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Diffuse Reflectance Spectroscopy: A New
Guidance Tool for Improvement of Biopsy

Procedures in Lung Malignancies
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Michel W. Wouters,1 Gerald W. Lucassen,2 Benno H.W. Hendriks,2

Jelle Wesseling,3 Theo J.M. Ruers1,4

Abstract
Procedural accuracy of percutaneous intrathoracic biopsies can be improved with diffuse reflectance spec-
troscopy (DRS). Normal and malignant lung tissue from 10 patients after resection was examined with a DRS
system. Maximum sensitivity for discrimination between normal and malignant tissue was 89%, and speci-
ficity was 86%. DRS can enhance diagnostic accuracy in biopsy procedures in the lungs in combination with
conventional imaging techniques.
Background: A significant number of percutaneous intrathoracic biopsy procedures result in indeterminate cytologic
or histologic diagnosis in clinical practice. Diffuse reflectance spectroscopy (DRS) is an optical technique that can
distinguish different tissue types on a microscopic level. DRS may improve needle localization accuracy during biopsy
procedures. The objective of this study was to assess the ability of DRS to enhance diagnosis of malignant disease
in human lung tissue. Methods: Ex vivo analysis with a DRS system was performed on lung tissue from 10 patients
after pulmonary resection for malignant disease. Tissue spectra measured from 500 to 1600 nm were analyzed using
2 analysis methods; a model-based analysis that derives clinical and optical properties from the measurements and
a partial least-squares discriminant analysis (PLS-DA) that classifies measured spectra with respect to the histologic
nature of the measured tissue. Results: Sensitivity and specificity for discrimination of tumor from normal lung tissue
were 89% and 79%, respectively, based on the model-based analysis. Overall accuracy was 84%. The PLS-DA
analysis yielded a sensitivity of 78%, a specificity of 86%, and an overall accuracy of 81%. Conclusions: The
presented results demonstrate that DRS has the potential to enhance diagnostic accuracy in minimally invasive
biopsy procedures in the lungs in combination with conventional imaging techniques.
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Introduction
Essential first steps in the diagnostic work-up after detection of a

suspected lung mass include describing the anatomic extent as well as
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the cellular origin of the tumor. Biopsy or fine needle aspiration of

the lesion for further analysis is a crucial step in this process. For

intrathoracic lesions, this is often performed percutaneously. Correct

localization of the biopsy needle within the target lesion is essential

for success of this procedure and is frequently performed with image

guidance using computed tomography (CT).

Recent studies have reported varying figures of overall accuracy for

thoracic biopsies, ranging between 67% and 96%.1-5 The main factors

influencing biopsy accuracy are location and size of the intrathoracic

lesions as well as respiratory motion during the biopsy procedure. More-
over, even correct localization of the biopsy needle within the target

lesion can still result in indefinite pathologic diagnosis when the biopsy
consists only of necrotic cell debris. Hence a considerable number of
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patients undergoing percutaneous biopsies will subsequently require a
repeated biopsy or even surgical intervention to obtain tissue material for
diagnosis before an individualized treatment plan can be initiated.

In recent years, promising achievements in specific tissue discrim-
ination have been made in the field of diffuse reflectance spectros-
copy (DRS), which may allow improved accuracy in cancer diagnos-
tics.6-8 With this optical technique, changes in the spectral
distribution of light as a result of either absorption or scattering of
light are recorded after the light has interacted with molecules in
tissue. Subsequently, the collected spectral information is translated
into morphologic and physiologic information. Changes in human
tissue associated with malignant transformation include alterations
in cellular composition, metabolic rate, vascularity, intravascular ox-
ygenation, and tissue morphologic characteristics. DRS is sensitive to
such changes in tissue, enabling discrimination between normal tis-
sue and tumor. Ultimately, incorporation of this technology into
biopsy needles may improve tip localization of the biopsy needle
within the tissue compared with image-guided localization.

Many human tissue types have been subjected to optical spectros-
copy with promising results for clinical application of this technique.
Only a few studies involving optical spectroscopy have focused on
the characterization of human lung tissue. Those published mainly
involved the incorporation of DRS or fluorescence spectroscopy (FS)
into bronchoscopy tools.9-13 Detection of superficial abnormalities

uring bronchoscopy procedures was proved to be enhanced with

Figure 1 (A) Photograph of a Resected Lung Sample Showing
Normal Lung Tissue With Macroscopic Pink Appearan
Alveoli. (D) Lung Tumor Tissue
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se of spectroscopy techniques within this setting. Sensitivity of DRS
nd FS ranged between 70% and 86%, and specificity ranged be-
ween 68% and 82%.

Recently, we developed and validated a novel DRS system com-
ining detection of the visual (VIS) and near-infrared (NIR) light
pectrum.14-17 In contrast to most previous studies with DRS that
ocus on the VIS part of the spectrum, we included the NIR (1000-
600 nm) spectrum, which enables one to determine accurately wa-
er and lipid content in tissue, as these 2 biological substances mainly
bsorb light of wavelengths � 900 nm.14

The aim of this article is to assess the discrimination accuracy of
our DRS system in normal lung tissue and tumor in an ex vivo
analysis.

Materials and Methods
Clinical Study Design

This study was conducted at the Netherlands Cancer Institute
(NKI-AVL) with approval of the internal review board committee.
Lung tissue was obtained from 10 patients who had undergone pul-
monary resection (lobectomy or segmental resection) for primary
non–small-cell lung cancer or pulmonary metastases.

Directly after resection, tissue was transported to the pathology
department for optical spectroscopy analysis. After gross inspection
by the pathologist, the optical spectra were collected from macro-
scopic normal tissue and tumor samples. Spectroscopy measure-
ments were performed on freshly excised tissue within 2 hours after
resection. Each specific measurement location was digitally photo-

t Through the Tumor. (B) An Example of a Pathology Slide of
C) Macroscopic Darker Appearance Resulting From Collapsed
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graphed during the procedure. Figure 1A depicts a photograph of a
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resected lung sample with a cut through the tumor. A total of 330
optical measurements were performed on 67 tissue locations of both
normal lung tissue and tumor. Resection specimens were then fixed
in formalin. The measurement locations were subsequently selected
and excised according to the measurement locations on the photo-
graphs. These tissue samples were embedded in paraffin, cut in 2- to
3-�m-thick sections and stained with standard hematoxylin/eosin.

n experienced pathologist, who was blinded for the outcome of the
pectroscopy analysis, examined the histologic slides.

Instrumentation
The instrumentation and calibration procedure of our optical

spectroscopy model have been described recently by Nachabé
et al.14-17

In short, ex vivo diffuse reflectance spectra were measured with a
portable spectroscopic system as described earlier.17 The system con-
sists of a console comprising a tungsten/halogen broadband light
source and 2 spectrometers. The spectrometers resolve light either
between 400 and 1100 nm (DU420A-BRDD, Andor Technology,
Belfast, Northern Ireland) or from 800 to 1700 nm (DU492A-1.7,
Andor Technology). An optical probe containing 3 optical fibers is
connected to the optical setup. As depicted in Figure 2, 1 fiber is
connected to the light source and the other 2 fibers are connected to
the spectrometers to collect diffusely scattered light from the tissue.
The optical probe has a diameter of 1.3 mm. The illumination op-
tical fiber is located at a distance of 2.48 mm from the 2 side-by-side
optical fibers that are used to collect the diffused light. Such a setup
enables spectral acquisition in the range between 500 and 1600 nm
by an optical fiber with its distal end placed against the samples.

Light-Tissue Interaction and Optical Spectroscopy
The light delivered by the illumination optical fiber is subject to

optical absorption and scattering. Each biological substance in the
probed tissue has its intrinsic optical absorption property as a func-

Figure 2 Schematic of the DRS Optical Setup

Laptop

Light source

Visible spectrometer

Infrared spectrometer
tion of wavelength. The most common biological substances that
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absorb light are blood-derived chromophores such as oxygenated and
deoxygenated hemoglobin, water, and lipid.14 Oxygenated and de-
oxygenated hemoglobin have the most dominant absorption coeffi-
cients in the wavelength range � 900 nm, whereas water and lipid
have the most dominant absorption coefficient � 900 nm.14 Each of
these chromophores has a well-determined optical absorption spec-
trum, which is available in the literature.14 The total absorption
coefficient corresponds to the sum of each of these chromophore-
specific absorption coefficients weighted by the respective volume
fraction that it occupies within the total probed volume. In addition
to absorption, light is also subject to optical scattering in tissue be-
cause of its morphologic irregularities at a structural level yielding
deflection of the light rays after interaction with the different sub-
stances present in tissue. The optical scattering is defined by a re-
duced scattering amplitude at an arbitrarily given wavelength (eg, at
800 nm) and a slope. The diffused light that is collected at the
detection optical fibers corresponds to a nonlinear mathematical re-
lation of the wavelength-dependent absorption and scattering prop-
erties.18 The volume of the probed diffused light in tissue is mainly

ependent on the absorption and scattering properties as well as
n the distance between the illumination and collection fibers. Given
he specification of the optical probe that was used in this study and
he range of tissue absorption and scattering properties over the
avelength range of interest (ie, 500-1600 nm), the average probed
olume is roughly 5 mm3

.

Spectral Data Processing
Two different lung tissue types were classified in the spectral data

processing: normal lung tissue and tumor. Furthermore, measured
spectra from all included measurement locations were separated into
either the training data set (n � 171 optical measurements from 35
tissue locations) or the validation data set (n � 159 optical measure-
ments from 32 tissue locations). This was accomplished by randomly
dividing measurement sets from different tissue locations of both

Optical probe with three fibers

1.3 mm

2.48 mm
normal lung tissue and tumor collected from each patient between
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the 2 data sets. The histologic breakdown of the optical measure-
ments performed in these patients is displayed in Table 1.

Finally, all acquired spectra were analyzed in 2 ways: first, an
analytic model derived from the diffusion theory was used to esti-
mate the various chromophore volume fractions and scattering coef-
ficients.18 Second, a statistical classification of the tissue spectra was

erformed using partial least-squares discriminant analysis
PLS-DA).19

Model-Based Analysis. Validation of the analytic model that was
used to recover the chromophore volume fractions and scattering
coefficients from the measurements has recently been de-
scribed.14-17 Diffuse reflectance spectra measured from the tissue

ere fitted over the wavelength range from 500 to 1600 nm. A
onlinear Levenberg-Marquardt inversion algorithm was used to
stimate the various unknown chromophore volume fractions
rom the spectra within the analysis wavelength range. This in-
ersion consists of determining the optimum volume fractions of
he chromophores of interest as well as the reduced scattering
mplitude (which we arbitrarily defined at 800 nm) and slope,
hich best minimizes the residual between the model and the
easurement.15 A total blood volume fraction is computed as the

um of the estimated oxygenated and deoxygenated hemoglobin
olume fraction by considering a total hemoglobin concentration
f 150 mg/mL of blood; oxygenation level in tissue is computed as
he ratio of oxygenated hemoglobin to the total blood volume
raction. The other parameters related to absorption are the water
olume fraction and adipose tissue volume fraction. The absorp-
ion coefficient of each of these chromophores in its pure state is
sed as a priori knowledge during the fitting procedure. An ex-
mple of a spectral measurement on a normal lung sample and a
umor sample with the corresponding fitting curve are shown in
igure 3. The spectral characteristics analysis was performed with
ATLAB software package (MathWorks Inc, Natick, MA).
uantified mean values for tissue parameters were calculated

ased on all tissue measurements and were displayed in box plots.
Subsequently, we used the data from the training data set to design

decision tree for automated discrimination between normal lung
issue and tumor. This was performed using Gini index maximization
nd has recently been described by Nachabé et al.17 By applying this
valuation method, thresholds of the most significantly discriminat-
ng tissue parameters were determined from which all included tissue

easurements could be differentiated into either tissue class with the
east number of evaluation steps. The calculated thresholds were

Table 1 Histologic Breakdown of Tissue Samples Used for Dat

Measured Tissue Types

Optical Measurement
Locations

(Training � Validation Set)
n � 67

Optica
(Training

Normal Lung Tissue 30

Tumor 37
epicted as a decision tree.
PLS-DA Analysis. Partial least-squares (PLS) analysis is a regression
ethod to find a linear relationship between a response variable Y

tissue type class) and the independent variable X (spectra). The
ethod is based on finding a number of principal components that

epresent as much of the variance in X as possible and are relevant to
he response variable Y. The PLS model is generated using part of the

data, the training data set. A discriminant analysis (DA) method is
subsequently performed to obtain thresholds for discriminating the
different responses (tissue classes). Prediction of class (tissue type) on
the remaining data (the validation data set) is obtained by comparing
the predicted PLS scores with the DA thresholds. The measured tissue
type is assigned to 1 of the 2 predefined tissue classes depending on the
PLS scores. The PLS-DA algorithm scripts were implemented in MAT-
LAB 7.2 (MathWorks) using PLS Toolbox 5.8 (Eigenvector Research,
Inc, Wenatchee, WA).

Statistical Analysis
The DRS-estimated quantification of each parameter in the lung

tissue cannot be described by a parametric distribution such as the

alysis (N � 10 Patients)

surements
alidation Set)
330

Optical Measurement
Locations

(Validation Set)
n � 32

Optical Measurements
(Validation Set)

n � 159

5 14 66

5 18 93

Figure 3 Example of Spectral Measurements in Normal Lung
Tissue With Macroscopic Pink Appearance (See
Figure 1B) (Blue or Point-Marked Curve) and Tumor
Tissue (Red or Circle-Marked Curve) and
Corresponding Fits (Black or Solid Line Curves)
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Gaussian distribution. The statistical differences between the 2 dis-
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tinguished lung tissues were therefore determined using a nonpara-
metric Kruskal-Wallis test.20 P values smaller than .05 were consid-
red statistically significant.

Discriminative accuracy for both the model-based and PLS-DA
nalysis were determined by comparing the means of all tissue spectra
rom each measurement location of the validation data set to the
hresholds yielded from each analysis method and assigning each
ollected tissue spectrum to either defined tissue class. These results
ere then compared with the histologic analysis and were subse-
uently presented in terms of sensitivity, specificity, and overall
ccuracy.

Results
Five of the included patients were men and 5 were women. All

patients were smokers and the average age was 61 years (range 38-74
years). Six of the patients had undergone neoadjuvant treatment.
Eight of the measured tumors were primary lung tumors and the
remaining 2 measured tumors were metastases from the colon and
from a melanoma.

Tissue Parameter Quantification
Tissue parameter quantification was performed as part of the

model-based data analysis using all of the 330 collected optical spec-
tra. Quantification was primarily performed on all relevant tissue

Figure 4 Box Plots of Diagnostically Relevant Tissue Paramete
Measurement Locations
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Abbreviations: Hb � HbO2 � total hemoglobin volume fraction (P � � .001); H2O � wat
scatteringcoefficient at 800 nm (P � .009).
parameters as well as on the reduced scattering coefficient at 3 dif-
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ferent wavelengths. The tissue parameters with the most discrimina-
tive relevance were total hemoglobin volume fraction, water volume
fraction, adipose tissue volume fraction, and reduced scattering coeffi-
cient at 800 nm (Figure 4). Significant statistical differences were
demonstrated only for hemoglobin volume fraction (P � .001) and
educed scattering coefficient at 800 nm (P � .01).

Classification Accuracy
Model-Based Analysis. The computed decision tree based on tis-

sue parameter thresholds is demonstrated in Figure 5. The means
of all collected tissue spectra from each measurement location
could be assigned to either tissue class based on thresholds yielded
from hemoglobin volume fraction and reduced scattering coeffi-
cient in a 2-step analysis. Results from the tissue parameter quan-
tification of the validation data set were analyzed according to the
defined thresholds. Compared with the histologic analysis, overall
discriminative accuracy of the model-based analysis was 84%
(Table 2).

PLS-DA Analysis. Results from the PLS-DA classification analysis
of the spectra are displayed in Figure 6. For several measurements,
difficulty discriminating between normal lung tissue and tumor was
apparent. Overall discriminative accuracy of the PLS-DA analysis

� 330 Tissue Measurements From 67
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was 81% (Table 3).
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Discussion
To our knowledge, this report demonstrates the first published

results of a novel diffuse reflectance spectroscopy system, combining
the analysis of spectral results after ex vivo lung tissue illumination
with both visual and near infrared light. Research with DRS on other
human tissue has proved the potential of this technique for tissue
discrimination. As yet, including near-infrared spectra beyond 1000
nm has not been performed.21-25 The advantage of having an addi-
ional spectrometer that resolves light � 900 nm is the possibility of
easuring spectra in a range in which water and lipid have high

bsorption coefficients.14 Therefore accurate volume fractions of
hese biological substances can be determined and used for classifi-
ation in addition to the commonly used blood-derived chro-
ophores and scattering parameters.9,10 Although no significant dif-

erences were observed between normal tissue and tumor in water,

Figure 5 Discriminative Thresholds for Automated Discriminati
Tree. Thresholds Were Calculated Based on Quantific
Measurement Locations

µs′  < 23.5 cm–1 µs′  ≥ 23.5 cm–1

NORMALTUMOR

Hemoglobin
volume fraction

< 3.9 % 

Abbreviation: �s’ � reduced scatter coefficient.

Table 2 Model-Based Classification Accuracy of DRS
Measurements of Lung Tissue Divided into 2
Classes Compared With the Pathologic Analysis
(N � 32 Measurement Locations)

Model-Based Analysis/
Pathologic Analysis Tumor Normal Lung

Tissue

Tumor (n � 18) 16 2

Normal Lung Tissue (n � 14) 3 11

Sensitivity � 89%; Specificity � 79%; Overall accuracy � 84%.
igure 4 shows that estimated water distribution is skewed to higher c
alues in tumor than is normal lung tissue. We expected that the
ater volume fraction would be significantly higher in tumor tissue

etween Normal Lung Tissue and Tumor Depicted In a Decision
of Tissue Spectra From the Training Data Set; n � 37

Hemoglobin
volume fraction

≥3.9 % 

µs′  < 31 cm–1

NORMAL TUMOR

µs′  ≥ 31 cm–1 

Figure 6 PLS-DA Classification of the Spectra of DRS
Measurements Comparing Normal Lung Tissue With
Malignant Tissue. Each Square Represents a Tissue
Measurement From Which the Spectrum is Compared
With the Spectral Thresholds Acquired From the
Training Data set Analysis; n � 32 Measurement
Locations. Red Circles Represent the Histologic Diagnosis
Tumor and Green Squares Normal Lung Tissue
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filled alveoli compared with more solid tumor tissue containing no
air. Because of the design of the study, most of the measured normal
lung tissue samples had a dark appearance. The pathologic analysis of
these tissue samples showed collapsed alveoli in the normal lung
tissue, which caused the darker appearance (Figure 1C). The mea-
surements in normal lung tissue with collapsed alveoli and a subse-
quent decreased fraction of air could hamper the discrimination of
normal lung tissue vs. tumor based on water content. This phenom-
enon would not be expected in an in vivo setting with mainly air-
filled alveoli. Therefore DRS measurements including the NIR light
spectrum, which would make determination of to the water volume
fraction more accurate, could be valuable for discrimination in an in
vivo setting. From the box plots, one can further notice that normal
lung samples have a significantly higher blood volume fraction than
seen in tumors. This can be seen in Figure 1A, with the malignant
white lesion surrounded by normal lung tissue. The scattering of
tissue is higher in normal tissue than in tumor samples according to
the box plots. This is mainly due to the pockets of trapped air in the
alveoli of normal lung tissue (even after excision) that yield to greater
light scattering (related to refractive index changes in tissue) as op-
posed to the solid tumors.

Using 2 different data analysis methods, our DRS system yielded
a promising overall discriminative accuracy of 84% for the model-
based data analysis and 81% for the PLS-DA analysis compared with
the pathologic analysis. These results indicate that DRS has the
potential to enhance diagnostic accuracy during minimally invasive
thoracic procedures in combination with conventional imaging
techniques.

In clinical practice, the main objective for correct localization of
the needle within the target lesion is accurate identification of the
tumor itself. High specificity of an imaging modality is therefore the
most important parameter. Hence the higher the specificity, the less
indeterminate results can be expected. In previously published arti-
cles, specificity for thoracic biopsies (mainly performed with CT
guidance) ranges from 83% to 97%, thus resulting in indeterminate
biopsy results in 3% to 17% of patients.1-5 An indeterminate biopsy
esult is defined as a biopsy that was thought to be taken from the
arget lesion but cannot be characterized as malignant tissue by the
athologist. A combination of biopsy with CT imaging and dis-
layed DRS incorporated in a biopsy needle could in theory improve
his biopsy specificity. This hypothesis, however, will have to be

Table 3 PLS-DA Classification Accuracy of DRS
Measurements of Lung Tissue Divided into 2
Classes Compared With the Pathologic Analysis
(N � 32 Measurement Locations)

PLS-DA/Pathologic
Analysis Tumor Normal Lung

Tissue

Tumor (n � 18) 14 4

Normal Lung Tissue
(n �14) 2 12

Sensitivity � 78%; Specificity � 86%; Overall accuracy � 81%.
Abbreviations: PLS-DA � partial least squares discriminant analysis; DRS � diffuse reflectance
spectroscopy.
roved in future in vivo experiments.

Clinical Lung Cancer November 2012
Additional arguments can be given about the expected feasibility
f DRS in an in vivo analysis. First, we would expect tissue scattering
o have a more significant discriminative effect in an in vivo analysis.
ence in the in vivo setting the alveoli will be filled with air. The

xpected scattering will therefore be higher compared with the ex
ivo collapsed alveoli because of the larger refractive index mismatch
etween air and human tissue. Thus the expected difference in the
cattering coefficient compared with solid tumor will be larger. Sec-
nd, we expect the water volume fraction to show more difference
etween the normal tissue and tumor tissue because of the air-filled
lveoli. Third, we expect a greater number of significant discrimina-
ive tissue parameters in in vivo measurements. The main discrimi-
ative tissue parameters in this study were total hemoglobin volume
raction and the reduced scattering coefficient at 800 nm. Fawzy et al
nd Bard et al both demonstrated similar results with these tissue
arameters in their in vivo analysis of bronchial mucosa.9,12 Another

important distinguishing parameter in their studies was tissue oxygen
saturation. Both studies demonstrated tissue oxygen saturation to be
diminished in cancerous lesions in comparison with normal lung
tissue. In our DRS analysis, no significant differences in tissue satu-
ration were displayed between normal lung tissue and tumor. Overall
fitting results of our optical measurements revealed an average oxy-
genation in normal lung tissue of 31% (SD � 22%) compared with
24% (SD � 22%) in measured tumor tissue (data not displayed).
This is most likely due to the nature of this analysis and the ex vivo
optical measurements. Moreover, during the operation the target
tissue specimen is progressively deprived of blood circulation before
final resection is performed.

For future analysis we plan to combine DRS with FS. Discrimi-
native accuracy of such a combined spectroscopy system has been
proved superior to each spectroscopic technique alone in 2 recent
studies of human breast tissue.26,27 Thus an overall improvement of
our discriminative accuracy is to be expected in future in vivo exper-
iments on lung tissue.

Although our results are promising, a critical assessment must
be made. First, although analyses were performed on a significant
number of measured spectra that are comparable to quantities in
previously published studies, a restricted number of patients (n �

10) and tissue specimens were used. Heterogeneity between pa-
tients could have a negative effect on the discriminative accuracy.
Second, total hemoglobin volume fraction was demonstrated to
be the main discriminative parameter. It is unclear what the dis-
criminative value of a comparable analysis of lung tissue in an in
vivo setting would be in case of local hemorrhage caused by the
optical needle. Hence local hemorrhage during minimal invasive
spectroscopy measurement could have a negative effect on optical
measurement because of the absorption properties of hemoglobin
in the visual spectrum.

In conclusion, a novel diffuse reflectance spectroscopy system was
presented for analysis of human lung tissue. Overall discriminative
accuracy of the DRS system compared with the pathologic analysis
was 84% and 81% for model-based and PLS-DA analysis, respec-
tively. Based on the presented results, we conclude that DRS has the
potential to enhance diagnostic accuracy in minimally invasive pro-

cedures of the lungs. In vivo experiments are currently being per-
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formed by our group to confirm these results as a next step toward
clinical application.

Clinical Practice Points
● A significant percentage of percutaneous intrathoracic biopsies are

not conclusive. Improved accuracy of imaging modalities could
enhance biopsy accuracy.

● DRS has been demonstrated to discriminate accurately between
tissue types based on differences at a cellular level. Furthermore,
DRS can be incorporated into minimally invasive medical tools,
eg, a biopsy needle.

● To our knowledge, this is the first experiment in which DRS was
used to discriminate normal peripheral lung tissue from malignant
tissue.

● The results of this first analysis demonstrate an overall discrimina-
tive accuracy between normal and malignant lung tissue of 84%
and 81% based on 2 different data analysis methods.

● These results indicate that DRS has the potential to enhance di-
agnostic accuracy during minimally invasive thoracic procedures
in combination with conventional imaging techniques.

● In vivo experiments are currently being performed to confirm
these results as a next step toward clinical application. If these
results are confirmed in vivo, we believe DRS could improve the
clinical accuracy of lung biopsies in the near future.
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