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Suppliers of capital goods increasingly offer performance-based service contracts with customer-specific

service levels. To handle such differentiated service levels, we use selective emergency shipments of

spare parts. We apply emergency shipments in out-of-stock situations for combinations of parts and

customer classes that yield service levels close to the class-specific targets. We develop two heuristics to

solve this problem. An extensive numerical experiment reveals average cost savings of 4.4% compared to

the one-size-fits-all approach that is often used in practice. Furthermore, it is particularly beneficial to

combine our policy with critical levels, which yields an average cost saving of 13.9%.
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1. Introduction

To service advanced capital goods (e.g., defense or medical
systems), suppliers increasingly offer service contracts to their
customers. This particularly applies when system downtime can
have serious consequences (e.g., loss of production output, failure
of military missions). Service contracts typically contain quanti-
fied targets for key performance measures such as a maximum
response time in case of failures or a minimum system avail-
ability. As users typically value downtime differently, service level
agreements may differ among customer groups. For example, the
minimum system availability may be 90% or 99%.

In practice, suppliers often service customers that have varying
service levels using a uniform logistics fulfillment process (a
so-called one-size-fits-all approach, cf. Cohen et al. 2006). This
approach can be very costly if a supplier designs the fulfillment
process based on the premium service level. Also, standard
customers have no incentive to switch to premium contracts.
The fulfillment process should thus be such that the actual service
levels reflect the contractual agreements. In this paper, we focus
on differentiation in spare parts supply.

In literature, critical level policies are common differentiation
approaches. Such policies reserve parts for premium customers
once the inventory level drops below a certain threshold. Then,
demand from non-premium customers is either backordered or
satisfied from a source that is usually assumed to have infinite
supply (e.g., a production facility). Although shown to be effective
and efficient, there are barriers for implementation in practice.
For instance, service engineers responsible for system repair are
ll rights reserved.

arez).
often unwilling to wait for a part that is in fact in stock when they
are primarily accountable for the speed of repair.

These drawbacks prompt us to investigate the selective use of

emergency shipments as an alternative. Now, we use on-hand
stock to meet demand first-come-first-served. If we are out of
stock, we can request an emergency shipment from a secondary
source. Emergency shipments are both faster and more expensive
than regular replenishments. We should thus investigate for
which combinations of customer segments and item types it is
a viable approach. As main advantage, this approach is easier to
implement in practice than critical level policies, while still being
a tool for differentiation. We will show that the approach leads to
clear savings over using simple one-size-fits all strategies. Also,
we will show that it is very effective to combine selective
emergency shipments and critical level policies.

The remainder of the paper is structured as follows. In Section 2,
we discuss relevant literature and state our contribution. Then, we
state our optimization problem and solution approach in Sections 3
and 4, respectively. It will become clear that we must analyze
various single-item models as building blocks. In Section 5,
we analyze these models for the special case with two customer
classes. We give the results of an extensive numerical experiment in
Section 6. In Section 7, we give conclusions and discuss options for
model extension.
2. Literature overview

Our research is related to literature on service differentiation
and the use of emergency shipments for parts supply. The service
differentiation stream focuses on critical level policies, introduced
by Veinott (1965). The optimality of this policy has been shown
under periodic review for backordering and lost sales (Topkis,
1968). Under continuous review, optimality has been shown for
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Poisson demand and exponential or Erlang lead times, both
for lost sales (Ha, 1997a; 2000) and backorders (Ha, 1997b;
De Véricourt et al., 2002; Gayon et al., 2009).

Several approaches have been developed to find (near-)
optimal stock levels and critical levels. For fast movers, the focus
is on continuous demand distributions with unmet demand being
backordered. Ha (1997b) shows that it is optimal to only use
arriving replenishment orders to clear non-premium backorders if
the inventory level is at least the critical level for premium
demand. As the mathematical analysis of such models is intract-
able – we must keep track of the non-premium backorders –
heuristics are often used, see e.g., Möllering and Thonemann
(2010) and Arslan et al. (2007). Models for slow movers, common
in service logistics, focus on Poisson demand and one-for-one
replenishment (Dekker et al., 2002). Our work is most similar to
Kranenburg and Van Houtum (2007), who try to minimize
holding and shipment costs in a multi-item multi-class model
with class-dependent waiting time restrictions. Unmet demand is
satisfied through emergency shipments. The authors use a solu-
tion approach based on decomposition and column generation,
combined with greedy heuristics.

The second relevant literature stream focuses on emergency
shipments, possibly combined with lateral transshipments among
locations at the same echelon level. Most papers consider a
single- or two-echelon model with a central location that has
infinite supply (see e.g., Muckstadt and Thomas, 1980; Hausman
and Erkip, 1994). Alfredsson and Verrijdt (1999) combine lateral
shipments with emergency shipments for a two-echelon single-
item network. Other recent contributions include Van Utterbeeck
et al. (2009) and Wong et al. (2007). We have not yet found
literature that uses emergency shipments as a differentiation tool.

The contribution of our paper is fourfold: First, we give a
new differentiation approach in spare parts supply using selective
emergency shipments. Second, we develop two efficient and effective

heuristics to find near-optimal stock levels and shipment strategies.
Third, we show the added value of selective emergency shipments

compared to one-size-fits-all policies and critical level policies.
Finally, we show the added value of combining selective emergency

shipments and critical level policies for service differentiation.
3. Model

We first give an outline of our model. Next, we discuss the
validity of our selection of shipment policies (Section 3.2).
In Section 3.3, we present our model assumptions and notation.
We give the formal optimization problem in Section 3.4.

3.1. Model outline

Consider a local warehouse that supplies various types of parts to
multiple customer classes, and a central depot with infinite supply
that replenishes the local warehouse. All customers have the same
system, with each item in the system being critical (i.e., an item
failure causes a system failure). Each customer class has a distinct
amount of time it is willing to wait for parts on average. The
warehouse fills demand from all classes first-come-first-served. If it
is out of stock, the warehouse may backorder the demand or request
an emergency shipment from the central depot. We achieve service
differentiation by only using emergency shipments for customer
classes with tight waiting time restrictions. We expect this to be
particularly beneficial for expensive slow movers that often have low
fill rates (making the difference between regular and emergency
shipment times crucial). Still, it will sometimes be better to avoid
stocks altogether and use emergency shipments for all classes.
Conversely, for cheap fast movers it is probably better to keep large
stocks (avoiding expensive emergency shipments) and use full
backordering. The shipment mode should thus depend on both the
item characteristics and waiting time constraints per customer class.

In addition to the above model, we also consider a model
where critical levels and selective emergency shipments are
jointly used for differentiation. This combined model only satis-
fies demand from on-hand stock if it exceeds the critical level for
the customer’s class. Unmet demand is met using either back-
ordering or emergency shipments.

The objective in both models is to minimize system holding
and shipment costs, under restrictions on the mean aggregate
waiting time per class. Firms like Philips Healthcare and Océ
Technologies usually have service level requirements with their
clients in terms of e.g., average failure resolution times, with
delays often being caused by waiting time for spares. Penalties
may apply if the supplier violates the agreements, but we have
not seen explicit backorder costs in service contracts. Therefore,
we do not include penalty costs per unit waiting time in our
objective function. Our decision variables are the item stock
levels, and the shipment mode (regular, emergency) and critical
level for each item and customer class.

3.2. Selection of shipment policies

In our model, we always use emergency shipments in out-of-
stock settings if that shipment mode is chosen for a customer
class. However, if the pipeline contains many items, the emer-
gency shipment time might exceed the backorder waiting time,
making backordering the faster and cheaper option. Ideally, we
should thus consider the system state and the customer’s class
when deciding what shipment mode is most effective. Still, we do
not consider such policies to keep the notation transparent and
reduce computational effort. In the end, we are mainly interested
in the suitability of selective emergency shipments for differen-
tiation compared to critical level policies and the ‘‘one-size-fits-all’’
approach.

3.3. Assumptions and notation

3.3.1. Main assumptions
1.
 Demand for each item occurs according to a Poisson process.
2.
 An (S�1,S) base stock policy is applied for all items. In practice,
spares often tend to be expensive slow movers. Therefore,
holding costs usually dominate ordering costs and hence the
optimal ordering quantity is usually 1.
3.
 Regular shipment times from depot to warehouse are exponen-

tially distributed. This assumption facilitates Markov chain
analysis. Also, we show in Appendix A that our model is quite
insensitive to lead time distribution used.
4.
 The shipment time from the local warehouse to the customer is

negligible.
5.
 An emergency shipment is shipped directly from central depot to

customer (i.e., the shipment does not pass through the local

warehouse).

6.
 We consider an infinite horizon. As a result, the mean waiting

time for any customer in class j will equal the average waiting
time of class j as a whole.

3.3.2. Notation

For each item i¼1,2, ..., I, we denote the mean replenishment
lead time by Ti

reg, the emergency shipment time by Ti
em, the

holding costs per time unit by hi and the additional costs for an
emergency shipment over a normal replenishment by ECi

em. The
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latter cost factor is sufficient, since each request triggers either a
normal replenishment or an emergency shipment. Customers are
assigned to classes j¼1, ..., J, each having a target Wj

max for the
average waiting time for parts. We order classes according to non-
decreasing values of Wj

max. Class j demand for item i occurs at rate
mij (40). MUj ¼

PI
i ¼ 1 mij and MiU ¼

PJ
j ¼ 1 mij denote the total

mean demand for class j and for item i, respectively. The decision
variables for item i are: (1) the base stock level Si (2) the vector
Ci¼[Ci1, ..., CiJ] denoting the critical levels per class, and (3) the
shipment strategy Di, denoting the highest customer class index for
which emergency shipments are used in a stock-out situation.
Di is an integer between 0 and J, as emergency shipments are only
sensible for higher priority customers. We combine all variables
into an item policy (Si,Di,Ci) with mean waiting time EWij(Si,Di,Ci)
and fill rate bij(Si,Di,Ci) for item i and class j as performance
indicators.
3.4. Formal optimization problem

We express the formal optimization problem (P1) as follows:

min
Si ,Di ,Ci

XI

i ¼ 1

hiSiþECem
i

XJ

j ¼ 1

mijð1�bijðSi,Di,CiÞÞIf1...Dig
ðjÞ

8<
:

9=
;

s:t:
XI

i ¼ 1

mij

Mj
EWijðSi,Di,CiÞrWmax

j j¼ 1,. . .,J ðP1:1Þ

SiAN0, DiAf0,1,. . .,Jg, CijAf0,1,. . .,Sig i¼ 1,. . .,I, j¼ 1,. . .,J ðP1:2Þ

We minimize holding and emergency shipment costs with the
demand-weighted mean waiting time for class j not allowed to
exceed target Wj

max. The indicator function If1:::Dig
ðjÞ equals 1 if

emergency shipments are used for class j (jA{1yDi}) and 0 other-
wise. We compute holding costs over the total stock Si, including
items in the pipeline. It is easy to compute holding costs over the
on-hand stock instead (Kranenburg and Van Houtum (2007)).
4. Solution approach

Problem (P1) is a nonlinear integer problem that we cannot
decompose into separate single-item problems because of the
aggregate waiting time restriction (P1.1). This differs from a
variant with backorder costs where such a decomposition is
possible and the I single-item problems can be solved easily
(see Section 4.2). We use an approach similar to Dantzig–Wolfe
decomposition: We reformulate (P1) to a linear integer program-
ming problem and solve its LP-relaxation to find a lower bound.
This approach has also been used to solve other inventory
problems (Kranenburg and Van Houtum, 2007; 2008). Therefore,
we only specify how the approach can be used for our specific
problem and refer the reader to our working paper (Alvarez et al.,
2010) for more details. We first show how to reformulate (P1)
to a linear problem and find a lower bound (Section 4.1 and
Section 4.2), respectively. As the lower bound is generally frac-
tional, Section 4.3 gives two heuristics to find near-optimal
integer solutions.
4.1. Reformulation to a linear problem

Let bi be a shorthand notation for item policy (Si,Di,Ci).
The binary variable xbi

denotes whether policy bi is selected for
item i or not (xbi

¼ 1 or 0). Let Bi be the set of items we consider
for item i. We then obtain the linear integer program (P2).

min
XI

i ¼ 1

X
bi ABi

TCiðbiÞxbi

s:t:
XI

i ¼ 1

X
bi ABi

mij

Mj
EWijðbiÞxbi

rWmax
j j¼ 1,. . .,J ðP2:1Þ

P
bi ABi

xbi
¼ 1 i¼ 1,. . .,I

ðP2:2Þ

xbi
Af0,1g biABi i¼ 1,. . .,I

Here, TCi(bi) is shorthand for the total costs related to item i

under policy bi, so TCiðbiÞ ¼ TCiðSi,Di,CiÞ ¼ hiSiþECi
emPJ

j ¼ 1 mijð1�
bijðSi,Di,CiÞÞIf1:::Dig

ðjÞ

4.2. Finding a lower bound for the total costs

We first solve the LP-relaxation of (P2) with an initial item
policy set that results in a feasible solution. Then, we use column
generation to iteratively find new item policies that improve the
solution if added. We stop once such policies no longer exist. For
each item i, we find a single initial policy by setting Di to 0 and
only increasing Si. Then, we iteratively add the policy with the
lowest reduced costs to Bi, if these are negative. The reduced costs
for policy bi, denoted by RED(bi), are given by the expression
below, with uj(r0) and vi(Z0) denoting the current shadow
prices for constraints (P2.1) and (P2.2), respectively.

REDðbiÞ ¼ TCiðbiÞ�
XJ

j ¼ 1

uj

mij

MJ
EWijðbiÞ�vi

For each shipment strategy Di, we first find the values for Si

and Ci that give minimum reduced costs. Next, we select the item
policy with minimum reduced costs over all shipment strategies.
A complication in finding an optimal item policy for a shipment
strategy is that the reduced costs are rarely convex in Si and/or Ci:
the reduced costs are only convex in Si if Cij¼0 for all classes and
Di¼ J (i.e., emergency shipments for all classes, see Kranenburg
and Van Houtum (2007)). However, from some value onwards,
RED(bi) will only monotonically increase in Si, irrespective of the
values for Di and Ci: as Si increases, the holding costs increase
linearly, whereas the costs related to emergency shipments and
waiting time decrease and eventually become negligible. We thus
find an upper bound on Si (and all Cij) when the holding costs
outweigh the other cost elements in RED(bi).

4.3. Methods for finding a near-optimal integer solution

We find near-optimal integer solutions using 2 methods:
(1) we use the (non-integer) LP relaxation solution as a starting
point for local search; (2) we solve integer problem (P2) with all
policies generated for finding the lower bound. In literature (e.g.,
Kranenburg and Van Houtum (2008)), method 1 is often used, but
we show that method 2 works better (Section 6).

4.3.1. Method 1: Use a local search algorithm

Kranenburg and Van Houtum (2008) find an integer solution
by first selecting for each item in the LP-relaxation solution the
policy with the lowest stock level, provided that xbi

40. As the
resulting solution is usually infeasible, they then iteratively
increase the stock level of one item until they find a feasible
solution. In every iteration, the item is selected that leads to the
largest decrease in the total gap between target and actual mean
waiting times per invested euro. Our method differs in two ways.



Fig. 5–1. Transition diagram for pure model with backordering of class 2 requests.
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First, the neighborhood (i.e., the solutions close to the current
solution from which we choose a new solution) contains solutions
with either a larger stock level than the current solution or a
faster shipment method. We consider multiple decision variables
to possibly find a feasible solution more quickly. Second, we use a
different selection criterion: When computing the gaps between
target and actual waiting time, we use the inverse of Wj

max as a
weight for class j. We expect that it is generally more expensive to
reduce a small waiting time by amount D compared to reducing a
large waiting time by that same amount. As a result, we give
higher weights to customer classes with tight restrictions.
For details, we refer to our working paper (Alvarez et al., 2010).

4.3.2. Method 2: Use of integer programming (IP)

When solving the LP-relaxation, we usually only generate four to
seven item policies per item. Therefore, we should be able to solve the
corresponding integer problem with a commercial solver (we used
CPLEX) for most problems of realistic size. However, the generated
item policies are not always related, especially for fast moving items.
For instance, we have found policies (0,1,0) (i.e., no stock, emergency
shipments for premium customers only), (9,0,0) and (10,0,0) (i.e., high
stock levels, full backordering) for the same item. To test the quality
of our method when using the relaxation policy set, we compared the
resulting solutions to those found when we include additional item
policies in the IP that bridge the gap between the distinct item
policies.1 We found that these additional policies greatly increase
computation time, while the solution quality improves only margin-
ally: the average gap to the lower bound drops from 0.041 to 0.038,
and the maximum gap drops from 0.259 to 0.258. Therefore, we find
that it is sufficient to only use the item policies generated when
solving the LP relaxation.
5. Evaluating item policies with two customer classes

We use continuous-time Markov chain analysis to find perfor-
mance measures for an item policy. For simplicity, we limit
ourselves to two customer classes in this section and in Section 6.
In Section 7, we discuss extensions to more than two classes. We
thus consider three shipment strategies: use emergency ship-
ments for both classes (Di¼2), for class 1 only (Di¼1), or not at all
(Di¼0). Per item, we have a critical level for the non-premium
class (denoted by Ci from now on). Under backordering, we find
the expected waiting time by Little’s Law: EWij(Si,Di,Ci)¼
EBOij(Si,Di,Ci)/mij, with EBOij(Si,Di,Ci) being the average number of
backorders for item i and class j. When emergency shipments are
used, EWij(Si,Di,Ci) equals ð1�bijðSi,Di,CiÞÞTi

em. Section 5.1 first
describes the pure selective emergency shipment models, where
critical levels are not used. Section 5.2 then describes the
combined shipment models, which incorporate critical level
policies. For simplicity, we omit the item index i and denote the
normal replenishment rate by m¼1/Treg.

5.1. Pure selective emergency shipment models

5.1.1. Pure model, emergency shipments for both classes (Di¼2)

We model the pipeline as an Erlang loss system with S servers
(Kranenburg and Van Houtum, 2007). Let k denote the number in
the pipeline. We find:

pk ¼
M

m

� �k 1

k!

.XS

n ¼ 0

M

m

� �n 1

n!
k¼ 0,:::,S
1 This was a mid-sized experiment of 100 problem instances with 25, 100 and

400 items.
b1ðS,DÞ ¼ b2ðS,DÞ ¼ 1�pS
5.1.2. Pure model, backorder class 2 demand only (Di¼1)

We define the state as the number of items in the pipeline k,
with state k having [k�S]þclass 2 backorders. Fig. 5–1 displays
the Markov chain. Once the pipeline contains S or more items,
class 1 demand is lost to the system. Closed-form expressions for
the state probabilities pk, class 1 fill rate and class 2 mean
backorder level are given below.

p0 ¼
XS

k ¼ 0

1

k!

M

m

� �k

þ
M

m2

� �S

em2=m�
XS

k ¼ 0

1

k!

m2

m

� �k
 !( )�1

pk ¼

M
m

� �k
1
k! p0 1rkrS

M
m

� �S
m2
m

� �k�S
1
k! p0 kZSþ1

8>><
>>:

b1ðS,DÞ ¼
XS�1

k ¼ 0

pk

EBO2ðS,DÞ ¼
M

m2

� �S

p0
m2

m em2=m�
XS�1

k ¼ 0

m2

m

� �k 1

k!

 !(

�S em2=m�
XS

k ¼ 0

m2

m

� �k 1

k!

 !)

5.1.3. Pure model, backorder demand from all classes (Di¼0)

We use priority backorder clearing: class 1 backorders are
cleared before class 2 backorders, even if a class 2 backorder
occurred first. Therefore, we need a two-dimensional state space,
since the number of backorders per class can even differ among
states with the same number of items in the pipeline. We use
states (k,l), with k the number in the pipeline and l the number of
class 2 backorders. We then have [[k�S]þ� l]þ class 1 backorders.
Fig. 5-2 shows the corresponding Markov chain. Demand flows
from (k,0) to (kþ1,0) until the pipeline contains S items. Then,
class 1 demands result in shifts from (k,l) to (kþ1,l), while class 2
demands result in shifts from (k,l) to (kþ1,lþ1). Replenishment
flows go from (k,l) to (k�1,l) whenever (k,l) has class 1 backorders.
Then, the pipeline decreases, while the number of class 2 backorders
remains the same. Flows from (k,l) to (k�1,l�1) only occur when
(k,l) only has class 2 backorders.

We could not find analytical expressions for the state prob-
abilities, so we compute an upper bound kUBon the number of
items in the pipeline and solve the balance equations numerically.
We find kUB by aggregating all demand into a single class and
analyzing the resulting M9M9N model exactly. Note that the
pipeline distribution will be the same as in the two-class model,
since the demand and replenishment rates are the same. We find
kUB such that 1�

PkUB

0 pkre with e¼10�8. We then find the
following expressions for EBOj(S,D):

EBO1ðS,DÞ ¼
XkUB

k ¼ Sþ1

Xk�S

l ¼ 0

ðk�S�lÞpkl

EBO2ðS,DÞ ¼
XkUB

k ¼ Sþ1

Xk�S

l ¼ 0

lUpkl
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Fig. 5–3. Transition diagram for combined model with full backordering.
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5.2. Combined models that incorporate critical levels

We refer to Kranenburg and Van Houtum (2008) for the model
with emergency shipments for both classes (Di¼2) and only
discuss the (partial) backordering models.
5.2.1. Combined model, backorder demands from all classes (Di¼0)

We follow Ha (1997b), who shows the optimality of only
clearing class 2 backorders once all class 1 backorders have
been cleared and the on-hand stock is at least C. Our
Markov chain (Fig. 5-3) consists of states (k,l), with k the
number in the pipeline and l the number of class 2 backorders:
We can simultaneously have stock on-hand and class 2
backorders, so we cannot derive the number of backorders
from the pipeline only. The Markov chain branches out at
S–C or more items in the pipeline (and thus at most C items
on-hand): then, class 1 demand is met from stock, with class 2
demand being backordered. Once we are out of stock, we also
backorder class 1 demand. Most replenishment flows go from (k,l)
to (k–1,l): we then clear class 1 backorders or increase
on-hand stock.

Since this model is very similar to the pure model with full
backordering, we use the same approach to compute kUB and find
the state probabilities. We find for EBOj(S,D,C):

EBO1ðS,D,CÞ ¼
XkUB

k ¼ Sþ1

Xk�SþC

l ¼ 0

maxf0,k�S�lgpkl

EBO2ðS,D,CÞ ¼
XkUB

k ¼ S�Cþ1

Xk�SþC

l ¼ 0

lUpkl

This Markov chain (and hence the state probabilities) only
depends on the value of S–C. Hence, we directly find the
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performance measures for all other policies with the same value
for S–C, which greatly reduces the computational burden of
analyzing item policies.

5.2.2. Combined model, backorder class 2 demand only (Di¼1)

We use state space (k,l) as before, see Fig. 5-4. However, once
we are out of stock now, denoted by states (k,k–S) with kZS,
the pipeline only increases further from class 2 demand. Increasing
on-hand stock to C has priority over clearing class 2 backorders.

We determine kUB by aggregating all demand and assuming
full backordering. Using this value, we then solve the resulting
balance equations. Note that our pipeline bound might be larger
than necessary, since we assume full backordering when computing
kUB. For the performance measures we find:

EBO2ðS,D,CÞ ¼
XkUB

k ¼ S�Cþ1

Xk�SþC

l ¼ maxf0,k�Sg

lUpkl

b1ðS,D,CÞ ¼ 1�
XkUB

k ¼ S

pk,k�S

6. Computational experiment

We conducted a numerical experiment, for which we state the
objectives in Section 6.1. Section 6.2 covers the problem instances
and Section 6.3 the results.

6.1. Objectives

Our objectives are: (i) to evaluate the two heuristics for
obtaining a near-optimal solution (i.e., local search and IP) in
terms of solution quality and computation time, (ii) to determine
whether and when selective emergency shipments are effective
for service differentiation, (iii) to compare selective emergency
shipments to critical level policies as differentiation tools, (iv) to
determine the added value of jointly using selective emergency
shipments and critical level policies for differentiation.
Table 6–1
Parameter values of the tested instances.

Parameter Values

1 Number of items I 25,100,400

2 Daily demand rate per item Mi� U[0,0.1], U[0,0.5]

3 Fractions of class demand per

item (mi1/Mi�;mi2/Mi�)

(0.2;0.8),(0.5;0.5),(0.8;0.2)

4 ðTi
reg; Ti

em
Þ (in days) (4;1),(8;1),(8;2),(16;2)

5 Item holding cost interval

(per unit per day)

[0.02;19.98],[0.2;199.8],[2;1998]

6 Target service levels

ðW1
max;W2

max
Þ (in hours)

(0.5,2),(0.5,4),(3,12),(3,24)

Table 6-2
Solution quality and computation times integer programming (IP) and local search (LS

Parameter Values Gap IP (%) Gap LS (%)

Average Maximum Average M

Number of SKUs 25 0.25 2.16 0.51 3.

100 0.02 0.11 0.05 0.

400 0.00 0.02 0.00 0.

Overall 0.09 2.16 0.19 3.
6.2. Experiment design

Table 6-1 shows the tested parameter values, based on the
values by Kranenburg and Van Houtum (2008) which in turn are
derived from observations in practice. We use ECi

em
¼ 1000 as

cost normalization. For each combination of parameters 1, 3, 4 and
6, we generate 4 random instances as follows: for each item, a
demand rate and holding cost is drawn from uniform distributions
on the given intervals, with the correlation between demand rates
and holding costs being �0.8. This is realistic, since fast movers tend
to have low (holding) costs in practice and vice versa. Except for the
demand rates and holding costs, all items in an instance have the
same parameter values. We have 3456 instances in total: we have
864 parameter combinations and 4 demand rate/holding cost
samples per combination.
6.3. Results

First, we evaluate the performance of the two heuristics
described in Section 4.3. Next, we investigate whether and when
the emergency shipment strategy has added value over one-size-
fits-all strategies. Finally, we compare the emergency shipment
policy to the critical level policy and determine the added value of
combining both policies.
6.3.1. Performance of the heuristics

We express the solution quality in terms of a relative gap to
the lower bound, defined as TCH�TCLB/TCLB, where TCH gives the
solution value of the heuristic (IP or Local Search). Table 6-2
shows the solution quality and computation times for different
numbers of items, the parameter with most impact. We used a
Intel quad core, 2.83 GHz processor. We see that integer program-
ming yields a gap to the lower bound less than half that of local
search on average. This gap clearly decreases with the number of
items. This is beneficial, because practical instances typically
contain hundreds of items. The computation times for both
methods are small, although the run times of IP increase greatly
with the problem size.
).

Computation time IP (s) Computation time LS (s)

aximum Average Maximum Average Maximum

81 0.10 0.64 0.01 0.06

35 0.14 0.73 0.03 0.73

08 1.48 10.34 0.50 2.66

81 0.58 10.34 0.18 2.66

Table 6-3
Savings of selective emergency shipments and OSFA BOþES over OSFA ES.

Parameter Values Savings over OSFA ES (%)

OSFA BOþES Selective em. shipments

Average Maximum Average Maximum

Holding cost
range interval

[0.02�19.98] 7.9 38.9 11.7 45.8

[0.2�199.8] 0.2 2.7 1.2 12.6

[2�1998] 0.1 1.9 0.3 3.0

Overall 2.7 38.9 4.4 45.8



Fig. 6–1. Fraction of items per shipment strategy for selective emergency shipments (SES) and OSFA BOþES (left) and fraction of items per holding cost interval

for SES (right).

Fig. 6–2. Overall average holding costs and demand rates per shipment strategy.

Table 6-4
Savings of different policies over OSFA ES.

Parameter Values Savings over OSFA ES (%)

Sel. em. ship.

(SES)

CLP

ES

CLPþSES

Treg – Tem (days) 4�1 7.6 5.8 16.1

8�1 4.5 8.5 14.3

8�2 4.1 7.5 13.1

16�2 1.5 9.7 12.1

Holding cost range
interval

[0.02�19.98] 11.7 0.5 16.2

[0.2�199.8] 1.2 8.3 10.5

[2�1998] 0.3 14.8 15.0

W1-max – W2-max
(hours)

0.5�2 1.4 4.4 6.2

0.5�4 1.4 7.6 10.4

3�12 7.4 8.4 16.7

3�24 7.5 11.1 22.4

Overall 4.4 7.9 13.9
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6.3.2. The added value of using emergency shipments

We compare our selective emergency shipment policy to a
one-size-fits-all policy with emergency shipments for all items
(OSFA ES), and a variant where we use either backordering or
emergency shipments for an item (OSFA BOþES). The latter
policy differentiates among items, but not among customer
classes. Backorder clearing is done first-come-first-served. Under
one-size-fits-all, we use a single customer class with maximum
waiting time W1

max. We use OSFA ES as a benchmark, since this is
common for testing critical level policies (e.g., Kranenburg and
Van Houtum (2008)). Table 6-3 shows the savings of OSFA BOþES
and our policy compared to OSFA ES. We also show the results for
different holding cost intervals, because this parameter has most
influence on the savings.

OSFA BOþES gives average savings of 2.7% over OSFA ES.
Selective emergency shipments yield additional average savings
of 1.7%, resulting in average savings of 4.4% over OSFA ES with a
maximum of 45.8%. The savings are largest when holding costs
are low, because emergency shipments are less appealing then:
it is cheaper to keep large stocks and reserve emergency ship-
ments for premium customer demand only. We also find large
savings when waiting time restrictions for class 1 demand are
loose (7.4% on average).

Fig. 6-1 displays on the left the fraction of items assigned to
each shipment strategy for OSFA BOþES and our policy (SES). The
figure to the right shows the division of items over shipment
strategies per holding cost interval for our policy. Both SES and
OSFA BOþES have roughly the same fraction of items where full
backordering is used (Di¼0). Clearly, we use the selective ship-
ment strategy (Di¼1) to limit using expensive emergency ship-
ments for both classes (Di¼2). On average, Di¼1 for 20% of the
items. This fraction increases to more than 40% when the holding
costs are low (see figure on the right).

Fig. 6-2 shows the average item holding costs and demand
rates per shipment strategy. Clearly, the selective strategy is
mainly used for expensive slow movers. Little or no stock is kept
of such items, making the shipment mode used crucial for meet-
ing waiting times: emergency shipments are used for premium
clients and non-premium requests are backordered.
6.3.3. Comparison to the critical level policy and a combined policy

We compare our policy to a critical level policy with emergency
shipments (CLP ES). Also, we investigate the benefits of combining
both policies (CLPþSES). Table 6-4 shows the relative savings of the
policies compared to OSFA ES. Critical level policies generally out-
perform selective emergency shipments, with average savings of 7.9%.
This is caused by the mode of differentiation: in critical level policies,
premium customers will often obtain a part right away. In contrast,
customers need to wait at least Ti

em time units for an emergency
shipment. The selective emergency shipment policy
is also less sensitive to the waiting time restrictions than the
critical level policy: the waiting time restriction for class 1 is usually
dominant. Then, increasing W2

max has little impact on the solutions
found.

Selective emergency shipments outperform critical level poli-
cies in cases with short regular shipment times, low holding costs,
and loose waiting time restrictions for class 1 demand. Then, it is
viable to meet (a part of) the demand through the regular channel
instead of expensive emergency shipments. Indeed, the fraction of
items for which Di is 0 or 1 is relatively high then (for the holding



Table A1
Performance comparison under exponential and deterministic lead times.

Shipment strategy Average deviation Maximum deviation

EW1(%) EW2(%) EW1(%) EW2(%)

Em. shipments for both classes 0.3 0.1 1.7 0.6

Em. shipments for premium

customers only

1.7 0.3 9.2 0.9

Backordering for both classes 8.8 0.7 14.1 1.5
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costs we can see this in Fig. 6-1). Note that selective emergency
shipments do not outperform CLP ES for the given waiting time
restrictions, but this happens if we further increase W1

max. Under
the mentioned conditions, the base stock levels with CLP ES tend
to be high to avoid expensive emergency shipments.

Obviously, the combined policy works best. Still the additional
gain is surprisingly large: it exceeds the combined savings of the
individual policies. The reason is that under CLP ES, the mean
waiting time for class 2 customers tends to be considerably below
the target; the class 1 target is usually the bottleneck. By
including selective emergency shipments, we are able to push
the actual performance of low priority customers closer to the
target (leading to deviations of 0.04% instead of 29% in the
experiments with 100 items).
7. Conclusions and discussion

We discuss our main findings and the complexity of various
model extensions.

7.1. Conclusions

First, we developed two heuristics that are accurate (average
gaps to the lower bound well below 1%) and fast. Clearly, greedy
approaches are not necessary to find good solutions: integer
programming with limited columns is simple and works well.
Second, selective emergency shipments have clear added value,
with average savings of 4.4% compared to one-size-fits-all poli-
cies. The approach also outperforms critical level policies when
holding costs are low, premium waiting times are not very tight,
and regular shipment times are short. Then, emergency ship-
ments are very expensive and should thus be avoided. Differ-
entiation through selective emergency shipments is most useful
for expensive slow movers, since the approach has most impact
when little or no stock is kept of an item. Finally, we find large
savings (13.9% on average) by jointly using critical levels and
selective emergency shipments for differentiation in spare parts
supply.

7.2. Model extensions

One obvious extension option is to consider more than two
customer classes: as the analysis of an item policy is separate
from the optimization of these policies, we can easily extend the
model to more customer classes, provided that we have at most
two classes per item policy: we require a new column generation
procedure, but the evaluation of an item policy does not change.
Kranenburg and Van Houtum (2008) find relatively large savings
by smartly assigning five customer groups over 2 main classes,
with the assignment being the same for all item policies. By
allowing this assignment to differ among item policies, we expect
that even larger savings are possible. If we use backordering for at
most 1 customer class, we can also analyze item policies with
more than 2 classes: the analysis then still remains simple, even if
critical levels are positive. Otherwise, each additional class adds
an additional dimension to the Markov chain, which complicates
the analysis. If critical levels are zero, we can find waiting times
by aggregating classes. However, if critical levels are positive and
differ per class, aggregation is not possible.

We also see simple options for extensions to customers with
multiple systems that might have common components:
instead of one waiting time restriction per customer class, we
now need a restriction for each combination of customer class
and system type. Separate restrictions per system type are
necessary if an item found in multiple systems has different
multiplicities per system. Then, that item’s waiting time will
influence each system’s waiting time differently. These new
restrictions will result in slight changes to the reduced cost
function of Section 4.2. Still, the solution approach will not change
greatly: the methods for analyzing item policies and finding
policies with negative reduced costs will not change.

Besides these simple extensions, we see more promising
research areas. One area is the use of better shipment strategies:
by also considering the system state when selecting a shipment
option, further savings might be possible (see Section 3.2).
Another area is that of multi-echelon systems: in such models,
we explicitly need to stock items at some location to meet
emergency requests, resulting in additional costs. Finally, we
see selective lateral transshipments between warehouses as an
additional promising differentiation option.
Appendix A. Sensitivity to lead time distribution

For a single-class system with emergency shipments,
Alfredsson and Verrijdt (1999) show that the performance mea-
sures do not depend on the distribution of the lead time. We
therefore test whether this observation still holds for a two-class
system. For 48 problem instances, we used simulation to find
mean waiting times per class for both deterministic and expo-
nential lead times. The regular shipment time is 5 or 10 days, the
emergency shipment time is 1 or 2 days, and the class demand
rates (m1;m2) are either (0.01;0.04) or (0.1;0.4).

Per shipment strategy, we compute the waiting time devia-
tions as a fraction of the exponentially distributed times. Table A1
shows the results for cases with waiting times of at least 10�3.
We find that the lead time distribution still has little influence on
the waiting times: in general, the average deviations are small.
The deviations increase as backordering is used for more classes,
particularly for class 1 waiting times, but the differences remain
reasonable even under full backordering (we find deviations of
14% when EW1 is 1.5 and 1.7, respectively). Also, in practice we
expect waiting times under backordering to show more varia-
bility than those under emergency shipments, especially when
items are repaired (as is common for expensive slow movers).
Under full backordering, we thus expect exponential shipment
times to characterize the supply process more accurately than
deterministic times.
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