, F1 and 
F2 are ferromagnetic metals), where the long-range triplet superconducting pairing is generated at 
noncollinear magnetizations of the F layers [1]. An asymptotically exact numerical method [2] is 
employed to calculate Tc as a function of the trilayer parameters, such as mutual orientation of 
magnetizations, interfaces transparencies, and the layers thicknesses. Earlier we demonstrated that Tc 
in the semi-infinite SF1F2 structures can be a non-monotonic function of the angle α between 
magnetizations of the two F layers [3], contrary to the monotonic Tc(α) behavior calculated for the 
F1SF2 superconducting spin-valve design [4]. The existence of the anomalous dependence of the spin-
triplet correlations on the angle α in FFS structures in limit of thin F films was shown recently [5]. We 
examined the spin-singlet and spin-triplet pairing distributions and amplitudes as a function of the 
layers thicknesses at different values of the angle α in the SF1F2 structure to clarify which one of the 
pairing distributions and how may impact on the superconducting Tc. 

2.  The model and numerical method 
At first we found a nonmonotonic dependence of Tc in a SF1F2 trilayer as a function of the angle α 
between the exchange fields of the two F layers (figure 1). 
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The S layer is of the thickness dS (–dS < x < 0), the middle F1 layer is of the thickness dF1 (0 < x < 
dF1), the outer F2 layer is of the thickness dF2 (dF1 < x < dF1+dF2), the x axis is normal to the plane of 
the layers. The exchange field in the middle F1 layer is along the z direction, h = (0, 0, h), while the 
exchange field in the outer F2 layer is in the yz plane: h = (0, h sinα, h cosα). The angle α varies 
between 0 (parallel configuration, P) and π (antiparallel configuration, AP). 

 

Figure 1. SF1F2 trilayer. The S/F1 interface 
corresponds to x = 0. The thick arrows in the F 
layers denote direction of the exchange fields h 
lying in the (y, z) plane. The angle between the in-
plane exchange fields is α. 

 
We consider SF1F2 structure in the dirty limit, which is described by the Usadel equations. Near 

Tc, the Usadel equations are linearized and contain only the anomalous Green function €f  [1]: 
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Here, D is the diffusion constant, €f  is 4×4 matrix, ω = πTc(2n + 1) where the integer n is the 

Matsubara frequency, €it  and €is  are the Pauli matrices in the Nambu-Gor’kov and spin spaces, 

respectively. € €k lt s  is direct product of these matrices. The order parameter ∆ is real-valued in the 
superconducting layer, while in the ferromagnetic layers it is zero. In general, the diffusion constant D 
acquires a proper subscript, S or F, when equation (1) is applied to the superconducting or 
ferromagnetic layers, respectively. 
The Green function has the following components: 
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Here, f0 is the singlet component, f3 is the triplet with zero projection on the z axis, and f2 is the triplet 
with ±1 projections on z (the latter is present only at α ≠ 0, π). 
There are the following symmetries: 
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which makes it sufficient to consider only positive Matsubara frequencies, ω > 0. 
Problem of calculating Tc can be reduced to an effective set of equations for the singlet component in 
the S layer: the set includes the self-consistency equation and the Usadel equation, 
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Here, TcS and / 2S S cSD Tx p=  are the superconducting transition temperature and coherence length 

for an isolated S layer, respectively. This is exactly the problem for which the multimode method (as 
well as the method of fundamental solution) was developed in [2] and then applied to F1SF2 [4] and 
semi-infinite SF1F2 [3] spin valves. We only need to determine the explicit expression for W in 
equation (6), solving the boundary problem for the SF1F2 structure. 
The Usadel equation (1) generates the following characteristic wave vectors: 
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In the S layer the solution of equation (1) is (A and B are purely imaginary): 
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Note that here we keep f0(x) as is, because we cannot solve the equation for this component since it 
contains ∆(x). In the middle F1 layer the solution of equation (1) has the following form (C1 and S1 are 
purely imaginary, C3 = −C2

*, S3 = −S2
*): 
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In the outer F2 layer (E1 is purely imaginary, E3 = −E2
*): 
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The boundary conditions at the free interface F2 of the structure take the form: 
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The boundary conditions at the SF1 and F1F2 interfaces have the form [6]: 
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where Bg  and g  are the spin-independent suppression parameters: 
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RBF1S, RBF2F1 and AB are the resistance and the area of the SF1 and F1F2 interfaces, 
S

r ,
1F

r  and 
2F

r  

are the resistivities of the S, F1 and F2 layers, respectively. 
We choose the simplest formulation: all the interfaces are transparent ( 0Bg = ), the diffusion 

constants and the conductivities are the same ( 1g = ), the absolute values of the exchange fields in 
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the two F layers coincide, f0 is a constant within the S layer. Our strategy now is to obtain the effective 
boundary conditions (6) for f0(x) by eliminating all other components in the three layers. 

The boundary conditions (11) and (12) give 14 equations. We are mainly interested in one of 
them, determining the derivative of the singlet component on the S side of the SF1 interface (x = 0): 

  0
2 3
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.h h
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k S k S
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∗
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The remaining 13 boundary conditions form a system of 13 linear equations for 13 coefficients in 
equations (8)-(10). The solution of this system is nonzero due to f0(x) in equation (8). Then, we 
substitute the S2 coefficient into equation (14) and thus explicitly find W in equation (6). All the 
information about the two F-layers is contained in the single real-valued function W(α). 

3.  Results and discussions 
The results of numerical calculations of Tc as a function of the angle α, and pairing distributions under 
different values of the layers thicknesses in SF1F2 trilayer are given in figures 2 - 4. 

Figure 2 (a) demonstrates the direct spin-valve effect (Tc
AP(α = 180°) > Tc

P(α = 0°)). The basic 
physical reason of the difference ∆Tc = Tc

AP – Tc
P is partial compensation of the pair-breaking 

ferromagnetic exchange field, when the magnetizations of the F1 and F2 layers are aligned 
antiparallel. As far as the F-layers are thin compared with the coherent lengths, the compensation is 
pretty good providing large ∆Tc. The both triplet pairing components f2 and f3 tend to have a maximum 
mostly at the outer surface of the F2 layer. 
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Figure 2. Critical temperature Tc vs. misalignment angle α (a). Spin-singlet and spin-triplet pairing 
distributions at α = 0° (b), 90° (c) and 180° (d) for n = 2; 1 1 0.15F Fd ξ = , 2 2 0.2F Fd ξ = , and table 
1; the functions moduli have been drawn here and hereafter. 

 

RYCPS 2015 IOP Publishing
Journal of Physics: Conference Series 690 (2016) 012033 doi:10.1088/1742-6596/690/1/012033

4



 
 
 
 
 
 

Figure 3(a) demonstrates the triplet spin-valve effect (Tc(non-collinear) < Tc(α = 180°), Tc(α = 0°)). 
In this mode, the oscillating behavior of the singlet superconducting pairing in the F layers is 
observed. The minimal critical temperature Tc corresponds to the long-range triplet pairing f2 changing 
sign in the outer F2 layer, and double crossing zero by the singlet pairing component f0 in the F layers 
(figure 3(c)), which does not present at the maximum temperatures (figures 3(b) and 3(d)). The zero 
spin-projection triplet component f3 is located close to the S/F1 interface. 
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Figure 3. Critical temperature Tc vs. misalignment angle α (a). Spin-singlet and spin-triplet pairing 
distributions at α = 0° (b), 90° (c) and 180° (d) for n = 2; 1 1 0.73F Fd ξ = , 2 2 2F Fd ξ = , and table 1.

 
Figure 4(a) demonstrates the inverse spin-valve effect (Tc(α = 0°) > Tc(α = 180°)). In this mode the 

long-range triplet pairing component f2 has a maximum at the outer surface of the F2 layers, while the 
zero spin-projection triplet component f3 is always located close to the S/F1 interface. The minimum 
critical temperature Tc corresponds to the peculiar behavior – double crossing of zero by the singlet 
superconducting component f0 in the F layers (figure 4(d)) which is not the case at α = 0° (figure 4(b)). 

 
Table 1. Common parameters of the SF1F2 trilayer. 
  

Parameter value 

S Sd ξ  2.75 

γ 1 

γB 0 

F Sξ ξ  1 
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Figure 4. Critical temperature Tc vs. misalignment angle α (a). Spin-singlet and spin-triplet pairing 
distributions at α = 0° (b), 90° (c) and 180° (d) for n = 2; 1 1 1.1F Fd ξ = , 2 2 0.3F Fd ξ = , and 
table 1. 

4.  Conclusion 
We have considered a finite-thickness SF1F2 spin valve. We visualized distributions of spin-singlet 
and spin-triplet superconducting pairing components and attributed their peculiarities to different spin-
valve switching modes of the SF1F2 trilayer heterostructure. This may be important to plan 
experimental detecting of the triplet pairings and the inverse proximity effect in SF hybrids by, for 
example, polarized neutron reflection [7, 8]. 
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