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An important objective of recent research on micro-mechanics of granular materials is to develop
macroscopic constitutive relations in terms of micro-mechanical quantities at inter-particle contacts.
Although the micro-mechanical formulation of the stress tensor is well established, the corresponding
formulation for the strain tensor has proven to be much more evasive, still being the subject of much dis-
cussion. In this paper, we study various micro-mechanical strain formulations for three-dimensional
granular assemblies, following the work of Bagi in two dimensions (Bagi, 2006). All of these formulations
are either based on an equivalent continuum approach, or follow the best-fit approach. Their accuracy is
evaluated by comparing their results, using data from Discrete Element Method simulations on periodic
assemblies, to the macroscopic deformation. It is found that Bagi’s formulation (Bagi, 1996), which is
based on the Delaunay tessellation of space, is the most accurate. Furthermore, the best-fit formulation
based on particle displacements only did unexpectedly well, in contrast to previously reported results for
two-dimensional assemblies.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction The analogous formulation for the average displacement gradi-
The constitutive relations that describe the interplay between
stress and strain increments in quasi-static deformation of granu-
lar materials are very important in many branches of science and
engineering, such as in soil mechanics and geophysics. Usually,
such constitutive relations are based on experimental observations
and are phenomenological in nature. An alternative approach is the
micro-mechanical (or multi-scale) approach, in which an objective
is to formulate relations between microscopic characteristics of the
particles that form the granular assembly and macroscopic contin-
uum characteristics. Thus, the micro-mechanical approach in prin-
ciple allows to account for the discrete nature of granular
materials.

An important component of this approach is the conversion of
discrete information at the contact level, such as forces and defor-
mations at contacts, into macroscopic continuum quantities, like
stress and strain. The formulation for the average stress tensor
(for example Drescher and de Josselin de Jong, 1972; Bagi, 1996)
as a sum over all contacts involving the contact force and one addi-
tional geometrical quantity (the branch vector), is well established.
An alternative formulation is given by Goldhirsch and Goldenberg
(2005).
ll rights reserved.
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ent, in terms of the relative displacement between particles in con-
tact and associated geometrical quantities (Bagi, 1996; Kruyt and
Rothenburg, 1996; Liao et al., 1997; Satake, 2002, 2004; Kruyt,
2003), has no commonly accepted formulation. In general, the
strain formulations can be classified into three groups: based on
(1) an equivalent continuum approach (Bagi, 1996; Kruyt and
Rothenburg, 1996; Kuhn, 1999; Kruyt, 2003; Tordesillas et al.,
2008) or a contact-cell deformation approach (Satake, 2002,
2004), (2) the best fit between the actual particle relative displace-
ments and assumed mean-field displacements determined by the
macroscopic strain tensor (Liao et al., 1997; ITASCA, 1999; Cambou
et al., 2000) and (3) direct calculation of the velocity gradient from
an averaged continuous velocity field (Lätzel et al., 2001; Gold-
hirsch and Goldenberg, 2005; Luding, 2008a,b). Best-fit strain for-
mulations (2) are attractive due to their simplicity. Although the
direct velocity gradient field (3) is simpler to obtain, it averages
out the statistical fluctuations of the displacement field.

Recently, Bagi (2006) performed a two-dimensional numerical
comparison between various micro-mechanical formulations for
the strain tensor, based on an equivalent continuum approach
(Bagi, 1996; Kruyt and Rothenburg, 1996; Kruyt, 2003) and the
best-fit approach (Liao et al., 1997; Bagi, 2006). When compared
to the macroscopic deformation during uni- and biaxial loading,
the strain formulations of Bagi (1996) and Kruyt and Rothenburg
(1996) were very accurate, with errors close to 1%, whereas the
contact-based best-fit strain of Liao et al. (1997) and the Cosserat
strain of Kruyt (2003) failed to reproduce the macroscopic
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deformation, with errors of about 20% and 10%, respectively (Bagi,
2006). Furthermore, the particle-based best-fit strain, used in the
commercial software ITASCA (ITASCA, 1999), had mixed results:
for frictionless assemblies, it was very accurate, while for frictional
grains it gave errors of 5–20%, depending on the loading state (Bagi,
2006).

Due to its relevance for micro-mechanical investigations, we
extend here the previous work of Bagi for the two-dimensional
case, to the three-dimensional case. Strain formulations that are
investigated here are the equivalent continuum formulation of
Bagi (1996), and three best-fit formulations: the particle-based
one (ITASCA, 1999), and two modifications made by Cambou
et al. (2000) of the contact-based best-fit formulation proposed
by Liao et al. (1997). Note that other interesting formulations are
not included, either because they are defined only for the two-
dimensional case, for instance (Kruyt and Rothenburg, 1996) or be-
cause they involve rather high computational costs (Goldhirsch
and Goldenberg, 2005; Satake, 2004).

To our knowledge, there is only one similar study for the three-
dimensional case (Drummen, 2006), where different strain formu-
lations, in particular, the equivalent continuous strain of Bagi
(1996) and Satake (2004) and the particle-based best-fit strain
(ITASCA, 1999), are applied to the deformation of a periodic
hexagonal close packed (HCP) assembly. For this ideal packing,
the three strain formulations reproduce the imposed macroscopic
strain with an error of less than 3% (Drummen, 2006). However,
this ideal result is not sufficient to demonstrate their accuracy
in the more general case of disordered packings. An important
difference between the present analysis and previous studies is
that boundary effects are excluded here by the use of periodic
boundaries.

The outline of this study is as follows: in Section 2, we introduce
the different strain formulations. In Section 3, we present Discrete
Element Method (DEM) simulations of both isotropic and triaxial
compression. Using the DEM simulation results, we compare the
micro-mechanical strains with the actual macroscopic deformation
in Section 4. Finally, in Section 5, findings are discussed and con-
clusions presented.
Fig. 1. Delaunay tessellation of a granular system of six spheres of different sizes.
The tessellation contains three tetrahedra:fa; b; c; fg; fb; c;d; fg and fc;d; e; fg. Red
edges are contacts, while blue edges indicate virtual contacts. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this paper.)
2. Micro-mechanical strain

The strain tensor �ij is defined as the symmetrical part of the
continuum-mechanical displacement gradient oui=oxj, where
uiðxjÞ is the displacement field with respect to the selected refer-
ence configuration. However, for simplicity in the terminology, in
the following we will refer to the displacement gradient ðoui=oxjÞ
simply as the strain tensor �ij,

�ij �
oui

oxj
: ð1Þ

Furthermore, as the sign convention for stresses and strains, we will
consider compression as negative.

The average ��ij of the strain tensor over a volume V, enclosed by
the surface S, is given by

��ij ¼
1
V

Z
V
�ij dV ¼ 1

V

Z
V

oui

oxj
dV ¼ 1

V

Z
S

uinj dS; ð2Þ

where the last equality is due to the Gauss theorem and nj are the
components of the outward normal vector to the surface S. Note
that the continuum-mechanical displacement field uiðxjÞ is defined
over the whole singly-connected domain V. The pore space between
the particles of the assembly is averaged out in the homogenisation
process, from discrete particle considerations to continuum
formulation.
For small and uniform deformations the displacement field, up
to linear order in strain, is

uiðxÞ ¼ u0
i þ ��ijxj; ð3Þ

where u0
i is the displacement of the origin in the reference configu-

ration and a summation over equal subscripts is implied.
2.1. Bagi’s equivalent continuum strain

In this section, we will summarize the strain tensor formulation
of Bagi (1996). Since this strain formulation is based on the Dela-
unay tessellation of space, this tessellation is briefly described first.
Details of tessellations of space within the context of granular
materials are discussed in Bagi (1996, 2006).

The Delaunay tessellation consists of the tessellation of space
into simplices, i.e. triangles in the two-dimensional and tetrahedra
in the three-dimensional case. Given a set of N points, the simplices
defined by the Delaunay tessellation connect the points in such a
way that their E edges (connecting lines) are the shortest path be-
tween the points. An equivalent definition is that any circle (two
dimensions) or sphere (three dimensions) circumscribed around
an arbitrary simplex contains no other point. Such a tessellation
satisfies the so-called Euler relation between the number of simpli-
ces (L), faces (S), edges (E) and vertices ðNÞ : N � Eþ S� L ¼
1 ð3DÞ or N � Eþ L ¼ 1 ð2DÞ. Note that the tessellation is such that
no gaps or overlaps occur between the simplices.

In a granular system the vertices are chosen to be the centres of
the N particles and their edges correspond to the shortest path be-
tween them (see Fig. 1). In the sequel only the three-dimensional
case of convex particle assemblies is considered.

An edge between particles p and q is geometrically character-
ized by the branch vector lpq � xq � xp, where xp ðxqÞ is the position
of particle pðqÞ. For convex particles, the subset C of all edges E,
resulting from the Delaunay tessellation, that represents a physical
contact between the particles will be called real contacts or simply
contacts. In contrast, the other E� C edges will be called virtual
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contacts (Fig. 1). Note that spherical particles are in contact when
the distance between their centres is smaller than (or equal to) the
sum of their radii.

There are many codes available for performing the Delaunay
tessellation (Liu and Snoeyink, 2005). The computational complex-
ity of the tessellation varies between the different codes, being at
worst OðN log NÞ for efficient implementations.

2.1.1. Strain
Following its continuum definition, the strain tensor for a three-

dimensional packing of N particles in a representative volume V
can be expressed as the volume average

��ij ¼
1
V

X
L

VL��L
ij; ð4Þ

where L runs over all tetrahedra defined by the Delaunay tessella-
tion within the volume V ¼

P
LVL and VL is the volume of the Lth

tetrahedron. The average strain tensor of the Lth tetrahedron ��L
ij

can be expressed as (Bagi, 1996)

��L
ij ¼

1
12VL

X
eðp;qÞ2EL

Dupq
i bq

j � bp
j

� �
; ð5Þ

where the sum is over all six edges eðp; qÞ 2 EL of the Lth tetrahe-
dron. Indices p and q represent the particle at the tail and head of
the directed edge, respectively. The relative displacement at the
edge eðp; qÞ is defined as

Dupq � up � uq; ð6Þ

where up is the displacement of particle p. For a given tetrahedron L,
the vector bpðbqÞ represents the outward area-vector of the pðqÞ
face, which is defined as the face opposite to vertex pðqÞ (see
Fig. 2). The norm jbpj gives the area of the face.

By collecting the contributions of the various tetrahedra that
share the same edge, Eqs. (4) and (5) can be rewritten as an average
over the set of edges {e} (Bagi, 1996)

��ij ¼
1
V

X
e

Due
i de

j ¼
E
V

Due
i de

j

D E
e
; ð7Þ

where brackets with subscript e represent edge averaging:
h�ie � E�1P

eð�Þ. The vector de is the complementary area vector of
the edge eðp; qÞ, defined as:
Fig. 2. Sketch of the main quantities corresponding to a tetrahedron containing the
edge eðp; qÞ between particles p (the edge tail) and q (the edge head): the branch
vector lpq � rq � rp and the area-vector bq ðbpÞ of the face opposite to particle q ðpÞ.
de � 1
12

XTe

t¼1

ðbqt � bpt Þ; ð8Þ

where the sum is over all Te tetrahedra that share the edge eðp; qÞ
(Fig. 3). The geometrical meaning of the complementary area vector
de

i is discussed in Appendix A.

2.1.2. Analogies between the stress and strain formulations
Here, analogies between the micro-mechanical descriptions of

strain and stress are emphasized.
Firstly, as was shown before, Bagi’s strain ��ij, Eq. (7) involves the

volume average (as a discrete sum over edges) of the relative edge
displacement Due and a geometrical quantity de. Analogously, the
micro-mechanical stress tensor �rij can be formulated as a volume
average of edge forces fe and a geometrical quantity, in this case
the branch vectors le (see, for example Bagi, 1996). The micro-
mechanical expressions for the average stress and strain tensors
are given by

�rij ¼
1

Vr

X
e

f e
i lej ; ð9Þ

��ij ¼
1
V

X
e

Due
i de

j ; ð10Þ

where Vr is the summed volume of the Voronoi cells associated
with the Delaunay tetrahedra, while V is by definition the summed
volume of the Delaunay tetrahedra (Bagi, 1996). However, in the
limit of large numbers of particles or for periodic assemblies, both
volumes are equal. Therefore, in the sequel we will neglect the dis-
tinction between both volumes and consider Vr ¼ V .

Furthermore, note that strictly speaking, the stress is averaged
over contacts C (the subset of all Delaunay edges that contributes
to the force distribution). The E� C virtual contacts in the sum
do not contribute, since in this case fe ¼ 0.

Secondly, by pursuing the reverse process, from the macro-scale
to the micro-scale, under certain conditions it is possible to esti-
mate the local force and relative displacement at edges from the
macroscopic stress and strain, respectively, a process called locali-
zation (Cambou et al., 1995). For this process, it is convenient to
have a relation between the two geometrical quantities involved
in the stress and strain formulation, de and le, respectively.
Fig. 3. Tetrahedra that share the edge eðp; qÞ. The tetrahedra are formed by the
particles in contact with both p and q (spheres in dashed lines). Red edges are
contacts while blue edges indicate virtual contacts. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this paper.)
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From their definition, it is possible to show that the surfaces de-
fined by the complementary area vectors de and the generalized
branch vectors le, determined by the Delaunay tessellation, satisfy
the geometrical relation

Vdij ¼
X

e

le
i de

j ; ð11Þ

where dij is the Kronecker delta symbol: 1 if i ¼ j and 0 otherwise.
Using Eq. (11), we can formulate an explicit example of a local-

ization operation. The edge forces and relative displacements are
determined from the average stress and strain tensors and
le and de, by

f e
i ¼ �rikde

k; ð12Þ
Due

i ¼ ��iklek: ð13Þ

This is what we call uniform stress and uniform strain (see also Kruyt
and Rothenburg, 1996). Indeed, after multiplying by le

j and de
j in

Eqs. (12) and (13), respectively, summing over all edges, and substi-
tuting Eq. (11), we recover the micro-mechanical stress and strain.
Therefore, Eqs. (12) and (13) provide edge forces and relative dis-
placements that are consistent with Eqs. (9) and (10).

In the next section, we will briefly introduce particle-based and
contact-based best-fit strains.

2.2. Best-fit strain based on particles

The mean best-fit strain is determined by finding the tensor ��ij

for which the actual particle displacements most closely match the
particle displacements according to Eq. (3) (ITASCA, 1999). Thus,
the particle displacement predicted by the average strain ��ij is as-
sumed to be

up
i � u0

i þ ��ijx
p
j ; ð14Þ

with ��ij to be determined.
After transforming the particle coordinates xp

i and the particle
displacements up

i to new ones, ~xp
i � xp

i � xp
i

� �
p and ~up

i � up
i � up

i

� �
p,

relative to the geometrical centre of the assembly xp
i

� �
p (here the

brackets, h�ip � N�1P
pð�Þ, imply an average over all N particles),

the constant u0
i in Eq. (14) becomes zero, and the shifted particle

displacements are assumed to be given by

~up
i � ��ij~x

p
j : ð15Þ

The strain tensor ��ij is then obtained from a least-squares approach
by minimizing the difference between the mean-field relative par-
ticle displacement ��ij~x

p
j

� �
and the actual particle displacement ~up

i ,
i.e.

min
��ij

X
p

~up
i � ��ij~x

p
j

� �
~up

i � ��ik~xp
k

� �
: ð16Þ

The solution for ��ij is

��ij ¼ w�1
ik

~up
j
~xp

k

D E
p
; ð17Þ

where w�1
ik is the inverse of the tensor wik � ~xp

i
~xp

k

� �
p. This tensor

shows some similarities with a (massless) moment of inertia tensor
of the assembly.

2.3. Best-fit strain based on contacts

In a similar way as for the particle-based strain, the contact-
based strain, in its original form (Liao and Chan, 1997), is obtained
after minimizing the difference between the mean-field contact
relative deformation ��ijl

c
j , that corresponds to uniform strain

(where lc is the contact branch vector), and the actual duc
i . Here,

the strain is determined from
min
��ij

X
c

duc
i � ��ijl

c
j

� �
duc

i � ��iklc
k

� �
; ð18Þ

where the sum runs over all contacts c 2 C.
In contrast to the relative contact displacement Duc

i , the relative
contact deformation duc

i involves not only particle translations, but
also particle rotations

dupq ¼ ðup þ hp � rpqÞ � ðuq þ hq � rqpÞ
¼ Dupq þ ðhp � rpq � hq � rqpÞ; ð19Þ

where rpq ðrqpÞ is the vector from the centre of particle p ðqÞ to the
contact point with particle q (p), and hp ðhqÞ is the rotation vector of
particle p (q).

The solution of the least-squares problem leads to the strain
expression

��ij ¼F�1
ik duc

j lc
k

D E
c
; ð20Þ

where F�1
ik is the inverse of the fabric tensor Fik � lc

i lc
k

� �
c . Brackets

with the subscript c; h�ic � C�1P
cð�Þ, imply an average over all C

contacts.
Based on the failure of the original contact-based best-fit strain

to reproduce the macroscopic strain, two improved versions have
been proposed (Cambou et al., 2000). In the first version, the rela-
tive contact deformation duc is replaced by the contact relative dis-
placement Duc , thus eliminating particle rotations from the strain
expression, leading to:

��ij ¼F�1
ik Duc

j lc
k

D E
c
: ð21Þ

The second improvement is described in the next subsection.

2.4. Best-fit strain based on edges

In their second version (Cambou et al., 2000) extended the sum
to edges (E), instead of only contacts (C). Thus

��ij ¼F��1
ik Due

j le
k

D E
e
; ð22Þ

where F�
ik � le

i le
k

� �
e is an extended fabric tensor and brackets with a

subscript e, h�ie � E�1P
eð�Þ, imply an average over all E edges of the

tessellation.
It is shown in Appendix B that the edge-based best-fit strain is a

close approximation of the Bagi strain, Eq. (7), when the comple-
mentary area vector de and the branch vector le are co-linear.
Therefore, the edge-based best-fit strain is not a completely inde-
pendent formulation and it is not expected to be more accurate
than the Bagi strain.

3. Discrete element simulations

Discrete Element Method simulations (Cundall and Strack,
1979) have been performed to obtain particle displacements under
macroscopic isotropic and triaxial loading conditions. These parti-
cle displacements are used to evaluate the accuracy of the various
strain formulations introduced in the previous section, by compar-
ing them with the macroscopic strain.

The assembly of particles consists of 250,000 spheres with log-
normal radii distribution, with standard deviation 0.25, relative to
the mean particle radius �R. The initial packing is prepared under
isotropic stress r0. Its packing density, i.e. the volume occupied
by the particles divided by the total assembly volume (including
voids), is 0.65. The contact constitutive relation of Cundall and
Strack (1979) is used, with interparticle friction coefficient
l ¼ 0:5 and ratio kt=kn ¼ 0:5, where kn and kt are the constant nor-
mal and tangential contact stiffnesses, respectively. The interparti-
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cle deformations (or ‘overlaps’) are small, since the non-dimen-
sional stress ratio r0

�R=kn ¼ 10�3 is rather small.
Periodic boundary conditions have been employed to avoid wall

effects and to suppress the formations of shear bands so that large,
relatively homogeneous deformations can be studied. The length of
the initial cubic assembly is about 60 times the average particle
diameter.

Two loading conditions have been considered, isotropic loading
and triaxial loading. For the former, isotropic loading, an isotropic
deformation up to 5% is imposed. In the latter case, an axial defor-
mation up to 20% is imposed along the X-axis, while the lateral
stresses are kept constant equal to the initial hydrostatic stress r0.

The macroscopic deformation of the periodic box is described
by the macroscopic incremental strain, defined as

�w
ij �

dLi

Li

� 	
dij; ð23Þ

where Li is the actual system length in the i-direction and dij is the
Kronecker delta tensor. No summation over index i is assumed. The
total strain eij is then obtained by integration of the successive
incremental parts �ij, starting from a reference state ‘0’, with corre-
sponding initial system lengths L0

i . Therefore,

ew
ij ¼

Z
0
�w

ij ; ð24Þ

¼ ln
Li

L0
i

dij: ð25Þ

For the triaxial loading, Fig. 4 shows the evolution of the total vol-
umetric strain ew

V as function of the total axial deformation,
ew

11 ¼ ln L1=L0
1, with the characteristic compression-dilation behav-

ior. The volumetric strain is defined as ew
V � trew

ij ¼ ln V=V0, where
V is the actual averaging volume and V0 is the volume of the initial
state. The evolution of the stress ratio q/p, with deviatoric stress
q ¼ ðr11 � r22Þ=2 and pressure p ¼ trrij=3, is also shown in Fig. 4.
The smallest volume and the yield stress are reached after about
1 and 2% of axial deformation, respectively.
4. Results

In order to evaluate the accuracy of the different strain formu-
lations, we calculate the micro-mechanical strains ��ij, given by Eqs.
(7), (17), (21) and (22), from the DEM simulation data. Note that,
0

0.2

0.4

0.6

0 5 10 15 20

q/
p

− ew
11 (%)

0

2
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6

8

ew V
(%

)

q/p e w
V

Fig. 4. Triaxial loading: evolution of the total volumetric strain ew
V and the ratio of

the deviatoric stress q ¼ ðr11 � r22Þ=2 to the pressure p ¼ trrij=3, as a function of
the total axial deformation ew

11. Compression is considered as negative.
for the Bagi and the edge-based best-fit strains, Eqs. (7) and (22),
the three-dimensional Delaunay tessellation needs to be deter-
mined. This is done using Qhull.1 An important drawback is that
Qhull cannot handle periodic boundary conditions at present. The
non-periodic tessellation of points close to the system boundaries
would lead to artificially flat tetrahedra, which do not represent
the actual nearest-neighbor topology of the granular assembly. In or-
der to avoid this spurious effect, we perform the tessellation on the
whole domain but calculate the strain on an internal volume, that
will be called ‘reduced’ volume, that contains M � 0.93 N particles.
The Bagi strain is then calculated by only taking the contributions
of internal tetrahedra, using Eqs. (4) and (5), while the different
best-fit strains are calculated using those particles, edges or contacts
inside the ‘reduced’ volume. As is shown below, for this internal vol-
ume the mean-field strain is already attained with satisfactory
accuracy.
4.1. Comparison of different strain formulations

We compare Bagi’s equivalent continuum and the best-fit
strains based on particles, contacts and edges, to the macroscopic
strain obtained from the deformation of the periodic box �w

ij Eq.
(23). Two loading conditions are considered, isotropic and triaxial
compression. In both cases, the comparison is performed at differ-
ent total axial deformations ew

11, Eq. (25).
For the isotropic compression, the Bagi and particle-based best-

fit strains are indistinguishable and very accurate, with deviations
around 0.1% (Fig. 5, right), as compared to the contact-based best-
fit strain, with deviations above 10%.

In the case of the edge-based best-fit strain, after including the
contribution of virtual contacts to the overall deformation, the
agreement improves (see Fig. 5). Nevertheless, it is still not as accu-
rate as either Bagi or the particle-based strain. This is understand-
able since, as is shown in Appendix B, the edge-based best-fit strain
is an approximation of the Bagi strain.

A similar picture is obtained for the triaxial loading (Figs. 6 and
7). In this case, the strain of Bagi has a small deviation from the
macroscopic strain (in the range of 0.1–0.5%), as for isotropic com-
pression. Furthermore, the particle-based best-fit strain is still as
accurate as the Bagi strain for describing the internal deformation
of a granular system. This differs from the conclusion of a two-
dimensional comparison (biaxial test) that showed larger devia-
tions for the former (Bagi, 2006).

Furthermore, from Figs. 6 and 7, it is clear that the contact-
based best-fit strain is not able to properly describe the deforma-
tion of a granular system. Interestingly, for large axial deforma-
tions, the lateral component ��22 converges to the macroscopic
strain, while its maximum deviation is reached for ew

11 � 2%, where
the granular system has its maximum stress ratio q/p (Fig. 4).

Similarly to the isotropic compression case, the edge-based
best-fit strain, as the Bagi and the particle-based ones, also repro-
duces the macroscopic deformation within a few percents devia-
tion, although this deviation increases with the loading �ew

11

(Fig. 7).
4.2. Size effect

How close the average strain ��ij is to the macroscopic strain �w
ij

obviously depends on the size of the averaging volume. It has to be
large enough to average out the intrinsic heterogeneity of a granu-
lar system.
1 C-code software developed by the Geometry Center of the University of
Minnesota. Qhull is the standard code used by the MATLAB function delaunayn
(http://www.qhull.org).

http://dx.doi.org/10.1177/1081286507089844
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In order to study the size effect, the ‘reduced’ system, i.e. the sys-
tem formed by the M particles inside the ‘reduced’ volume V�, with
size Lx � Ly � Lz, is first uniformly divided into n3 non-overlapping
cells of equal size: Lx=n� Ly=n� Lz=n and volume V cell ¼ V�=n3. In
the following, the index n will uniquely characterize a given division
of the system. The strain tensor �a

ij is then calculated for each cell a,
using the Bagi and the particle-based best-fit formulations. These
formulations were selected since, as shown in the previous section,
they are the most accurate for describing the macroscopic deforma-
tion of the system.

The Bagi strain of a given cell a is calculated by taking the con-
tributions of those tetrahedra with centroids inside the cell (using
Eqs. (4) and (5)). The particle-based strain is directly calculated
from those particles inside cell a.

After calculating the local strain tensor in each cell, two differ-
ent strain averaging methods have been investigated: these are
called ‘V cell-averaging’ and ‘Ncell-averaging’.

With ‘V cell-averaging’, we calculate the mean strain h�ijiP �
P=M
� �Pa¼n3

a¼1 �
a
ij, and the standard deviation S�ij of the strain distribu-
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This observation is the basis of the second averaging method,
which will be called ‘Ncell-averaging’. Here, all possible divisions
of the system into n3 non-overlapping equal-sized cells are per-

formed, i.e. from n ¼ 1 (only one cell) to n ¼ int
ffiffiffiffiffi
M3
p� �

(M cells,

as many as the number of particles inside the ‘reduced’ volume).
Next, those cells with the same number P of particles are grouped
and for each group, we calculate the mean h�ijiP and standard devi-
ation S�ij of the strain distribution.

Fig. 8 shows the size effect on the axial strain component ��11

resulting from the equal-volume V cell-averaging of the Bagi and
the particle-based best-fit formulations (symbols (�) and (	),
respectively). The equal-particle-number Ncell-averaging of the
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particle-based strain is also shown (symbols (+)). In Fig. 8, sym-
bols (+) correspond to slightly different numbers of particles,
although they appear clustered due to the employed logarithmic
scale.

As expected, deviations from the mean-field value are larger for
smaller volumes (number of particles). In particular, for the best-fit
strain (p-BF) the size effect on the mean strain is three orders of
magnitude larger for small volumes (Fig. 8, left). This is due to
the intrinsic non-additivity of the best-fit formulation, see Eq.
(17), which hence implies a size dependence. On the contrary,
the Bagi strain is volume-additive, although in Fig. 8 (left) there
is a small size dependence since the total volume of those tetrahe-
dra corresponding to different cells may be slightly different (note
that the Bagi strain is tetrahedron-based).

For very few particles (roughly less than 10) the mean best-fit
strain arising from the V cell-averaging increases sharply by more
than five orders of magnitude above the mean-field value (not di-
rectly visible in Fig. 8). However, after performing the Ncell-averag-
ing it is possible to determine that this increase is due to the fact
that there are few cells with around 4–5 particles (see symbols
(+) in Fig. 8, left), for which the best-fit method is not reliable
anymore.

Furthermore, there seems to be a power-law scaling in the con-
vergence behavior of the normalized mean axial strain
h�11iP=��11 � 1 as function of the number of particles P, for both Bagi
and the particle-based best-fit strains, with exponents �2/3 and
�4/3, respectively. However, we do not have a physical interpreta-
tion for these exponents.

Regarding the size effect on the strain fluctuations S�ij (Fig. 8,
right), as expected, they also increase for decreasing volumes. In
particular, for the Bagi strain, they scale as a power law with expo-
nent �0.4, which is close, but clearly not equal, to the exponent
�1/2 predicted by the Central Limit Theorem for independent ran-
dom variables. In the case of the best-fit strain, there is a sharp in-
crease in the fluctuations for about 10 particles, which, after
separating the contributions of the cells based on their number
of particles (by means of the Ncell-averaging), it appears to diverge
at about four particles. For larger volumes, the scaling of the fluc-
tuations in the best-fit strain seems to agree to that predicted by
the Central Limit Theorem, i.e. as the inverse square root of the
number of particles (Fig. 8, right).

Finally, although the Vcell-averaging works well for the Bagi
strain, for a proper analysis of the best-fit strain, both averaging
methods are needed. For small averaging cells (roughly less that
102 particles per cell) the Ncell-averaging is more suitable, while
for larger cells, the V cell-averaging leads to less scattered results
(Fig. 8).

5. Discussion

In this study, we have presented and discussed four three-
dimensional micro-mechanical strain formulations, the equivalent
continuum Bagi strain (Bagi, 1996) and three best-fit strain formu-
lations: particle-based (ITASCA, 1999), contact-based (Liao et al.,
1997; Cambou et al., 2000) and edge-based (Cambou et al.,
2000). From their comparison with the macroscopic three-dimen-
sional strain, obtained from DEM simulations of isotropic and tri-
axial deformation of a polydisperse assembly of frictional
spheres, we found that the Bagi and the particle-based best-fit
strains are equally good at describing the micro-mechanical defor-
mation of the granular system. For large averaging volumes, both
are able to reproduce the macroscopic strain within a 1–2% accu-
racy. For small averaging volumes, Bagi’s strain formulation is
superior.

Regarding the other two best-fit formulations, contact and
edge-based, the latter has a deviation from the macroscopic defor-
mation below 5% (the deviation of the former one is as much as
25% for the lateral strain component ��22).

From these results, we emphasize the following aspects.
Although the particle-based best-fit strain is able to reproduce
the macroscopic deformation equally well as the much more com-
plex Bagi strain, there is a crucial difference between them. On the
one hand, the best-fit strain is very simple since it is formulated in
terms of particles, not contacts, and thus does neither involve the
contact relative displacement nor the complexities associated with
the geometrical description of the contact deformation, encoded in
Bagi’s complementary area vectors (Bagi, 1996) or Satake’s con-
tact-cell area vectors (Satake, 2004). On the other hand, this very
characteristic makes the best-fit strain unsuitable for further, and
fundamental, micro-mechanical connections to the micro-
mechanical stress (described in terms of contact forces), which is
an important goal of the micro-mechanical description of granular
systems. Therefore, the Bagi formulation has a key theoretical
advantage for a possible micro-mechanically based constitutive
relation. The particle-based best-fit formulation is more suitable
for numerical post-processing of results of DEM simulations.

From the micro-mechanical point of view, the Delaunay tessel-
lation is frequently used as the structural basis for the construction
of micro-mechanical strains (Bagi, 1996; Satake, 2004; Tordesillas
et al., 2008). In contrast, the micro-mechanical stress formulation
equation (9) is based only on the contact subnetwork. This differ-
ence in the structural basis of both tensors yields several draw-
backs in the quest for the formulation of constitutive relations
connecting them. Therefore, the strain should ideally be formu-
lated in terms of the real contact subnetwork only. However, this
ideal situation is so far only possible in very few cases, all of them
in two dimensions, where the real contact network forms a polyg-
onal set that tessellates the surface (Kruyt and Rothenburg, 1996;
Kuhn, 1999; Kruyt, 2003). In contrast, for the three-dimensional
case, the structure of the contact network is highly complex and
there is no standard tessellation method for this problem (except
for crystal lattice configurations).

Finally, the fact that the edge-based best-fit strain is an approx-
imation of the Bagi strain, and clearly is less accurate, gives consid-
erable weight to the idea that indeed, the strain of Bagi for three-
dimensional granular assemblies has fundamental advantages
with respect to other three-dimensional strain formulations. In
particular, it seems that the Delaunay tessellation, with its (sub)set
of virtual contacts that do not contribute to the force network, is at
the core of a meaningful micro-mechanical strain definition.
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Appendix A. The complementary area vector

Using the fact that the sum of all area-vectors of the closed sur-
face enclosing Te tetrahedra equals zero, we have

XTe

t¼1

bqt ¼ �
XTe

t¼1

bpt : ð26Þ

Using Eq. (26), the definition of the complementary area vector
equation (8) can be simplified to
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de � 1
6

XTe

t¼1

bqt : ð27Þ

Note that in general de is not parallel to le.
Multiplication by the unit vector ee

d � de
=jdej, leads to the norm

jdej � 1
6

XTe

t¼1

bqt � ee
d: ð28Þ

Taking into account that bqt � ee
d is the projected area of the surface

element bqt (Fig. 2) into the plane perpendicular to de, the norm of
the complementary area vector for one edge jdej has a well-defined
geometrical meaning: it is 1/6 the area of the projected (non-pla-
nar) polygonal surface formed by the centres of all particles that
are simultaneously neighbors of p and q (see Fig. 9). Therefore, de

contains information about the distribution of particles around a gi-
ven edge e.

Appendix B. Edge-based best-fit strain as an approximation of
Bagi’s strain

Here, a connection between the edge-based best-fit strain as an
approximation of Bagi’s strain is investigated. This connection in-
volves additional assumptions, primarily the co-linearity of The
complementary area vector and the branch vector.

The complementary area vector de and the branch vector le are
co-linear when

de ¼ ale
: ð29Þ

The constant a can be determined from the geometrical constraint
equation (11). Taking the trace of both sides of Eq. (11), and substi-
tuting de by ale,

3V ¼
X

e

le � de ¼ a
X

e

le � le ¼ aE l2
e

D E
e

ð30Þ

gives

a ¼ 3V=E

l2
e

D E
e

: ð31Þ
Fig. 9. The complementary area vector d is 1=6 times the area-vector of the (non-
planar) polygonal surface (in magenta) defined by the position of the nearest
neighboring particles (vertices) of the edge pq (black line), and the midpoint of the
branch vector lpq (see also Fig. 3). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this paper.)
For a random granular packing, we have checked that the
branch vectors le of Delaunay edges are isotropic on average (data
not shown). Hence, the extended fabric tensor, F�

ik � le
i le

k

� �
e, is also

isotropic with trace trF� ¼ l2
e

D E
e
, where the average is over all

edges. Note that the corresponding fabric tensor based on contacts
is generally not isotropic. This leads to

F�
ik ¼

l2
e

D E
e

3
dik: ð32Þ

Therefore, Eq. (22) becomes

��ij ¼ 3
Due

j le
i

D E
e

l2e
D E

e

: ð33Þ

On the other hand, after substituting Eqs. (29) and (31) into the
expression for the Bagi strain, Eq. (7), one has

��ij ¼
E
V

Due
i de

j

D E
e
; ð34Þ

¼a
E
V

Duc
i le

j

D E
e
; ð35Þ

¼3
Due

i lej
D E

e

l2
e

D E
e

; ð36Þ

which is identical to Eq. (33).
Hence, it has been shown that the edge-based best-fit strain is

an approximation of the Bagi strain, under some additional
assumptions.
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