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Abstract—The use of automated methods is becoming increasingly important for assessing cardiac function quan-
titatively and objectively. In this study, we propose a method for tracking three-dimensional (3-D) left ventricular
contours. The method consists of a local optical flow tracker and a global tracker, which uses a statistical model of
cardiac motion in an optical-flow formulation. We propose a combination of local and global trackers using
gradient-based weights. The algorithm was tested on 35 echocardiographic sequences, with good results (surface
error: 1.35 ± 0.46mm, absolute volume error: 5.4 ± 4.8mL). This demonstrates themethod’s potential in automated
tracking in clinical quality echocardiograms, facilitating the quantitative and objective assessment of cardiac func-
tion. (E-mail: k.leung@erasmusmc.nl) � 2011 World Federation for Ultrasound in Medicine & Biology.
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INTRODUCTION

Echocardiography is a commonly used, safe and noninva-
sive technique that allows assessment of left ventricular
(LV) function. Real-time three-dimensional (3-D) echo-
cardiography, which has gained much interest in recent
years, allows noninvasive imaging of the whole left
ventricle in a few seconds. Compared with other modal-
ities such as magnetic resonance imaging and computed
tomography, images made with ultrasound may be more
difficult to interpret. This is mainly due to the presence
of speckle noise, as well as ultrasound artifacts that often
lead to poorly visualized parts of the cardiac wall (see
Fig. 1). Misinterpretation in these areas may lead to inac-
curacies in quantification. This makes the automated
analysis of such images generally more challenging.

Due to the large amount of 3-D data acquired, there is
an increasing demand for automated methods to analyze
LV functional parameters, such as LV volume, accurately
and objectively. Therefore, segmentation and tracking in
3-D and four –dimensional (4-D) (3D1time) echocardio-
grams has gained considerable attention (Noble and
Boukerroui 2006; Leung and Bosch 2010). Common
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automated methods include deformable models (G�erard
et al. 2002; Montagnat et al. 2003; Walimbe et al. 2006;
Nillesen et al. 2007), level sets (Corsi et al. 2002;
Angelini et al. 2005), active appearance and active
shape models (van Stralen et al. 2007; Hanseg�ard et al.
2007a), state estimation (Orderud et al. 2007) and
clustering/classification (Sanchez-Ortiz et al. 2002;
Papademetris et al. 2001; Georgescu et al. 2005; Yang
et al. 2008).

In recent years, efforts have shifted towards tracking
methods for evaluating left ventricular dynamics.
Tracking methods can be based on deformation of
surfaces (Yan et al. 2007) or on tracking image intensities.
Most commonly used intensity-based tracking techniques
include nonrigid registration (Ledesma-Carbayo et al.
2005; Myronenko et al. 2007; Elen et al. 2008),
Bayesian techniques (Papademetris et al. 2001),
template/block matching (Yeung et al. 1998; Helle-Valle
et al. 2005; Kawagishi 2008; Duan et al. 2008;
Linguraru et al. 2008) and differential optical flow
(S€uhling et al. 2005; Veronesi et al. 2006). Many
researched and commercialized methods (Leung and
Bosch 2010) make use of knowledge contained in the
image itself or impose general regularization constraints
to provide smoothmotion estimates. Comparedwith other
modalities, tracking in ultrasound images is especially
challenging, due to the presence of speckle patterns and
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Fig. 1. Example of echocardiographic sequence (two-chamber view is shown), with poorly visualized cardiac wall in the
anterior segments. Green dotted line denotes the manually delineated ground truth. Magenta solid line denotes optical
flow tracking. Misinterpretation of the anterior wall (arrow) may lead to considerable inaccuracies in quantification.
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ultrasound artifacts. It is our opinion that prior knowledge
in the form of statistical modeling of cardiac motion will
be of additional benefit for tracking left ventricular
borders.

In this article, we aim at tracking the endocardial
border through the cardiac cycle, given a manually delin-
eated contour in end-diastole. Our proposed method is
novel because it uses statistical modeling of cardiac
motion as prior knowledge in a tracking framework. By
using a statistical model, we incorporate realistic knowl-
edge of cardiac function, derived from real patient data.

We make a distinction between spatial and temporal
modeling of anatomical shape; this article addresses the
latter aspect. In the medical imaging context, spatial vari-
ation is related to anatomical diversity across different
patients, which can be used as priors in segmenting one
3-D image. Temporal variation captures the variability
in an organ’s shape due to physiologic activity. We use
this knowledge to aid tracking throughout the cardiac
cycle.

The proposed method consists of a global tracker
which uses a statistical model of cardiac motion to ensure
overall spatiotemporal consistency and a local, data-
driven tracker for locally accurate tracking. We propose
a combination, which emphasizes the advantages of
each method: if the cardiac wall is obscured (see
Fig. 1), we rely more on the global tracker, and if it is
clearly visible, we rely more on the local tracker.
Previous work on optical flow
In this study, we choose to investigate optical flow.

Optical flow based methods have previously been applied
for motion analysis, modeling and tracking in ultrasound
imaging. Most methods use the Horn-Schunck solution
(Horn and Schunck 1981), which applies a global
smoothness constraint on the motion field, or the
Lucas-Kanade solution (Lucas and Kanade 1981), which
assumes local motion consistency. For example,
Mailloux et al. (1987) applied the Horn-Schunck solution
to analyze two-dimensional (2-D) echocardiograms.
Baraldi et al. (1996) compared three algorithms on
synthesized ultrasound images and concluded that both
Horn-Schunck and Lucas-Kanade approaches generated
favorable results. LV wall motion was analyzed using
the Lucas-Kanade method by Chunke et al. (1996).
Miki�c et al. (1998) first used optical flow for propagating
contours throughout echocardiograms. Optical flow was
used to initialize the contour in the subsequent frame,
after which the actual contour detection was performed
by active contours. More recently, S€uhling et al. (2005)
developed a combination of optical flow and b-splines
for tracking in 2-D echocardiographic sequences. An
application in 3-D echocardiography was described by
Veronesi et al. (2006). In their paper, the Lucas-Kanade
approach was used together with block matching to detect
the long-axis of the left ventricle.

While optical flow has indeed been shown to be
feasible in echocardiograms, it is important to realize
that the method may fail if the structure to be tracked is
poorly visible. This is often the case for clinical quality
images; especially in 3-D, the large footprint of the trans-
ducer may hamper imaging between the ribs, causing
considerable shadowing of the cardiac wall. In these
areas, a plausible contour should be generated that is
consistent with the expected cardiac motion and the
remaining available image information. Statistical
modeling provides an efficient way of modeling this
cardiac motion.
Previous work on statistical modeling
Statistical modeling has been used in various ways

for segmentation. Perhaps the most well known are those
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based on active shape and active appearance models
(Bosch et al. 2002; van Stralen et al. 2007; Hanseg�ard
et al. 2007b), which model typical shape and
appearance variations in a patient population. These
methods are effective in echocardiograms because they
deliver plausible results, even when parts of the cardiac
wall are poorly visualized. An interesting approach was
described by Malassiotis and Strintzis (1999), who con-
strained an active contour-based segmentation by
applying principal component analysis over the contour
sequence at hand. Comaniciu et al. (2004) projected
optical flow estimates back to the shape model space to
generate a more robust segmentation. They used the
mean shift method to combine multiple optical flow esti-
mates. Hanseg�ard et al. (2007a) proposed to estimate
shape model parameters in a Kalman filtering approach,
using estimates in the previous time-frames to generate
new parameters for the current frame. Recently,
Perperidis et al. (2007) suggested a segmentation method
using registration with a shapemodel. This model was de-
coupled into two parts: interpatient statistics (spatial vari-
ations) and intrapatient statistics (temporal variations).
The model parameters were numerically optimized in
nonrigid-registration fashion, using a gradient-descent
approach and a gradient-based similarity measure.

Goal and scope
In this article, we propose a combination of a local

and a global tracker for tracking endocardial contours
throughout the cardiac cycle. A novel aspect of this
work is the integration of the statistical model for optical
flow based tracking. The goal of the local tracker is to
provide a locally accurate motion estimate by looking
only at the data at hand, without using any (shape or
motion) assumptions. The local tracker is based on differ-
ential optical flow. The goal of the global tracker is to
ensure a global, spatiotemporally consistent result, in
cases when the local tracking is unreliable (e.g., due to
poorly visualized cardiac wall). For the global tracker,
statistical models of cardiac motion are integrated within
the optical flow framework. The motion model is derived
from manually delineated 4-D contours in in vivo images,
resulting in a realistic modeling of cardiac wall motion.

Unlike most applications in ultrasound imaging
(e.g., Danilouchkine et al. 2008), we intend to use the
optical flow method to track a large scale structure in
the images, i.e., the endocardial border, and not to track
individual speckle patterns e.g., to derive strain-related
parameters. For the latter, a high frame rate is required,
which is unavailable for current 3-D ultrasound imaging
systems. Since we aim at estimating cardiac motion at
this larger image scale, the tracking is performed in
time-gain-compensated envelope data and not the raw
radio-frequency data. The goal is to track endocardial
contours throughout the cardiac cycle in this larger
image scale, for quantification of volumes and ejection
fractions.
METHODS

In this section, we explain the local and global
trackers. Then, we describe the combination of these
trackers using weights derived from intensity gradients.
Local tracker: optical flow
Optical flow tracking aims at finding the apparent

motion (flow) of objects in an image sequence. The optical
flow equation describes the relationship between the
motion field (v), the spatial ðVIhðvI

vx;
vI
vy;

vI
vzÞ5ðIx; Iy; IzÞÞ

and temporal gradient ðIt5vI
vtÞ in image intensity:

VIðx; tÞ,vðx; tÞ1Itðx; tÞ50; (1)

where x denotes spatial coordinates and t denotes time. v
consists of the velocity components of the motion field;
for 3-D images, v5ðvxðaÞ; vyðaÞ; vzðaÞÞ. Each velocity
component can be described with k parameters a, to
denote different types of velocity models (e.g.,
translation-only, similarity, or affine).

To solve eqn (1) for v, more assumptions are
required because this one equation contains k unknowns.
The commonly-used Lucas-Kanade approach assumes
that the velocity is constant in a small region B around
x. The velocity vector can then be resolved with least-
squares. A sum-of-squares error term is set up as follows
(Lucas and Kanade 1981):

35
X
x˛B

ðwðxÞÞ2½VIðxÞ,v1ItðxÞ�2; (2)

where w represents a local weight. For a translation-only
description of v, this can be solved by differentiating eqn
(2) with respect to each translation component
v5ðvx; vy; vzÞ, and equating the result to zero. This leads
to the following system of equations (note thatw, Iu, Iv and
It depend on x):

Rv5e; with Ruv5
X
x˛B

w2IuIv; and

eu52
X
x˛B

w2ItIu for u; v5x; y; z:
(3)

By applying the local tracker frame-by-frame at the
contour locations, the end-diastolic contour can be prop-
agated throughout the whole sequence.
Global tracker: statistical modeling and optical flow
The global tracker is an embedding of statistical

models of cardiac motion in the optical flow formulation.
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First, the training of the statistical motion models is
described. Then, we explain the integration of the model
with the optical flow equation. This is followed by some
implementation details.

Motion modeling. The motion models are trained
using contours of in vivo data sets. These contours are
represented by the 3-D coordinates of points which are
evenly distributed on the endocardial surface. We chose
to model the cardiac motion on a frame-to-frame basis,
using affine transforms. Principal component analysis
(PCA) is used to generate a compact representation of
these transforms. Note that our approach is different
from traditional statistical shape models (Cootes et al.
2001), which describe the statistical variation of the shape
using the actual contour points themselves. Instead, we
model the motion using affine parameters that are
extracted from the training contours, and apply PCA to
these parameters.

Furthermore, for a time-continuous result, we take
into account the motion of the whole cardiac cycle in
one model. The frame-to-frame motion is represented
by one affine transform. Although this may seem a rather
tight restriction, we anticipate that this representation will
have a small error because of limited differences between
two consecutive frames. We choose to model only the
global motion this way and will further refine the tracking
using the local tracker.

The affine transforms allows the modeling of trans-
lation, rotation, shear and scaling, represented by 12
parameters:

v5

0
@ vx

vy
vz

1
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0
@ ax0 ax1 ax2

ay0 ay1 ay2
az0 az1 az2
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0
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z
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0
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az3

1
A: (4)

These affine parameters are obtained using Procrustes
analysis (Gower 1975). First, all end-diastolic training
contours are aligned to a common coordinate system.
This is necessary to remove acquisition (spatial) variations
between patients, as we are interested in the functional
(temporal) variations. This step resembles what is also
done in multi-view active appearance models (Bosch
et al. 2002), in which Procrustes analysis is used to align
all input shapes, to eliminate variations in acquisition that
are not related to anatomical variations. After this step,
the found alignment transform for each end-diastolic
contour is applied to the rest of the sequence, so that the
whole sequence is in this common coordinate system.

Next, Procrustes analysis is applied between consec-
utive frames of the sequence to extract the frame-to-
frame affine transforms. For each contour sequence, the
3-D affine modeling of F cardiac phases results in 12*
(F-1) parameters. These are concatenated into a column
vector a and are the inputs to the PCA:
a5
�
a1x0; a

1
x1;.a1z3; a

2
x0;.; aF21

x0 ;.; aF21
z3

�T
; (5)

where T denotes vector transpose. PCA gives a compact
description of the motion variations by reducing the
dimensionality of the input affine transforms (Cootes
et al. 2001). This allows us to approximate a set of affine
transforms a throughout the cardiac cycle using the
average transform a, the PCA eigenvectors F and the
PCA parameters c:

aza1F c: (6)

Since the eigenvectors are sorted in order of vari-
ance, modes with low variance can be removed easily
by truncating c and F. The remaining k modes will then
encompass only a proportion g of the total variation G:

Xk

i51

li$gG; with G5
Xp

i51

li; (7)

where p is the total number of modes and li denotes the i
th

eigenvalue (Mitchell et al. 2002). With formula (6), the
frame-to-frame affine transform throughout the cardiac
cycle is described by k parameters c, which are to be
solved here via optical flow. For this study, g 5 95% is
used, corresponding with k 5 24 PCA parameters for
a model built with 35 contours.

Integration with optical flow. For tracking in a new
image sequence, the trained statistical model is integrated
into the optical flow equation. In essence, the statistical
model is used as the underlying assumption to solve eqn
(1). Each affine component afj [formula (4)] of a certain
cardiac phase f can be described with c, the corresponding
row ofF and the corresponding component of a:

afj5afj1F
f
j c: (8)

This is substituted in each affine component in
formula (4) and this in turn is substituted in eqn (1).
This leads to the modified optical flow equation:

Eðx; tÞ5It1Ixax1Iyay1Izaz

1
�
IxFx1IyFy1IzFz

�
c50

(9)

where ad5xafd01yafd11zafd21afd3

and Fd5xFf

d01yFf
d11zFf

d21F
f
d3

for d5x; y; z:

The objective is to find c, given the spatial gradi-
ents Ix, Iy, Iz and temporal gradient It. A solution is to
constrain the equation by assuming that the parameters
c are constant in all regions around the contour and all
cardiac phases, similar to the Lucas-Kanade approach
[formula (2)]. We can then set up a sum-of-squares
error term 3total:
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3total5
X
x

X
f

½Eðx; f Þ�2: (10)

By differentiating 3total to each element in c and
setting this to zero, a system of linear equations is
obtained, similar to eqn (3):

Rc5e; (11)

whereR is a k -by-k symmetrical matrix, and c and e are k -
by-1 vectors:
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(12)

where Fu
d is the u

th element of Ff
d, the row in the eigen-

vector matrix corresponding with phase f (note that all
terms depend on x).

Implementation details. In practice, the algorithm
needs a 3-D contour of the end-diastolic (ED) frame as
a starting point for tracking in a new image. Here, the
manually delineated ED contour is taken. The weight w
in formula (12) was 1 if the voxel was inside the trans-
ducer’s imaging sector and 0 otherwise, to prevent the
influence of the image sector borders on tracking. The
ED contour of the new image was first transformed to
the common coordinate system using Procrustes analysis,
in concordance with the model training step. The pseudo-
code in Table 1 lists the steps for resolving the tracking
parameters.

Combination: gradient-based weights
In vivo echocardiograms often suffer from occlu-

sions: parts of the cardiac wall can be invisible due to
drop-out (when the imaged structure is parallel to the
ultrasound beam), shadowing (when objects in the ultra-
sound path causes high reflections or attenuation) or low
signal-to-noise ratio. In 3-D echocardiography, this is
particularly apparent in the anterior wall (Nemes et al.
2007). In these areas, we would like to rely on the overall
plausible solution of the global tracker. In areas where the
structures are clearly visible (e.g., the septal wall, the
Table 1. Global tracking scheme

(A) For each image pair f:
(1) calculate spatial and temporal derivatives
(2) populate formula (12) using derivatives of frame pair f

(B) Solve eqn (11) for c
(C) Convert c into affine parameters a [formula (6)]
(D) Apply a to ED contour frame-by-frame
mitral valve ring), we would like to rely on the local
tracker, to give a locally accurate result. These clearly
visible structures usually have a high intensity gradient
near the endocardial border.

The combined result is determined by transforming
the ED contour frame-by-frame, using weighed results of
the local and global trackers. Each point on the contour is
transformed to coordinates xcombined, determined by
weighing the results of the local tracking (xL) and the
global method (xG) as follows:

xfcombined5bxfL1ð12bÞxfG: (13)

b is a local weight based on the local gradient norm
jVIj of the 4-D image sequence:

bðxÞ5
� jVIj2jVIjmin
jVIjmax2jVIjmin

�2

; (14)

where jVIjmin was the minimum and jVIjmax was the
maximum gradient norm in the whole image. The
quadratic function is used so that the local tracker will
be preferred only for relatively high gradients; this had
a better performance than a linear function in initial tests.
Experimental details

Data. To test the performance of the proposed
segmentation method, images were acquired of the left
ventricle in patients referred for stress echocardiography.
Only images obtained in the rest stage were analyzed.
Data of 35 patients were acquired with a Philips Sonos
7500 system (Philips Medical Systems, Best, The
Netherlands), equipped with a X4 matrix array trans-
ducer. Typical spatial dimensions were 160 3 144 3
208 voxels with 1 mm 3 1 mm 3 0.7 mm resolution.
The 3-D data set was comprised from four electrocardio-
graphically gated pyramidal subvolumes. Twenty of these
patients underwent coronary angiography: six patients
had no significant vessel disease, eight patients had
one-vessel disease (two in the left-anterior-descending
[LAD] coronary artery region, four in the right-
coronary-artery [RCA] region, two in the left-
circumflex-artery [LCX] region), three patients had
two-vessel disease (LCX and RCA, LAD and RCA,
LAD and LCX) and three patients had three-vessel
disease. The institutional review board approved the
study and all patients gave informed consent.

Contour delineation as ground truth. For training the
motion model and for validating the tracking algorithm,
gold standard contours were needed. Full-cycle endocar-
dial borders were drawn with a previously developed
semiautomated method, based on pattern matching and
dynamic programming (van Stralen et al. 2005). In short,



Fig. 2. Eigenvariations (three standard deviations) of the first,
second and 24th mode of the motion model, with the corre-
sponding amount of variation l=G [see formula (7)], built
with 35 contours. The variation with respect to the average
motion in terms of surface distances is color coded onto the

surfaces.

610 Ultrasound in Medicine and Biology Volume 37, Number 4, 2011
the contour was delineated in the four-chamber and
two-chamber views in end-diastole and end-systole.
End-diastole was determined by the R-peak of the
ECG, end-systole was defined as the frame before the
opening of the mitral valve, which was determined visu-
ally. These anatomical views were selected manually by
indicating the apex, the mitral valve and the direction
of the four-chamber in the end-diastolic 3-D image
(Leung et al. 2008). The two-chamber cross-section is
defined as the view perpendicular to the four-chamber,
passing through the long-axis, with the long-axis defined
as the line passing through the apex and the mitral valve
center. Dynamic programming was used to detect the
entire 3-D surface, aided by the intensity patterns along
the user-delineated contours. The detected borders were
evaluated visually in 10 long-axis cross-sections at 18
degrees increment in all cardiac phases. If needed, the de-
tected contours were manually corrected to ensure
temporal coherence. This method produced accurate
contours that were previously validated by MRI on
a different set of data in a previous study (van Stralen
et al. 2005). Three-dimensional points were sampled on
the delineated surface at equidistant angles and short-
axis levels to provide an even distribution of points, ac-
cording to van Stralen et al. (2005).

Evaluation. Tracking was performed using the local
tracker, the global tracker and their combination. Motion
models were built in a leave-one-out fashion: 34 contours
were used to build the model and the trackers were tested
on the remaining image; this is then repeated for all the
images. As mentioned before, we made a distinction
between segmentation in one image and tracking
throughout the cardiac cycle and the objective of this
article is to evaluate the performance of the tracking.
Therefore, we used the delineated contour of the (first)
end-diastolic frame as initialization for the tracker.

Errors were calculated with respect to the ground
truth. Surface errors are calculated symmetrically by
taking the Euclidean distance between a point of the
result contour and its projection on the true contour,
and vice versa (Van Ginneken et al. 2006). Ejection frac-
tion was defined as: EF5ðVED2VESÞ=VED, where VED

is the end-diastolic volume and VES the end-systolic
volume. Regression analysis was performed following
Bland and Altman (1986). Statistical testing was per-
formed using the paired t-test.

RESULTS

Figure 2 shows the main modes of variation captured
in a model built with 35 contours. The main contraction-
expansion pattern can be seen in the average transform [a,
formula (4)]. An example of local, global, and combined
tracking results can be seen in Figure 3. This figure shows
qualitatively the merit of combining the local and global
trackers: for obscured cardiac wall in the anterior
segments, the global tracker is used, whereas if the
cardiac wall is clearly visible, the local tracker takes over.

Figure 4 shows the local surface errors in bull’s eye
plots, following standard protocol of the American Heart
Association (Cerqueira et al. 2002). These quantitative
results corroborate the qualitative results of Figure 3: in
the anterior segments, the global tracker gives spatiotem-
porally consistent results that are better than that of the
local tracker. The combined method takes this into
account accordingly.

Figures 5 and 6 show the average ground truth
volumes and the tracking results as a function of the
cardiac cycle. The overall tracking errors are
summarized in Table 2. Figure 7 shows the results of
the regression analysis of the volume errors. The manu-
ally defined ED volume is omitted from this regression
analysis. The combined tracker produces the lowest
surface and volume errors.
DISCUSSION

In this study, we proposed methods for tracking
the endocardial contours in 3-D echocardiographic
sequences. The combination of the local and global
trackers gave the best results (Fig. 4, Table 2). The global
tracker gave realistic result based on the statistical



Fig. 3. Tracking using the local tracker (magenta line), global tracker (white line) and both methods combined (blue line).
The two-chamber cross-section is shown. Green line denotes the ground truth. Solid square: for clearly visible structures,
the local tracker is more accurate than the global tracker. Dotted circle: for obscured cardiac wall, poor local tracking is

compensated by the global tracking in the combination.
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modeling of cardiac motion; whereas the local tracker
was accurate when the structures are clearly visible,
e.g., in the inferoseptal region. However, in the anterior
segments, the local tracker was problematic.

In a previous study, our clinical partners analyzed 36
rest and stress Sonos 7500 (Philips Medical Systems) da-
tasets visually and scored each of the 17 segments as 45
excellent quality without possibility to improve, 3 5
good quality without artifacts, 2 5 sufficient quality
Fig. 4. Local surface errors, color-coded on bulls eye plots, a
improvement in the anterior region using the combined metho

which typically has poorly v
without artifacts or good quality with artifacts, 1 5
poor or moderate quality with artifacts and 0 5 nonvi-
sualized (Nemes et al. 2007). In the rest images, the ante-
rior segments received a score 0 in 12 out of 36 patients
and a score 1 in six out of 36 patients. This corroborates
the findings in our study: in anterior segments, the global
tracker gave spatiotemporally consistent contours, which
were especially useful in areas with poorly visualized
cardiac wall. Although the image quality has improved
veraged over all patients and cardiac phases. Notice the
d, corresponding to better tracking in the anterior region
isualized cardiac wall.
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with the newer ultrasound imaging systems, drop-out is
still an issue in e.g., obese patients or patients with
enlarged ventricles.

From Table 2, it is apparent that the local tracker had
slightly worse results in diastole than in systole. Because
the local tracker was performed on a frame-to-frame
basis, errors could accumulate across the cardiac cycle.
On the other hand, the global tracker is inherently spatio-
temporally coherent because it models the entire cardiac
cycle. This finding can be used to adjust the weights of the
combinedmethod to rely more on the global tracking near
the end of the cardiac cycle. Also, it is possible to add an
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Fig. 6. Errors of the combined tracker as a function of cardiac
phase.
extra backtracking step for the local tracker (from the last
image frame to the first), to further reduce the accumula-
tion of errors.

In Table 2, we report both signed and absolute
volume and ejection fraction errors. The average values
of the signed (V and EF) errors show that there is hardly
any bias in the errors. The absolute errors [abs(V) and
abs(EF)] show that the errors are quite small. The stan-
dard deviation of the signed (V and EF) errors may
seem significant compared with the average. However,
our results compare quite favorably with those reported
in literature (Table 3).

Comparison with other work
Table 3 lists results of segmentation and tracking

algorithms, reported in literature. Due to the vast amount
of literature, the scope of our comparison is constrained
to the most recent works on 3-D cardiac ultrasound,
with surface or volume errors reported. Furthermore,
comparisons with papers on strain analysis are omitted,
as no strain results were available with our method. A
distinction was made between segmentation and tracking
methods, as ours is a tracking method.

The errors obtained in this study compare favorably
with the ones reported in the previously published papers.
However, since ours is a tracking method and needs a 3-D
initialization, the errors cannot be entirely compared
with those of the segmentation-only papers. A second
comment is that the methods of Myronenko et al. (2007)
and Duan et al. (2008) were evaluated on open chest
animal models in which the cardiac wall in most cases is
clearly visible (which is not the case with in vivo human
data).

Several papers have been published on block match-
ing vs. optical flow. Malpica et al. (2004) compared
block-matching and the Lucas-Kanade approach and
concluded that the latter was best for contrast echocardio-
grams. Veronesi et al. (2006) used both methods consec-
utively to detect the long-axis of the left ventricle in
echocardiographic sequences. Combinations of smart
block-matching (Behar et al. 2004; Linguraru et al.
2008) and optical flow may be used to further refine the
trackers.

Limitations and extensions
An inherent limitation of model-based methods is

that the training sets should comprise the expected varia-
tion of the underlying anatomical function. To demon-
strate the versatility of the proposed approach, the
image data included a mixed population of normal and
abnormal heart function. Still, good results were obtained
in this study, despite this large variability.

Although we have shown favorable results with
respect to other methods reported in literature, it is no



Table 2. Average 6 standard deviation of tracking errors, also separated into systolic and diastolic values

S V abs(V) EF abs(EF)

mm mL mL % %

Overall
Local 1.52 6 0.54 3.8 6 8.1 6.9 6 5.7 4.8 6 6.5 6.3 6 5.1
Global 1.51 6 0.69 22.0 6 10.0 7.6 6 6.8 21.9 6 6.7 5.4 6 4.3
Combined 1.35 6 0.46*y 1.9 6 6.9 5.4 6 4.8*y 1.2 6 5.7 4.7 6 3.4*

Systole
Local 1.47 6 0.63y 3.8 6 7.2 6.2 6 5.3
Global 1.56 6 0.73 0.8 6 7.9 6.2 6 4.9
Combined 1.28 6 0.53*y 1.4 6 6.0 4.6 6 4.0*y

Diastole
Local 1.55 6 0.47 3.8 6 8.6 7.3 6 5.9
Global 1.48 6 0.66* 23.6 6 10.7 8.4 6 7.6*
Combined 1.39 6 0.42*y 2.2 6 7.4 5.8 6 5.1*y

S 5 surface; V 5 volume; abs(V) 5 absolute volume; EF 5 ejection fraction; abs(EF) 5 absolute EF.
* Statistically significantly smaller (p , 0.05) than the local tracker.
y Statistically significantly smaller than the global tracker.
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Fig. 7. Regression and limits-of-agreement analysis of the
combined tracker.
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easy task to establish the clinical relevance of the
proposed method. An appropriate manually delineated
standard is very difficult to define, due to inter- and intra-
observer variabilities. The clinical reference standard for
left ventricular volume estimation is magnetic resonance
imaging (MRI). A comparison with MRI volumes is
unfortunately unavailable for the data in this study.
When comparing these modalities, one should keep in
mind that differences in imaging principle cause discrep-
ancies in spatiotemporal resolution and in the visualiza-
tion of trabecular structures. This has led to a general
underestimation of left ventricular volumes by echo
(Leung and Bosch 2010). An independent, realistic
dynamic standard is still lacking to thoroughly establish
the accuracy of segmentation and tracking methods in
general.

For a more detailed look at the differences between
tracking in normal and abnormal sequences, one would
have to obtain many more patients in all kinds of patholo-
gies, for example in an extensive clinical trial. Previously,
we have performed feasibility studies on classifying local-
ized pathologies in echocardiographic sequences using
statistical shape models (Bosch et al. 2005; Leung and
Bosch 2008). However, the datasets for building and
validating the model in these studies were considerably
larger. Moreover, the models represented only 2-D
motion. Therefore, the question about the suitability of
the proposed approach for the purposes of classification
of the local heart abnormalities remains open and
definitely requires further investigation. We anticipate
that building separate models for different pathologies
can further improve the results; in that case, the best
performing model (e.g., with the lowest intensity
tracking error) can be taken as the final result.

The focus of this article is on tracking of the left
ventricular borders; as such the proposed tracking method
needed an initialization in the first image frame. In the
future, this can be replaced by an automated 3-D segmen-
tation algorithm. We have had promising results with the
active appearance model method, which uses a statistical
model of the anatomy in a single frame (e.g., end-
diastole) (Leung et al. 2010). We think that the combina-
tion of this method and the proposed tracker will give
a fully automated solution, which incorporates statistical
modeling of both anatomy and function. This is a subject
of further investigation.

The proposed method distinguishes itself by
modeling cardiac motion statistics, applied to tracking
of contours. The role of cardiac modeling has yet to be
proven for other applications, such as speckle tracking
to evaluate e.g., strain. We believe that the promising
results in this study encourage us to investigate this
further for other applications. For example, the proposed
method may be used as a more accurate initialization for
frame-to-frame speckle tracking. Alternatively, in the
clinical setting the user may select the relevant patholog-
ical model to achieve a better accuracy.



Table 3. Comparison with cardiac ultrasound 4-D segmentation and tracking methods from literature

S V abs(V) EF abs(EF)

Publication N mm mL mL % %

Segmentation only
Angelini et al. (2001) 6 ED: 23.9 6 20.2 ED: 13.9 6 14.0 8.8 6 5.6 8.8 6 5.6

ES: 29.1 6 8.7 ES: 9.9 6 7.6
Corsi et al. (2002) 25 215.6 6 20.6 (ED and ES only)
Sanchez-Ortiz et al. (2002) 14 6.6 6 37.1
Wolf et al. (2002) 20 3.44 6 1.18
Lin et al. (2003) 24 1.64 6 0.50
Angelini et al. (2005) 10 ED: 16.1 6 25.6 ED: 21.4 6 20.8 0.6 6 11.3 10.0 6 4.1

ES: 6.6 6 17.5 ES: 10.6 6 15.3
Walimbe et al. (2006) 5 ED: 8.0 6 1.87 7.2 6 0.84

ES: 8.8 6 2.39
Hanseg�ard et al. (2007a) 36 3.4 6 2.3 ED: –3.1 6 20 21.3 6 6.3

ES: 0.616 13
Zhu et al. (2007) 22 1.45 6 0.30

Segmentation and tracking
Zagrodsky et al. (2005) 10 ED: 17.5 6 11 7.6 6 5.5

ES: 9.8 6 10.8
Hanseg�ard et al. (2007b) 21 2.2 6 0.56 3.4 6 10 27.7 6 6
Orderud et al. (2007) 21 2.7 4.1 6 12.6

Tracking only
Myronenko et al. (2007) 1* 1.03 6 0.62
Duan et al. (2008) 40y 3.9 6 2.5
Yang et al. (2008) 31 1.28 1.11

Current method
Combined 35 1.35 6 0.46 1.9 6 6 .9 5.4 6 4.8 1.2 6 5.7 4.7 6 3.4

N denotes the number of subjects. Average6 standard deviation of surface S, volume V, absolute volume abs(V), ejection fraction (EF) and absolute
ejection fraction [abs(EF)] errors. Empty columns mean that data were not available.

* One open chest pig, 10 scans.
y Open chest dogs.
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CONCLUSION

A method for tracking contours in 3-D1time left
ventricular echocardiograms was proposed. The method
consists of a local optical flow tracker and global tracker,
which uses a model of cardiac motion in an optical-flow
based formulation. We proposed a combination of local
and global trackers using gradient-based weights. Good
estimates of left ventricular volume and ejection fraction
were obtained. This shows the feasibility of the method
for tracking in clinical quality echocardiograms, facili-
tating the quantitative and objective assessment of
functional parameters.
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