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Power of IRT in GWAS: Successful QTL Mapping of Sum Score
Phenotypes Depends on Interplay Between Risk Allele Frequency,

Variance Explained by the Risk Allele, and Test Characteristics
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As data from sequencing studies in humans accumulate, rare genetic variants influencing liability to disease and disorders
are expected to be identified. Three simulation studies show that characteristics and properties of diagnostic instruments
interact with risk allele frequency to affect the power to detect a quantitative trait locus (QTL) based on a test score derived
from symptom counts or questionnaire items. Clinical tests, that is, tests that show a positively skewed phenotypic sum score
distribution in the general population, are optimal to find rare risk alleles of large effect. Tests that show a negatively skewed
sum score distribution are optimal to find rare protective alleles of large effect. For alleles of small effect, tests with normally
distributed item parameters give best power for a wide range of allele frequencies. The item-response theory framework
can help understand why an existing measurement instrument has more power to detect risk alleles with either low or high
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INTRODUCTION

Many diagnostic instruments for a disorder consist of
symptom counts. Often the disorder can be seen as the ex-
treme tail of a continuous liability trait: the higher the li-
ability, the more likely a subject shows certain symptoms.
High-liability persons will have many symptoms and on the
basis of a diagnostic criterion are then labeled as affected
with the disorder of interest. In some instances, genome-
wide association (GWA) studies are applied on symptom
count data, rather than diagnosis, as this allows using more
information [Van der Sluis et al., 2012].

Item-response theory (IRT) provides a formal statistical
framework for modeling liability and diagnosis, and its ap-
plication in the medical sciences is increasing [Reise and
Waller, 2009]. IRT has also been successfully applied in ge-
netics [Eaves et al., 2005; Van den Berg et al., 2007, 2010;
Van Leeuwen et al., 2008]. It provides a useful framework
for understanding the relationship between measurement
problems and problems in detecting genetic variants. For
example, using this IRT framework, Van der Sluis et al.
[2010] showed that ignored multidimensionality, measure-
ment bias, and poor reliability can result in poor statistical
power in QTL-mapping studies.

Here, we show how power is associated with test char-
acteristics using different study designs, and how this is
association is moderated by allele frequency. We link the
simulation results to the IRT concept of “test information.”

We start out with a brief introduction to IRT and so-called
test information functions (TIFs). Next, we describe how
this framework makes predictions about statistical power in
QTL mapping. Three simulation studies demonstrate the in-
tricate relationship between study design, allele frequency,
and the TIF.

ITEM-RESPONSE THEORY
IRT models item data as a function of both item char-

acteristics as well as person characteristics [Embretson and
Reise, 2000; Lord, 1980; Lord and Novick, 1968]. An item can
be anything from a symptom that is scored in a diagnostic
interview as being either present or absent, or an item on a
self-report questionnaire that can be answered with yes or
no. Items do not have to be dichotomous (i.e., yes/no, or
1/0), but for clarity of exposition, we focus on dichotomous
items in our descriptions. In the Discussion, we expand on
alternative data types.

The one-parameter logistic IRT model for dichotomous
items, or so-called Rasch model, is

P
(
Xi j = 1

∣∣�i , � j
) = 1

1 + exp
(
� j − �i

) (1)

where P(Xij = 1) is the probability of a positive response for
person i on item j (or the presence of symptom j). Parameter
�i is the person parameter for person i and can be thought of
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as person i’s liability for a disorder. Parameter �j is the item
parameter for item j. In educational measurement, this �
parameter is usually called the difficulty parameter, where
it refers to the difficulty of a cognitive test item. A high �
value indicates a difficult item, with an overall low probabil-
ity of making the item correct; only high ability individuals
have a reasonable chance of giving a correct answer. Analo-
gously, for questionnaire and clinical data, a high value for
�j indicates a high threshold for a positive response on a
questionnaire, or a high threshold for a symptom. A high
� value therefore corresponds to low symptom prevalence,
as the symptom is not endorsed by many persons. As can
be seen in equation (1), when �i = �j, the probability of a
positive response is 50%. When �i > �j, the probability of a
positive response is higher than the probability of a nega-
tive response, and vice versa for �i < �j. In order to make
the modeling statistically identifiable, it is usually assumed
that the population mean for parameter � equals 0.

The logistic curve for P(Xij = 1) in equation (1) is sig-
moidal (see Figure 1) and has its maximum slope at �i = �j:
at this point, the change in P(Xij = 1) as a function of � is at
its maximum, rendering maximum discrimination between
those individuals with � values below � (more likely to
have a negative response) and those individuals with � val-
ues above � (more likely to have a positive response). Thus,
in Figure 1, the slope of the left curve is at its maximum at
� = –1.5, whereas the right curve has its maximum slope
at � = 1.5. Discriminatory power of an item is at its lowest
at � values very far removed from �; for example, in the
curve on the left in Figure 1 (� = –1.5), individuals with
high � values will all have a probability of nearly one for a
positive response; but individuals with even higher � values
have about the same probability. All are very likely to have
the same positive response. An item j therefore yields very
little information about individuals and individual differ-
ences at � levels far removed from �j.

The information that an item j with known �j gives about
a trait � is therefore a function of �. For the one-parameter
model, the Fisher information from item j is

I j (�) = Pj (�)
(
1 − Pj (�)

)
(2)

where Pj (�) is the probability of a positive response for item
j for a person with liability = � . The one-parameter model
can be extended to a two-parameter model, where the slope

Fig. 1. Item-response curves: The probability of a positive re-
sponse plotted as a function of � (see equation (1)) for two differ-
ent values for � (left –1.5, right 1.5).

of the item-response curve can vary over items, and by con-
sequence the peaked-ness of the item information functions,
but for clarity of exposition, we focus on the one-parameter
logistic IRT model of equation (1). In the Discussion, we
expand to the two-parameter model.

The information provided by all test items on trait � com-
bine additively to the overall shape of the TIF,

TIF (�) =
k∑

j=1

I j (�) (3)

and with [TIF(�)]−1/2, we have a formula for the standard
error of measurement [SEM; Lord, 1980]. Thus, at � levels
where test information is high, the SEM for the maximum
likelihood estimate is small, so that we have high measure-
ment precision. At those levels, it is possible to discriminate
between individuals of different levels. With high informa-
tion content, a small difference in � level is associated with
a difference in response pattern (more or fewer endorsed
items, i.e., a different phenotypic sum score). At � levels
with little information, slight differences in � do not result
in different response patterns (sum scores), so there is no
information to discriminate among individuals. Figure 2
shows a number of TIFs (top row), with varying distribu-
tions of the � values for the items. For instance, for a test with
� values uniformly distributed between 1 and 3 (test sce-
nario “Right”: all items have low endorsement probabilities,
therefore high � values), information reaches its maximum
on the right-hand side of the distribution. Persons with high
liability will therefore show variation in their sum scores,
but not the persons with low liability.

RELATIONSHIP BETWEEN TEST
INFORMATION AND DISTRIBUTION
OF SUM SCORES

The TIF is directly related to the shape of the distribu-
tion of sum scores. If the TIF is symmetric and centered
around the average liability value of the population, the
resulting distribution of sum scores will be symmetrical,
too. If however the TIF has its maximum at the right-hand
side of the scale, that is, for above-average levels of �, the ex-
pected distribution of sum scores will be positively skewed.
This is observed, for example, when clinical tests are used
in population samples: most of the items on clinical tests
or diagnostic instruments will have low response rates, as
they relate to symptoms that less than half the normal pop-
ulation is likely to exhibit. For such items, the probability
of a positive response will exceed 50% only for individu-
als with high values on the liability trait. The � values for
such items will therefore also be highly positively valued
(equation (1)), with a resulting TIF that has its maximum at
a relatively high � level. All individuals with average and
below-average liability values will have low to very low
probability of symptoms, so many will have a sum score of
0 and there is no further distinction possible among them.
On the other hand, there will be quite some variation in
number of symptoms for above-average trait values. As a
result, we see a skewed distribution of symptom counts.
So in short, for a given population with the average trait
level defined as � = 0, we expect a positively skewed sum
score distribution when most of the � values are positive, a
negatively skewed sum score distribution when most of the
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Fig. 2. Test information functions for different types of tests, each consisting of 20 items, but different distributions of the items’ � values
(top row, see text for explanation of the labels.). Bottom row shows corresponding distributions of sum scores when simulating data
from 1,000 individuals with � values drawn from a standard normal distribution.

� values are negative, and more symmetrical when the �
values are scattered across the continuum. Figure 2 shows
a number of example TIFs and the typical sum score dis-
tributions that result from these (based on simulated data
for a 20-item test). The labels “Right,” “Left,” “Uniform,”
and “Normal” refer to the distribution of the values of the
� parameters in a test: “Right” � ∼ U(1, 3), “Left” � ∼ U(–3,
–1), “Uniform” � ∼ U(–3, 3), and “Normal” � ∼ N(0, 1). Ob-
serve in Figure 2, that if the distribution of the � parameters
is uniform on the [–3,3] continuum (Uniform), the resulting
sum score distribution shows lower variance than if the �
parameters are standard normally distributed (Normal).

TEST INFORMATION AND POWER IN
DIFFERENT GENE-MAPPING STUDY DESIGNS

As with any mapping study, the power to find a QTL for
a liability trait crucially depends on having a data set where
there is both genotypic variation and phenotypic variation.
More specifically, in the case of sum score phenotypes: there
should be sum score variation among those individuals that
have different genotypes. If all heterozygotes Aa have the
same sum score or the same case-control status as homozy-
gotes AA, there would be lower power to detect a QTL than
a situation where heterozygotes have a different average

sum score than homozygotes. If a risk allele has a strong
phenotypic effect, one would expect that there would be
AA, Aa, and aa individuals that have above-average liabil-
ity, assuming an additive model of action of the A allele.
The below-average liability individuals will be mostly aa
(see Figure 3). The interesting genotypic variation therefore
exists at the right-hand side of the liability scale. It is then
important to have good measurement resolution at that part
of the scale: one would want the three different genotypes to
have different average sum scores. Thus, as a general rule,
we expect that the power to detect a QTL for a risk allele
with frequency smaller than 0.5 and with a large effect is
best for tests that have a lot of test information at high trait
levels. Conversely, we expect that the power to detect a QTL
for a risk allele with a high frequency (>0.5; that is, rare pro-
tective alleles) and of large effect is best for tests that have
high levels of test information at low trait levels. Following
the same logic, studying the expected liability distributions
of different genotypes, we expect that alleles of small effect
and/or alleles with a frequency of around 0.5 will generally
require high levels of test information in the middle of the
liability distribution.

This paper presents simulation studies that illustrate
the tight relationship between test information, the risk
allele frequency of QTLs, the liability variance explained
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Fig. 3. Superimposed histograms of simulated liability scores of
aa genotypes (light gray), Aa genotypes, and AA genotypes (dark
gray), with frequency of the A allele equal to 0.15 and variance ex-
plained equal to 25%, under Hardy-Weinberg and additive gene
action.

by a QTL, and the statistical power to find such QTLs in a
gene-mapping study. Three different research designs are
studied: a population study where subjects are randomly
sampled from the population (Study 1), an extreme samples
design, where subjects are sampled from those with only
very high or very low sum scores (Study 2), and a case-
control design (Study 3). We explore power in situations
where QTLs explain little liability variance (1%), and con-
trast these findings to the situation where QTLs explain a
large part of liability variance (25%). This contrast with 25%
variance explained serves to illustrate the main principles,
rather than being a realistic setting for gene-mapping
studies.

METHODS

Number of test items and sample sizes were varied across
simulation studies in order to produce a wide range in
power estimates to make patterns in the results as clear
as possible. Power was defined as the percentage of simu-
lation replicates to be significant at the 0.01 alpha level. The
number of replicates for each simulation situation was 1,000
in all studies.

SIMULATION STUDY 1—POPULATION
SAMPLE DESIGN

For each test information scenario (“Left,” “Right,” “Uni-
form,” and “Normal”), data sets were simulated under the
assumption of a single-nucleotide polymorphism (SNP) in
perfect linkage disequilibrium with a QTL that explains
1% of the variance in a standard normally distributed
quantitative liability trait � under additive gene action.
That is, we simulated � under a linear model where the
expectation was equal to an allelic effect of the risk allele

times the number of risk alleles, and a normally distributed
random term with variance proportional to the variance
due to the allelic effect. Theta values were then rescaled to
mean 0 and variance 1. The frequency of the risk allele (the
allele that increases liability) was varied: 0.001, 0.005, 0.01,
0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 0.99, 0.995, and 0.999.
In each replicated data set, genotypes for 1,000 individuals
were simulated assuming Hardy-Weinberg equilibrium.
Theta (�) values were standardized and used for simulating
the data for a 20-item test under a one-parameter logistic
IRT model (equation (1)). For each individual, the item
scores were summed, and the sum score phenotypes were
linearly regressed on the number of risk alleles to study
power.

Note that the proportion of variance in liability explained
by the QTL was fixed to 1%, but not the proportion of vari-
ance in the observed phenotypic sum scores. The proportion
of variance in the sum scores explained by the QTL is de-
pendent on test information, which in turn depends on the
� parameter values for the items in the test. With a lim-
ited number of items, the proportion of sum score variance
explained is always lower than the proportion of liability
variance explained [Van den Berg et al., 2007].

Under the test information scenario referred to as “Left,”
the item parameters � were randomly sampled from the
uniform distribution U(–3, –1), and under the scenario re-
ferred to as “Right” using U(1, 3). Under the scenario “Uni-
form,” the item parameters were sampled using U(–3, 3),
and under the “Normal” scenario, they were sampled from
the standard normal distribution, N(0, 1). Figure 2 shows
the corresponding TIFs.

Because low allele frequencies lead to very low counts for
certain genotypes, the assumptions underlying standard
statistical testing might not be met. In practice, if only
one or two individuals are homozygous for one allele,
one might prefer an empirical P-value over the P-value
resulting from a standard t-test for the linear regression on
genotype. Moreover, for “Left” and “Right” test scenarios,
the sum score distribution is very skewed, also violating
the assumptions of standard linear regression. Therefore,
all P-values were empirically determined, based on 400
permutations per data set.

In a second series of simulations for Study 1, the QTL
explained 25% of the liability (�) variance. This value was
chosen as an extreme contrast to the 1% simulations. Power
was based on simulating data for 50 individuals on a 10-
item test. All other settings were the same as in the first
series.

SIMULATION STUDY 2—EXTREME
SAMPLES DESIGN

The same test information scenarios were used as in Sim-
ulation Study 1. In a first series of simulations, the variance
of the liability explained by the QTL was fixed to 1%. In
each test information scenario and in each simulation, sum
score data were simulated for 10,000 subjects on 20 items.
Two hundred subjects were randomly sampled from those
subjects with the lowest observed sum score (with replace-
ment), and 200 subjects were sampled from those with the
highest observed sum score. In each simulated data set,
Fisher’s exact test was performed on the cross-tabulation of
SNP genotype and “extreme high”/“extreme low” status.
One thousand data sets were simulated for each condition
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of risk allele frequency: 0.005, 0.01, 0.05, 0.10, 0.25, 0.50, 0.75,
0.90, 0.95, 0.99, and 0.995.

In a second series of simulations for Study 2, serving as
a contrasting illustration, the variance in liability explained
by the QTL was fixed to 25%. All other settings were the
same as in the first series, except that now only 10 extremely
low scoring and 10 extremely high scoring subjects were
sampled from the population of 10,000 subjects that had
sum score data based on five items.

SIMULATION STUDY 3—CASE-CONTROL
DESIGN

The same test information scenarios were used as in Sim-
ulation Studies 1 and 2. In a first series of simulations, the
variance of the liability explained by the QTL was fixed
to 1%. In each test information scenario and in each simu-
lation, sum score data were simulated for 10,000 subjects
on 20 items. Six hundred controls were randomly sam-
pled from those subjects with subthreshold observed sum
score (i.e., lower than the cutoff score for diagnosis; sam-
pling with replacement), and 600 cases were sampled from
those with the cutoff sum score for diagnosis or higher
(with replacement). The cutoff score was defined as the
88th percentile based on the observed sum scores in the
simulated samples of 10,000 individuals [cf. Van der Sluis
et al., 2012]. In each simulated data set, Fisher’s exact test
was performed on the cross-tabulation of SNP genotype
and case-control status. One thousand data sets were simu-
lated for each condition of risk allele frequency: 0.001, 0.005,
0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 0.99, 0.995 and
0.999.

In a second series of simulations for Study 3, serving as
a contrasting illustration, the variance in liability explained

by the QTL was fixed to 25%. All other settings were the
same as in the first series, except that now 60 cases and
60 controls were sampled from the population of 10,000
subjects that had sum score data based on 20 items.

RESULTS

SIMULATION STUDY 1—POPULATION
SAMPLE DESIGN

Power to detect a QTL that accounts for a low percentage
of trait variance is best detected when the trait is measured
using a test in which the � parameters are normally dis-
tributed, except for extreme allele frequencies (Figure 4).
Such a test with normally distributed � parameters clearly
outperforms a test where item parameters are uniformly
distributed. Low power is observed for detecting rare risk
alleles for “Left” tests, where item � parameter values are all
negative. The same low power is observed for rare protec-
tive alleles for “Right” tests with only positive items, that is,
a clinical test that discriminates only among high-scoring
individuals. For very low frequencies, clinical tests seem
optimal, outperforming the power of a test with normally
distributed item parameters. For very high frequencies (i.e.,
very rare protective alleles), “Left” tests outperform “Nor-
mal” tests.

When the variance of liability explained is 25%, however,
“Left” and “Right” type of tests outperform “Normal” tests,
depending on allele frequency (Figure 4). For risk allele
frequencies lower than 0.2, “Right” tests give best power;
for risk allele frequencies higher than 0.8, “Left” tests give
best power. For risk allele frequencies between 0.2 and 0.8,
“Normal” tests seem to give best power.

Fig. 4. Power to detect a QTL as a function of risk allele frequency and test characteristics, using a population sample design. Percentage
liability variance explained by QTL is 1% (left panel), and 25% (right panel).
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Fig. 5. Power to detect a QTL as a function of risk allele frequency and test characteristics, using an extreme samples design. Percentage
liability variance explained by QTL is 1% (left panel) and 25% (right panel).

SIMULATION STUDY 2—EXTREME
SAMPLES DESIGN

When the percentage variance explained by the QTL is
1%, lowest power is observed for “Left” and “Right” types
of tests, irrespective of risk allele frequency (Figure 5). Over-
all best power is shown by tests with normally distributed
� parameters. In contrast, when percentage variance ex-
plained by the QTL is 25%, the “Left” and “Right” types
of tests outperform the other two: “Left” tests are optimal
for risk allele frequencies above 0.5, and “Right” tests are
optimal for risk allele frequencies below 0.5.

SIMULATION STUDY 3—CASE-CONTROL
DESIGN

When the percentage variance explained by the QTL is
1%, lowest power is observed for “Left” types of tests, irre-
spective of risk allele frequency (Figure 6). Overall, “Right”
types of tests show highest power, while tests with normally
distributed � parameters are a close second. When percent-
age variance explained by the QTL is 25%, power is again
lowest for “Left” types of tests. In addition, there is a de-
crease in power with increasing frequency of the risk allele
for allele frequencies larger than 0.10.

DISCUSSION

In educational measurement, the definition of the “best
test” is the test that minimizes measurement error over the
target of measurement [Wright and Stone, 1979]. For in-

stance, when constructing a law school admission test, one
would want to have maximum test information at the point
on the scale where the threshold for sufficient aptitude is lo-
cated; one would want to have confidence that the decision
of pass/fail is reliable. There is less interest in reliably quan-
tifying individual differences at the lower end of the scale.
Translating this concept of “optimal test design” to gene-
finding studies leads to constructing or searching for a test
that discriminates best among those subjects with different
genotypes for the type of QTL one hopes to find.

Power to detect a QTL naturally depends both on vari-
ation in genotypes and variation in liability, but more cru-
cially, it depends on whether the measurement tool that
is used to assess liability discriminates among the geno-
types. First, power depends on how much genotypic vari-
ance there is and also where it is: as Figure 3 shows, al-
lele frequency and variance explained determine in unison
where and how much genetic variance there is: allele fre-
quency determines the relative surface areas of the three his-
tograms, whereas variance explained (actually, allelic effect)
determines how far apart the means of the three histograms
are. Together, allele frequency and variance explained de-
termine whether most of the genotypic variation is among
high-liability individuals, low-liability individuals, or in-
dividuals of average liability. Second, the TIF shows how
well a test discriminates between individuals, and where
on the scale on the scale it does so more clearly. Optimally
therefore, the location of the maximum of the TIF on the
liability scale should be exactly there where there is the
most variation in genotypes. In the case of Figure 3, for ex-
ample, a test that has a TIF that has its maximum value
on the far left-hand side of the distribution, with very low
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Fig. 6. Power to detect a QTL as a function of risk allele frequency and test characteristics, using a case-control design. Percentage liability
variance explained by QTL is 1% (left panel) and 25% (right panel).

information content on the right-hand side of the distri-
bution, will result in extremely low power to find a QTL
with risk allele frequency 0.15, even when variance ex-
plained is 25%: sum scores would phenotypically only dis-
criminate among individuals that were homozygous for the
protective allele (i.e., they would vary in their sum score),
whereas most heterozygotes and homozygotes for the risk
allele would have the same maximum sum score (cf. ceiling
effect).

This is exactly what was seen in the simulations, both for
a population design and an extreme samples design: even
with highly influential risk alleles (25% variance explained),
the power to detect them can be dramatically low when the
wrong phenotypic measurement tool is used. In contrast,
for case-control designs, this effect was less dramatic.

In the case of QTLs that explain only little of the liability
variance, we see all three genotypes throughout the phe-
notypic range; all genotypes are scattered across the entire
scale, with all three genotype means close to 0. For maxi-
mum power, the information function should therefore also
be more spread out across the continuum, but also be high
where most of the individuals are. A test that is highly infor-
mative at scale locations where only few of the individuals
are located generates little statistical power. Our simulations
clearly showed that the optimal TIF for a wide range of al-
lele frequencies and variance explained was where the TIF
is the result of item parameters that are standard normally
distributed. As can be seen in Figure 2 the corresponding
sum score distribution then also shows the largest variance.

Even in a case-control design (Study 3), tests with nor-
mally distributed item parameters performed very well,
and approached the power of clinical tests. Nevertheless,
a test that maximizes the discrimination between cases and
controls is the best tool for a case-control study, independent
of risk allele frequency or variance explained.

Thus, overall, when looking for alleles of small effect,
tests with normally distributed item parameters give best
power for a wide range of allele frequencies, and for dif-
ferent study designs. Only in the case of a population sam-
ple design and very extreme allele frequencies (below 0.01,
above 0.99), such tests are outperformed by “Right” and
“Left” tests, respectively. In case-control designs, “Right”
types of tests are slightly more powerful than “Normal”
types of tests. In the study design phase, therefore, care
should be devoted to choosing the optimal diagnostic test
or self-report questionnaire. The TIF of the phenotyping
instrument can be used as an aid for the identification of
potential measurement problems. It can be plotted using
standard IRT software packages such as Multilog [Thissen
et al., 2003], or the ltm library in R [Rizopoulos, 2006] and
compared to the TIFs in Figure 2. When interest is in find-
ing QTLs that explain only a small amount of variance of
a wide range of allele frequencies, the information function
of the phenotyping instrument should ideally look like the
“Normal” information function in Figure 2.

As all results shown here are directly related to the shape
of the TIF, the results are easily extended to two-parameter
IRT models (where items may have different factor loadings
or discrimination parameters), and to IRT models for poly-
tomous items, where instead of yes/no or absent/present,
the data consist of scales with multiple categories, for in-
stance, “never,” “sometimes,” “often,” and “always.” Such
IRT models can be fitted using standard software after
which the TIF can be plotted. These TIFs are directly com-
parable to those based on the one-parameter IRT model for
dichotomous data as used in the present simulations.

Usually in genome-wide association studies, SNPs with
minor allele frequencies (MAFs) lower than 1–2% are not
included in analyses. In these simulations, we varied al-
lele frequency in the population. Focus on low-frequency
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alleles is increasing with the increased interest in re-
sequencing studies. In case-control and extreme samples
designs, sample frequencies of risk alleles will be higher
than their population values. Given the right design and
the right sort of phenotypic test, studies can be very power-
ful to detect allelic effects with low MAF, see, for example,
Figures 4 and 5, where high power was observed for MAFs
below 1%.

The results reported here may also partly explain why
relatively few QTLs of small effect have been identified
for disorders measured using clinical tests [e.g., Manolio
et al., 2009]. Thus far, the reasons mentioned in the literature
for the lack of success include mainly limited sample sizes
[Sullivan, 2012], or reasons of genetic nature [e.g., Crow,
2011]. Relatively little attention has been paid to psycho-
metric properties of phenotypic measures [but see Van der
Sluis et al., 2010, 2012]. This study clearly shows that ge-
netic studies could be much more successful if researchers
selected their phenotypic instruments to suit their study
aim. Rather than using the phenotypic measurement that
is the most valid clinical tool for diagnosis, one should
choose the phenotypic measurement tool that gives highest
power to find genetic variants that explain variation in lia-
bility. Changing the phenotypic instrument might be much
cheaper than ever-increasing sample sizes with the same
clinical test. Such a change might be as trivial as rewording
an item, such as, for example, changing “I like chocolate
very much” into “I like chocolate.” Making the item less
extreme will increase prevalence of positive responses, re-
sulting in lower item � parameter values and therefore a
maximum of the information function lower on the liabil-
ity scale, with a corresponding change in statistical power.
Simulation Study 2 shows that power to find QTLs of small
effect in an extreme samples design can be dramatically
increased when changing from a clinical test to a test that
shows more variability in low-liability individuals, with the
same number of items.

In addition to carefully choosing a measurement instru-
ment for the phenotyping, test information, and therefore
power, can be further increased by simply adding items
to a scale (see equation (3)). One approach is to combine
data from different phenotypic measurement instruments
to optimize the TIF for a measure of interest. For example,
Van den Berg et al. [under revision] optimized the TIF for
a clinical measure for schizotypy by adding information
from a self-report instrument. This was done through the
use of a multidimensional IRT measurement model, which
resulted in increased measurement precision, especially at
the lower end of the liability continuum. As shown by the
present results, this should increase overall power to find
a QTL of small effect. In conclusion, IRT is a useful frame-
work to identify potential strengths and limitations of an ex-
isting measurement instrument based on symptom counts
or questionnaire items, and to remedy potential problems
through more sophisticated modeling of multivariate phe-
notypic data sets.
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