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Taylor—Couette (TC) flow is used to probe the hydrodynamical (HD) stability of
astrophysical accretion disks. Experimental data on the subcritical stability of TC
flow are in conflict about the existence of turbulence (cf. Ji et al. (Nature, vol. 444,
2006, pp. 343-346) and Paoletti et al. (Astron. Astroph., vol. 547, 2012, A64)), with
discrepancies attributed to end-plate effects. In this paper we numerically simulate TC
flow with axially periodic boundary conditions to explore the existence of subcritical
transitions to turbulence when no end plates are present. We start the simulations with
a fully turbulent state in the unstable regime and enter the linearly stable regime by
suddenly starting a (stabilizing) outer cylinder rotation. The shear Reynolds number
of the turbulent initial state is up to Re; < 10° and the radius ratio is 7 =0.714. The
stabilization causes the system to behave as a damped oscillator and, correspondingly,
the turbulence decays. The evolution of the torque and turbulent kinetic energy is
analysed and the periodicity and damping of the oscillations are quantified and
explained as a function of shear Reynolds number. Though the initially turbulent flow
state decays, surprisingly, the system is found to absorb energy during this decay.
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1. Introduction

Quasars are the most luminous objects in the Universe. They are thought to consist
of supermassive black holes in the centres of galaxies, which accrete matter and emit
radiation, thereby transforming mass into energy with an efficiency between 5 and
40 % (Ji & Balbus 2013). In order for orbiting material to move radially inwards into
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the central object in the so-called accretion disk, it must lose its angular momentum.
Molecular viscosity alone is not enough to account for this loss, so some sort of
turbulent viscosity, causing the enhanced transport of angular momentum, has been
conjectured (Shakura & Sunyaev 1973), as otherwise gravitationally bound objects,
such as quasars, stars or planets, would not exist. This implies that the flow of the
material must be turbulent, but the origin of turbulence in some types of accretion
disks is currently disputed. Accretion disks can either be ‘hot’, and therefore highly
ionized and electrically conducting, or ‘cold’, and therefore extremely poorly ionized
and poorly electrically conducting. Hot disks are found around quasars and active
galactic nuclei, and thought to undergo a magneto-rotational instability (MRI) to
become turbulent (Velikhov 1959; Balbus & Hawley 1991). In contrast, cold disks
are found in protoplanetary systems, and are thought to have ‘MRI-dead’ regions
where turbulence due the MRI cannot exist as the magnetic Reynolds number is
too low (Gammie 1996; Armitage 2011). The places where planets eventually form
and reside coincide with these MRI-dead regions, so additional transport of angular
momentum must take place. To account for this transport another mechanism to
generate turbulence has been proposed: hydrodynamical (HD) nonlinear instabilities.

Taylor—Couette (TC) flow is the flow between two coaxial cylinders which rotate
independently. It is used as a model for probing the HD stability of accretion disks
(Ji & Balbus 2013). Accretion disks have velocity profiles that are linearly stable,
but, just as in pipe and channel flows, the shear Reynolds numbers are so large that
nonlinear instabilities may play a role in the formation of turbulence. The question
whether TC flow does indeed undergo a nonlinear transition (Trefethen et al. 1993;
Grossmann 2000) to turbulence at large shear Reynolds numbers has been probed
experimentally by several authors, with conflicting results (Richard 2001; Dubrulle
et al. 2005; Ji et al. 2006; Paoletti & Lathrop 2011; van Gils et al. 2011, 2012; Avila
2012; Paoletti et al. 2012; Schartman et al. 2012). The discrepancies between the
different experiments have been attributed to the end plates of the TC devices, i.e. the
solid boundaries which axially confine TC flow. These cause secondary flows, known
as Ekman circulation, which propagate into the flow and influence global stability.
Avila (2012), based on his numerical simulations with end plates imitating the Ji et al.
(2006) and Paoletti et al. (2012) experiments, concluded that both of these experiments
were inadequate to study the nonlinear transition due to the presence of end plates.
However, these simulations are at shear Reynolds numbers of the order of Re, ~ 10%,
while Ji et al. (2006) mention the counter-intuitive result that Re, must exceed a
certain threshold before the flow relaminarizes.

Indeed, confinement of the flow plays a very important role in this transition, but
it is unavoidable in experiments. Direct numerical simulations (DNS) do not have
these limitations, as they can be run with periodic boundary conditions to completely
prevent end-plate effects. Following this idea, Lesur & Longaretti (2005) simulated
rotating plane Couette flow with perturbed initial conditions, going up to shear
Reynolds numbers of the order of 10*: however, due to computational limitations,
the quasi-Keplerian regime velocity (i.e. the regime where the two velocity boundary
conditions are related by Kepler’s third law) was not reached.

In this manuscript, we adopt a similar approach, but now for TC flow and, in
particular, reaching larger shear Reynolds numbers Re, ~ 10°. We proceed as follows:
we start from a turbulent flow field, corresponding to a pure inner cylinder rotation in
the laboratory frame, and then switch on stabilizing outer cylinder rotation, wondering
whether the turbulence is sustained. We find that it is not: the turbulence decays, and
the torque decreases down to a value corresponding to purely azimuthal, laminar flow.
This means that not only the TC system is linearly stable in this geometry, but even
an initially turbulent flow decays towards the linearly stable regime.
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2. Numerical details

The DNS were performed using a second-order finite difference code with fractional
time-stepping (Verzicco & Orlandi 1996). This code has already been validated and
used extensively in the context of TC flow (Ostilla et al. 2013; Ostilla-Monico et al.
2014). The turbulent initial conditions are taken from Ostilla-Monico et al. (2014).
The radius ratio is n = r;/r, = 0.714, where r; and r, are the inner and outer radii,
respectively, and the spatial period aspect ratio is I = L/d = 2.094, where L is the
axial periodicity length and d the gap width d =r, — r;. A rotational symmetry of
order six was forced on the system to reduce computational costs while not affecting
the results (Brauckmann & Eckhardt 2013; Ostilla-Monico et al. 2014). With this
rotational symmetry, the system has an azimuthal periodic length of L,/d =3.141 at
the mid-gap.

The simulations are performed in a frame of reference co-rotating with the
outer cylinder. In the rotating frame, the inner cylinder has an azimuthal velocity
U = ri(w; — w,), with w; and w, the inner and outer cylinder angular velocities,
respectively, while the outer cylinder is now stationary. The resulting shear drives
the flow and can be expressed non-dimensionally as a shear Reynolds number (we
note that in the astrophysical context, e.g. Dubrulle ef al. (2005), often an extra
factor 2/(1 4+ n) is used in this definition) Re; = dU/v, where v is the kinematic
viscosity of the fluid. In this rotating frame, the outer cylinder rotation in the lab
frame manifests itself as a Coriolis force Ro~!(e, x u), where the Rossby number is
defined as Ro = U/Quw,d) = (n[1 — n])/2ul[l — n]), with e, the unit vector in the
axial direction and u = w,/w; the angular velocity ratio (in the stationary lab system).
Note that Ro can be either negative or positive. We define the non-dimensional radius
as r=(r —r;)/d, the non-dimensional axial height as Z=7z/d and the non-dimensional
time as 7=1tU/d, where d/U is the large-eddy turnover time of the initial state.

Six simulations were run: three with fixed Re, = 8.10 x 10°, but different strengths
of the Coriolis force, namely: (a) Ro~' = 0.83, corresponding to a system on the
Rayleigh stability line, equivalent to r’w; = r’w,, or uw =n>~0.51 in the lab frame
of reference; (b) Ro~! = 1.22, corresponding to u = n¥>~ 0.60 or a system in the
quasi-Keplerian regime, i.e. the regime in which the angular velocities at the two
cylinders are related by Kepler’s third law rj@? =rle?; and (¢) Ro~' =2.50, an even
stronger stabilization, equivalent to u ~0.76. The other three simulations were done by
fixing Ro~! =1.22 and using the values Re, =8.10 x 10°, Re, =2.52 x 10* and Re, =
8.10 x 10*. Grids of Ny x N, x N, =256 x 640 x 512 were used for all simulations,
except for Re, = 8.10 x 10*, where a grid of Ny x N, x N, = 512 x 800 x 1024
is required to guarantee sufficient resolution. The adequacy of these meshes for the
simulated Re, was demonstrated in Ostilla-Monico et al. (2014). Figure 1 shows an
overview of how the initial conditions from the Rayleigh-unstable regime were moved
across the phase space by adding the Coriolis force.

Simulating in a rotating frame adds a new perspective to the problem. In this frame
the (non-dimensional) Navier—Stokes equations read:

ou PN SN I o5 A
—+u-Vu=-Vp+ Vi —Ro e, x u, 2.1)
0 Re,

IS

where @ is the non-dimensional velocity and 7 the non-dimensional time. Strong
enough outer cylinder co-rotation in the lab-frame implies a large stabilizing Coriolis
force Ro™! in the rotating frame, leading to suppression of the turbulence as the

748 R3-3



R. Ostilla-Mdnico, R. Verzicco, S. Grossmann and D. Lohse

(a) 20(“05) (b) 3.0
25
16 2.0
Re; 12 1/Ro 15
08 ofb A %,___? _________
0.4 0.5 1
0 0 o o
-2 -1 103 104 10 106
Re, (x10%) Reg

FIGURE 1. Initial conditions and simulations run in the (Re;, Re,) phase space (a) and
the (Re;, 1/Ro) phase space (b). The shaded region indicates the zone for which angular
velocity is transported outwards o, < w;, and angular momentum is transported inwards
riw; < r*w,, i.e. the flow is Rayleigh stable and can be formulated in the rotating frame
as w; > w,. The dashed line indicates quasi-Keplerian boundary conditions. The arrows
indicate the movement of the initial conditions from pure inner cylinder rotation to the
Rayleigh-stable states by adding a Coriolis force.

large-scale balance in the bulk between the angular velocity gradient and the Coriolis
force is broken (Ostilla et al. 2013). This argument for stabilization can be compared
to that of Taylor—Proudman’s theorem (Proudman 1916; Taylor 1917), which when
applied to rotating Rayleigh—Bénard flow implies that the flow is stable even at large
thermal driving, as long as the background rotation is large enough (Chandrasekhar
1981).

3. Results and analysis

Figure 2 shows three instantaneous snapshots of the angular velocity o for Re; =
8.10 x 10° at times 7= 0, 7= 3.1 and 7 = 6.2 after the stabilizing Coriolis force
corresponding to the quasi-Keplerian regime, Ro~! =1.22, was added. The sequence of
figures shows the reversal of the Taylor vortices, which occurs with a period of 7~ 6.2.
If the system is simulated for a large enough time, here 7~ 200, the Taylor vortices
progressively fade away. The system behaves approximately as a damped oscillator.

To quantify these reversals, we define the quasi-Nusselt number (Eckhardt,
Grossmann & Lohse 2007) Nu,(r, ) as Nu,(r, ) = r*((u,w)y. — V0 (@)g.2)/ Tpas
where T,, is the torque required to drive the system in the purely azimuthal and
laminar case, r is the radius, u, is the radial velocity, @ the angular velocity and
(...)¢ indicates averaging with respect to variable ¢. Here Nu,(r, f) represents the
transport of angular velocity. For a purely azimuthal flow with no turbulence, Nu, =1,
and therefore Nu, — 1 represents the additional transport of angular velocity due to
turbulence.

Figure 3 shows a time series of the axially averaged Nu, — 1 at the mid-radius
#=0.5, for Re,=8.10 x 10° and Ro~! =1.22. Here, Nu, — 1 can be seen to oscillate
between large positive and large negative values, with an average of approximately
zero, i.e. no net turbulent transport. For large enough times (z > 3000), the oscillations
damp out and the flow becomes purely azimuthal and laminar, Nu, = 1. In the
other simulations, the period of oscillation depends strongly on Ro~! (decreasing
with increasing Ro~!) but only weakly on Re,. Oscillations can be seen even if
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FIGURE 2. Snapshots of contour plots of the instantaneous angular velocity field o for
Re;,=8.10 x 10°, Ro~' =1.22. Arrows represent the underlying axial and radial velocities.
The snapshot on the left shows the initial field at 7= 0, while in the two later snapshots
(at 7=3.1 and 7= 6.2) reversals of the Taylor rolls can be seen: the radial velocity in
the gap at mid-height (z~ 1.1) changes from inwards in the first snapshot, to outwards in
the second, and back again to inwards in the last. See supplementary movie available at
http://dx.doi.org/10.1017/jfm.2014.242.
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FIGURE 3. Time series of Nu, — 1 at mid-gap for Re, = 8.10 x 10°> and Ro~' = 1.22,
(quasi-Keplerian). Large oscillations of Nu, — 1 from positive to negative can be seen,
which, when averaged, show that there is no net turbulent transport of angular velocity.

The fluctuations decay with time. For a long enough time 7~ 3000, they stop and Nu, — 1
finally stabilizes at zero.

a non-stabilizing co-rotation is added, but the system does not return to a purely
azimuthal state with Nu, = 1. Instead, after some oscillations in which Nu, decreases,
a new turbulent state with Nu, > 1 is reached.

Figure 4 shows the axially averaged Nu, — 1, but now measured directly at the
inner cylinder (probing the inner boundary layer (BL)) for different values of Ro~! and
Re,. Unlike the previous mid-gap case, no oscillations can be seen, reflecting that the
oscillations occur only in the bulk of the flow, where the Taylor vortices are, but that
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FIGURE 4. (a) Semi-log time series of Nu, — 1 at the inner cylinder (¥ =0, z-averaged)
for Re; =8.10 x 10° and three values of Ro~!. Red dashed line, Ro~' = 0.83 (Rayleigh
stability line); black line, Ro~! = 1.22 (quasi-Keplerian); blue dash-dot line, Ro~! = 2.50.
(b) Semi-log time series of Nu, — 1 at the inner cylinder for Ro~! =1.22 and three values
of Re, (black line, Re, =8.10 x 10%; blue dashed line, Re, =2.52 x 10*; red dash-dot line,
Re,=8.10 x 10*). Two decay modes can be seen in this figure, with the crossovers marked
with arrows. In both (a) and (), fluctuations are absent, unlike at the mid-gap, but Nu, — 1
decays. For a large enough time, Nu, — 1 drops to zero, taking more time to do so for
higher Re, or for smaller Ro~!. Zoom-ins of the first few large-eddy turnover times are
shown as insets (linear scale) for both figures. Transients, corresponding to an increase of
Nu,, can be seen during the initial stages.
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FIGURE 5. (a) Time series of K(7)/K, for Re, =8.10 x 10° and three values of Ro~':
Ro™!' = 0.83 (Rayleigh stability line), Ro~' = 1.22 (quasi-Keplerian) and Ro~' = 2.50.
(b) Time series of K/K, for Ro~'=1.22 and three values of Re,. After the initial transient,
an exponential decay of the turbulent kinetic energy can be seen, even at the largest
Reynolds numbers.

the BLs are unaffected. Of course, the decay towards the purely azimuthal, laminar
state Nu,, =1 is also observed in the BLs (figure 4a,b), independent of Ro~' and Re,.

Finally, we quantify the decay of turbulence. To do so, we define the turbulent
kinetic energy substitute of the flow as K (1) = (u; 4 u2),. /2. Note that this is not the
full turbulent energy, as for that also fluctuations in u, contribute, but, by definition,
K has the desirable property of being zero in the purely azimuthal state. Figure 5(a)

748 R3-6



Turbulence decay towards the linearly stable regime of Taylor-Couette flow

(a) 400 (b) 102
= 1 — 10!
200 -t |
- L i
T E, - - 100
I I
100 .t i
PEae 10-1 .
- —E—-1
50 10-2
104 105 0 200 400 600 800 1000
Reg r

FIGURE 6. (a) Log-log plot of the turbulence decay time T versus Re; for Ro~!' =1.22
(quasi-Keplerian) and the three values of Re, simulated. The dashed line shows the power
law 7 =0.79+/Re; fit to the data points. (b) Semi-logarithmic plot of the time series of
both the energy input through the boundaries £ — 1 and the viscid dissipation of energy
in the system €, — 1 for Re,=2.49 x 10* and Ro~' =1.22. The laminar dissipation — i.e.
unity, with the non-dimensionalization chosen — is subtracted from both variables. The
inset shows the ratio between both energies. The arrow marks the transition between the
two decay mechanisms. For a considerable time, the system still absorbs more energy than
it dissipates; equilibrium is reached only for 7 beyond 1000, due to the small decay rate.

shows the decay of K for Re,=8.10 x 10° and three values of Ro~!, while figure 5(b)
shows the decay for Ro~' = 1.22 and three values of Re,. In the simulations, K(7)
shows fluctuations with a short time scale, similar to that of Nu, in the mid-gap, so
for clarity only the peak of K(7) in every cycle is represented.

As expected from the previous results on Nu,(f) — 1, K(f) decays to zero when
given enough time. The only mechanism for energy dissipation is viscosity, so it
is not surprising that the decay time is proportional to the energy content, thus
leading to an approximately exponential decay, K(7) = K, exp(—7/T), where T is
the characteristic (dimensionless) decay time and Ky, = K(7 = 0). Fits to the data in
figure 5(b) were performed to obtain estimates for the dependence 7 (Re,), which is
shown in figure 6(a). The absolute value of 7 is large (around 70 large-eddy turnover
times for Re, ~ 10* and Ro~' =1.22) and in the range studied shows a power law

7 ~ /Re,. 3.1)

This scaling can be understood by realizing that the decay of the turbulence is first
dominated by the energy dissipation rate €p; in the BLs, which scales as (Grossmann
& Lohse 2000) ep;, ~ v3d~*Re>/?. This immediately implies the scaling relation (3.1)
for the typical decay time t = 7d/U ~ U?/ep;. Only for very large times or for very
small Reynolds numbers from the very beginning, i.e. when the thickness of the BLs
is comparable to the gap thickness d and the Taylor rolls have died out or are absent,
does €, ~ v*d~*Re? (cf. Grossmann & Lohse (2001)) and thus 7 ~ Re,. This second
regime can be seen in figures 4(b) and 6(b).

We highlight that even though K(7) decays, the total energy of the system increases,
as it absorbs more energy through the boundaries than it dissipates viscidly. This
can be seen in figure 6(b), which shows a time series of the non-dimensionalized
energy input into the system E= (Tiw; + T,w,)/(pS2€,4,), where T;, is the torque
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applied at the inner (outer) cylinder, p and 2 are the fluid density and volume,
respectively, and €,, is the viscous dissipation in the purely azimuthal and laminar
state, and a time series of the non-dimensionalized energy dissipationrate inside the
system, €, = v{[du; + Bju,-]z),ﬁ_z/epa/l When transitioning from turbulence to the
purely azimuthal uy(r)-profile, the system absorbs energy, while at the same time the
initial turbulence decays. The purely azimuthal u,(r)-profile has more energy than
its turbulent counterpart. Indeed, this is the reason for the Rayleigh instability, now
supressed by the Coriolis force.

Again, two time scales for the decay can be seen in the inset of figure 6(b). After
the initial transient, turbulence in the bulk decays rapidly, due to the efficient angular
momentum transport by the Taylor rolls. After approximately 200-300 large-eddy
turnover times this decay mechanism is exhausted, as then the (turbulent) Taylor rolls
in the bulk are so weak that they can no longer transport angular momentum. Then a
second decay mechanism takes over, whose onset is marked by an arrow in the inset
of figure 6(b). In this regime, characterized by purely viscous dissipation ~ v*L~*Re?
in the whole gap, the profile uy(r) returns to the laminar form and Nu, thus becomes
unity. It is important to note that Nu, must return to unity, because in the statistically
stationary state Nu, must be independent of r.

4. Summary and conclusions

In summary, consistent with what had been found in the experiments of Ji et al.
(2006) and Schartman et al. (2012), no turbulence and, therefore, no turbulent
transport of angular momentum can be seen in the Rayleigh-stable regime for the
control parameter range studied once the effect of axial boundaries is mitigated. An
initially turbulent state is stabilized by the co-rotation of the outer cylinder and the
transport of angular momentum in the bulk ceases; the turbulence decays in all our
simulations, for Re; up to 8.10 x 10*.

We point out, however, that even though the system is stable, the decay times for
turbulence are long, ranging between hundreds and thousands of large-eddy turnover
times. If one extrapolates the scaling relation (3.1) to shear Reynolds numbers
attainable in cold accretion disks, which are of the order of 10, decay times for
the turbulence become very large. This is done ignoring possible crossovers to an
ultimate regime in which the energy dissipation rate may be dominated by the bulk
dissipation (Grossmann & Lohse 2000, 2011) epyu ~ v’d~*Rel. In that regime T
would become independent of Re. Indeed, for astrophysical disks without inner- and
outer-boundary layers, we expect this to be the case. Viscous dissipation would be
dominated by the bulk dynamics, and (3.1) would not be applicable.

The decay times observed in the simulations are in discrepancy with experiments
by Borrero-Echeverry, Schatz & Tagg (2010) and Edlund & Ji (2014). Edlund & Ji
(2014) use a similar set-up to that of Ji et al. (2006), but now switch on and off
a pump to perturb the quiescent TC flow with quasi-Keplerian boundary conditions.
The decay time of the perturbation is much smaller than those observed in the
DNS. The discrepancy in time scale can probably be attributed to increased bulk
dissipation at higher Re and to end-plate effects, which increase the dissipation of
the system. On the other hand, Borrero-Echeverry et al. (2010) showed that for pure
outer cylinder rotation, perturbations decay stochastically (i.e. are memoryless). The
decay times grow superexponentially, and thus are much larger than those seen in the
DNS. Turbulent dynamics can be seen before the relaminarization, and a mechanism
by which turbulence regenerates is present. We point out that for pure outer cylinder
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rotation, TC flow transports angular velocity inwards, and this completely changes
the dynamics of the problem, thus causing a different behaviour in the decay.

It is also unclear whether the extreme values of 1 present in astrophysical accretion
disks will have an effect on the decay times. The Rossby number has a strong
n-dependence, and for n — 0O it diverges. Other types of mechanism might dominate
the angular momentum transport in cold accretion disks. These are axially stratified in
density, and thus other types of instability, such as subcritical baroclinic instabilities
(Withjack & Chen 1974; Klahr & Bodenheimer 2003; Petersen, Julien & Stewart
2007), can be present. Finally, transport associated with self-gravity (Paczynski &
Bisnovatyi-Kogan 1981) may also play a role. We refer the reader to Armitage (2011)
for a more detailed discussion.

In conclusion, in our TC simulations without end plates, in the parameter range
studied up to shear Reynolds numbers of 10°, the flow was seen to not only remain
laminar in the presence of small perturbations, but also when starting from an initially
turbulent state the turbulence decays and the system returns to its laminar state. All
of this happens while the system absorbs energy. Our findings extend the results from
Avila (2012), who also attributed the turbulence and increased angular momentum
transport found in some of the experiments (Dubrulle et al. 2005; Paoletti & Lathrop
2011) which probe the linearly stable regime of TC flow to the effects of end-plate
confinement.

Initial conditions are taken from the Rayleigh-unstable region, and thus are
dominated by toroidal Taylor vortices with a strong axial dependence. These are
chosen as they are as general as possible. When the stabilizing rotation is switched
on, the Taylor-Proudman theorem impiles that these vortices cannot be sustained, and
thus vanish. It is worth noting that if different boundary conditions are used, such
as radial inflow (Gallet, Doering & Spiegel 2010) or differentially heated cylinders
(Lopez, Marques & Avila 2013), Taylor columns which have no axial dependence
may develop. However, with the basic TC boundary conditions, these structures do
not develop, as the system might be too constrained. This result is in agreement with
theoretical work by Rincon, Ogilvie & Cossu (2008), who reach a similar conclusion
for plane Couette flow, as the nonlinear mechanisms appear to be fundamentally
differently beyond the Rayleigh stability line. An analysis based on linear transient
growth, such as done by Maretzke, Hof & Avila (2014), which also predicts columnar
structures as the optimal initial conditions, may thus not be valid for determining the
stability of TC flow at high Reynolds numbers.

Supplementary movie

A supplementary movie is available at http://dx.doi.org/10.1017/jfm.2014.242.
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