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Abstract

A new algorithm for measurement of extreme temperature is presented. This algorithm reduces the measurement of the unknown
temperature to the solving of an optimal control problem, using a numerical computer. Based on this method, a new device for extreme
temperature measurements is projected. It consists of a hardware part that includes some standard temperature sensors and it also has a
software section.

The principal component of the device is a rod. The variation in the temperature, which is produced near one end of the rod, is determined
using some temperature measurements at the other end of the rod and the new algorithm described here.

The mathematical model of the device and the algorithm are explained in detail. At the same time, some possible practical implementa-
tions and a collection of simulations are presented.q 2000 Elsevier Science Ltd. All rights reserved.
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Nomenclature

C1 thermal exchange coefficient between rod and
measurement medium [m21]

d diameter of the rod [mm]
h convection heat transfer coefficient [W m22 K21]
kr thermal conductivity of the rod [W m21 K21]
L length of the rod [mm]
L1 length of the part of the rod on which the

temperature sensors are not placed [mm]
m number of the division parts ofT
N number of the temperature sensors
n number of the division parts ofL
T duration of contact between the hot end and the

point where the temperature is measured [s]
t time [s]
U unknown temperature to be measured [K]
[M1,M2] temperature range including the unknown

temperatureU [K]
x distance along the rod relating to the hot end [mm]
Y(t,x) temperature of the rod at the momentt in the point

x [K]
Ym(t,x) temperature at the momentt of a pointx at the cold

end of the rod which is measured by the tempera-
ture sensors [K]

a thermal diffusivity [m2 s21]
b volumetric thermal expansion coefficient of the

measurement medium [K21]
n kinematic viscosity of the measurement medium

[m2 s21]
Dt time step [s]
Dx space step [m]
subscripts
i associated with a space position
j associated with a time position
superscripts
k iteration number of the numerical algorithm

1. Introduction

It is known that for temperature measurement some kinds
of transducers are used. They are divided in two main
classes: modulating transducers and self-generating transdu-
cers. Thermistors, resistance-temperature detectors, semi-
conductor temperature transducers are in the first class.
Thermocouples are important elements in the second class
[1,2].

All these usual transducers have in common that they can
only measure usual temperatures, in the range 200–2000 K
with good accuracy. Pyrometric methods are used for
measurement of high temperature out of this range.
Unfortunately, some integration effects appear using these
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methods, so that practical results are disturbed by a lot of
errors. Some cryogenic temperature sensors are developed
in the last decade. However, the technical feasibility of these
sensors and the achievement of a good metrological perfor-
mances may be adversely affected by a broad working range
[3,4]. Thus it is necessary to develop new devices and meth-
ods for extreme, i.e. very high and very low, temperature
measurements.

In this work, the author proposes a new method to
measure extreme temperatures using standard sensors in
the usual range, where their behaviour is known with
great accuracy. One possible way to obtain this extension
of range is to use an adequate software tool.

Therefore, the author consider the problem in which
the unknown temperature is determined through the
formulation of the measurement problem as an optimal
control one. The last problem is solved using a numerical
algorithm.

The principal component of the device for which a new
numerical algorithm is developed is a long cylindrical rod
with a diameter as small as possible. It is covered by a
thermic, insulating layer.

One end of the rod, called the “hot end”, is in contact with
the point in which the temperature is measured. This end is
covered with a detachable lid made of a thermic insulating
material.

The other end of the rod is termed the “cold end”. In its
vicinity, on a small distance along a generating line of the
rod, a numberN of standard temperature sensors, e.g. ther-
mocouples, are placed equidistantly. They are stuck directly

on the rod, under the thermic insulating layer. Temperature
sensors are coupled with a computer.

The scheme of this device is shown in Fig. 1.
Its operation is explained in the assumption that the

unknown temperatureU is higher than the temperature of
the environment, and is constant during the time of
measurementT.

The device is introduced into the medium of measure-
ment so its hot end is in the measurement point and the
lid is removed for a short time,T. During this period,
temperature versus time variations are measured with the
N sensors near the cold end. In fact, the hot end is excited by
a step function having valueU as amplitude, and its influ-
ence over the vicinity of the cold end is observed. The
unknown temperatureU is computed from the temperatures
measured by theN sensors.

From the above description it is noticed that the tempera-
ture of the cold end is much less than the measured tempera-
ture U. Therefore, it can be considered that this device
performs the function of a temperature attenuator.
Obviously, the device works in a similar manner when the
temperature to be measured is lower than the temperature of
the environment. In this case it can be considered that it
performs the function of a temperature amplifier.

2. Theoretical approach

The phenomenon described above is modeled by a partial
differential equation of parabolic type, named the heat
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Fig. 1. The scheme of the device: (1) detachable lid; (2) rod; (3) thermic insulating layer; (4) common temperature sensors.



equation [5]

Yt�t; x�2 aYxx�t; x� � 0; �t; x� [ �0;T� × �0;L� �1�
with the boundary conditions of Newton type

Yx�t;0� � C1�Y�t;0�2 U�; t [ �0;T�; �2�

Yx�t;L� � 0; t [ �0;T� �3�
and the initial condition

Y�0; x� � Y0�x�; x [ �0;L�: �4�
The existence and regularity for the problem (1)–(4) are

well known [6].
As is noticed, unknown temperatureU appears in condi-

tion (2) in a boundary condition of Newton type.
The problem is to computeU, using the mathematical

model and the set of measured temperatures in the vici-
nity of the cold end of the rod, during time of measure-
ment T.

This problem is considered in terms of an optimal
control one, denoted by (P), with the following typical
elements [7]:

(i) equations of state are given by (1)–(4);
(ii) the class of admissible controls is�M1;M2�, whereM1,
M2 are chosen from the beginning by the physical limita-
tions on the problem, as being the extreme values where
the unknown temperatureU can be situated;
(iii) the cost function to be minimized is

F�u� �
ZT

0

ZL

L1

�Y�t; x�2 Ym�t; x��2 dx dt �5�

for u [ �M1;M2�: Quantity Y(t,x) is the solution of the
above problem (1)–(4), which corresponds tou; Ym(t,x)
is temperature of a point near the cold end that is
measured by the common temperature sensors.

The optimal control problem (P) is now formulated as
(P).

Find an admissible controlUp [ �M1;M2� that minimizes
the cost functionF .

Concerning the enunciated optimal problem (P), it is
proved that it admits only one solution [8]. Thus, there exists
a pair {Up

;Yp�t; x�}, such thatUp [ �M1;M2� is the optimal
control of problem (P) andYp(t,x) is the optimal state that
corresponds toUp. This is equivalent to:

F�Up� �
ZT

0

ZL

L1

�Yp�t; x�2 Ym�t; x��2 dx dt � min
u[�M1;M2�

F�u�:

The development of an descent algorithm [9] is detailed in
the following. For that, the necessary conditions for optima-
lization have to be established. The following theorem is
already proved [10].

Theorem. If the pair { Up
;Yp�t; x�} is an optimal one for

the problem(1)–(5), then a size A(t,x) is a solution of the
problem:

At�t; x�1 aAxx�t; x� � Yp�t; x�2 Ym�t; x�;
�t; x� [ �0;T� × �L1;L�;

�6�

At�t; x�1 aAxx�t; x� � 0; �t; x� [ �0;T� × �0;L1�;

Ax�t; 0� � C1A�t;0�; t [ �0;T�; �7�

Ax�t; L� � 0; t [ �0;T�; �8�

A�T; x� � 0; x [ �0;L� �9�
and it happens that

Up �
M2 if

ZT

0
A�t; 0� dt . 0

M1 if
ZT

0
A�t; 0� dt # 0

:

8>>><>>>: �10�

Relations (6)–(10) make the necessary conditions for opti-
malization.

The results presented in this section show that entire
problem has only one solution in accordance with physical
reality. At the same time, they suggest the possibility for
numerical implementation that is developed in the following
section.

3. Numerical approach

For the numerical calculation of the temperatureU, which
is an optimal control problem, as seen before, one type of
gradient algorithm is used [9,11].

Using formula (10) as the main one, the following itera-
tive algorithm is developed (k being iteration number). In
view of relations (1)–(10) one considers the following itera-
tive algorithm:

Step 0:Chooseu�0� [ �M1;M2�; setk U 0.
The algorithm is initialized with an admissible control

and a counter of the iterative algorithm sets to zero.
Step 1: Compute Y(k)(t,x), that is, the state system

described by Eqs. (1)–(4)

Y�k�t �t; x�2 aY�k�xx �t; x� � 0; �t; x� [ �0;T� × �0;L�; �11�

Y�k�x �t; 0� � C1�Y�k��t;0�2 u�k��; t [ �0;T�; �12�

Y�k�x �t; L� � 0; t [ �0;T�; �13�

Y�k��0; x� � Y0�x�; x [ �0;L�: �14�
Step 2:ComputeA(k)(t,x), that is, the adjoint state system
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described by Eqs. (6)–(9)

A�k�t �t; x�1 aA�k�xx �t; x� � Y�k��t; x�2 Ym�t; x�;

�t; x� [ �0;T� × �L1;L�;

A�k�t �t; x�1 aA�k�xx �t; x� � 0; �t; x� [ �0;T� × �0; L1�;

A�k�x �t;L� � 0; t [ �0;T�;

A�k��T; x� � 0; x [ �0; L�:
Step 3:Use relation (10) to compute the optimal control

at iterationk, denoted asup(k), from

up�k� �
M2 if

ZT

0
A�k��t; 0� dt . 0

M1 if
ZT

0
A�k��t; 0� dt # 0

:

8>>><>>>:
An approximation of the optimal control problem (P) is
derived.

Step 4:Computed�k� [ �0;1� as a solution to the mini-
mization process

min{F�du�k� 1 �1 2 d�up�k��; d [ �0;1�}
whereF is the cost function of problem (1)–(4) given by
Eq. (5). It is verified if the optimal control derived in Step 3
minimizes the cost function.

Step 5:Set

u�k11�
U d�k�u�k� 1 �1 2 d�k��up�k�

:

A new admissible controlu(k11) placed betweenu(k) andup(k)

is computed.
Step 6:(the “stopping criterion”)

IF uu�k11� 2 u�k�u # 1s

THEN Up � u�k11�

STOP

ELSE k U k 1 1

GO TO Step 1

The “stopping criterion” in Step 6 can also be as follows.
Step 60:

IF uF�u�k11��2 F�u�k��u # 1 0s

THEN Up � u�k11�

STOP

ELSE k U k 1 1

GO TO Step 1

The symbols1s and 1 0s in Step 6 and Step 60 denote two

small, positive real values chosen in accordance with prac-
tical requirements.

As is observed from the practical implementation of this
algorithm, there are difficulties in trying to find a good
“guess” ofu(0) in Step 0. For avoiding it, in Step 0 a local
variation procedure is used, namely, the “azimuth mark”
method (AMM) [12].Two “stopping criterions” that could
be used for this procedure are:

IF ur�i 1 1�2 r�i�u # 10

THEN STOP AMM

ELSE i U i 1 1

CONTINUE AMM

and

IF i � i0

THEN STOP AMM

ELSE i U i 1 1

CONTINUE AMM

wherer(i) is the radius of the azimuth mark (AM) at thei-th
iteration of this procedure, and10 andi0 are natural and real
numbers, respectively. They are specified in the initializa-
tion stage of the algorithm.

Steps 1 and 2 are solved using some implicit finite-differ-
ence approximations, namely, the O’Brian et al. formula
and the Crank–Nicolson formula [13]. Boundary conditions
impose the need to use a “false” boundary for practical
implementation of these formulas.

Step 3 does not cause any serious problems from an
applicative point of view.

Concerning Step 4, at the beginning it used a carefully
supervised loop with the form (nn× d [ Np)

Dd U 1=nn
DO FOR l � 0;1;…nn

d U lDd
ComputeF�du�k� 1 �1 2 d�up�k�� using Eq. (5)

END DO

This procedure, with constant-length steps to solve a mini-
mization problem, could be improved (from a computa-
tional time point of view) using variable-length steps.
Afterwards, it has been used a carefully supervised loop
of the form�mm [ Np�

DO FOR l � 0;1;…mm× d

d U

Xl

kk�0

�1=2�kk 2 1

ComputeF�du�k� 1 �1 2 d�up�k�� using Eq. (5)

END DO
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Between nn× d and mm× d there is the following
relation:

2mm � nn �15�
obtained from the condition to have the same smallest
length step in the two loops. It means that the second loop
has a smaller number of steps than the first. Generally, the
second procedure is faster, but the accuracy is lower than the
first.

The double integrals from Step 4, as well as Step 5 and
Step 6 (Step 60), do not lead to potential problems from a
numerical point of view.

4. Implementation of the algorithm

In the following, it is referred only to Step 1 and Step 2,
because the others are implemented without difficulties, as
is seen in the previous paragraph.

Steps 1 and 2 are solved using some implicit finite differ-
ence approximations; the grids in effect with equidistant
knots are:

0� t1 , t2 , … , tm11 � T

x0 , 0� x1 , x2 , … , xn11 � L

The existence of a “false” boundary, denoted byx0, is
noticed in the previous relation.

In the following, it is presented a detailed algorithm using
the O’Brian et al.’s formula.

Implementation of the algorithm and results when the
Crank–Nicolson formula is used are similar [13].

Denote

y�j; i� � Y�k��tj ; xi�; j � 1; 2;…;m1 1; i � 0;1;…n1 1;

�16�

u� u�k�:

The following usual discretizations for derivatives are

performed:

Y�k�t �t; x�uj;i <
y�j; i�2 y�j 2 1; i�

Dt
;

j � 1;2;…m1 1; i � 0;1;…n1 1;

�17�

Y�k�xx �t; x�uj;i <
y�j; i 2 1�2 2y�j; i�1 y�j; i 1 1�

Dx2 ;

j � 1;2;…m1 1; i � 1;2;…n;

�18�

Y�k�x �t; 0�uj;1 <
y�j; i�2 y�j;0�

Dx
; j � 1;2;…m1 1; �19�

Y�k�x �t; L�uj;n11 <
y�j;n 1 i�2 y�j;n�

Dx
; j � 1;2;…m1 1;

�20�
where

Dt � T
m
; Dx� L

n
; C � Dt

Dx2 : �21�

Using the discretizations (16)–(21), the value ofY(k)(t,x)
is obtained in Step 1 from Eqs. (11)–(14) as follows.

• The quantitiesy(j,i), j � 2;3;…;m1 1, i � 1;2;…; n,
are computed by solving the following system of linear
equations:

• The quantitiesy(j,n 1 1) are computed like this:

y�j; n 1 1� � y�j; n�; j � 2;3;…m1 1:

• The quantitiesy(1,i) are computed like this:

y�1; i� � Y0�xi�; i � 1; 2;…n1 1:

In a similar manner as Step 1, Step 2 is developed. Now
denote

a�j; i� � A�k��tj ; xi�;
j � 1;2;…m1 1; i � 0;1;…n1 1:

The value ofA(k)(t,x) is obtained as follows.
• The quantitiesa(j,i), j � 1;2;…;m, i � 2;3;…; n 1 1,

N. Damean / Advances in Engineering Software 31 (2000) 275–285 279

aCC1Dx 1 aC 1 1 2aC 0 0 … 0 0 0

2aC 1 1 2aC 2aC 0 … 0 0 0

0 2aC 1 1 2aC 2aC … 0 0 0

…

…

…

0 0 0 0 … 2aC 1 1 2aC 2aC

0 0 0 0 … 0 2aC 1 1 2aC

266666666666666666664

377777777777777777775

y�j;1�
y�j;2�
y�j;3�

y�j;n 2 1�
y�j;n�

266666666666666666664

377777777777777777775

�

y�j 2 1;1�1 aCC1Dxu

y�j 2 1; 2�
y�j 2 1; 3�

y�j 2 1; n 2 1�
y�j 2 1; n�

266666666666666666664

377777777777777777775



are computed solving the following system of linear
equations:

where

w�j; i� � Y�k��tj ; xi�2 Ym�tj ; xi� �tj ; xi� [ �0;T� × �L1; L�
0 �tj ; xi� [ �0;T� × �0;L1�

:

8<:
• The quantitiesa(j,1) are computed like this:

a�j;1� � a�j;2�=�1 1 C1Dx�; j � 1; 2;…m1 1:

• The quantitiesa(m 1 1,i) are computed like this:

a�m1 1; i� � 0; i � 2;3;…n1 1:

The matrix of the both systems is a band one (the band-
width is 3), therefore the both systems are solved by a
special Gauss routine.

5. Numerical results

For numerical tests, it is considered that the rod is made
from tungsten, and the measurement medium is melting
AISI 304 steel. The thermophysical properties of these
materials used in the numerical simulations are those corre-
sponding to a temperature of 1800 K, namely

• for tungsten (the rod): kr � 174 W m21 K21,
a � 63:3 × 1026 m2 s21;

• for melting AISI 304 steel (the measurement medium):
a � 3:95× 1026 m2 s21, b � 5:85× 1025 K21,
n � 1 × 1027 m2 s21.

The geometrical characteristics of the rod are:d � 3,L �
30 andL1 � 20 mm. The thermal exchanged coefficient is
defined as usual:

C1 � h
kr

Using the Morgan’s formula for a long horizontal cylinder
in the case of the external free convection flows [5,14], the
average Nusselt number is Nu� 6.75. Finally, the thermal
exchanged coefficient is gotten asC1 � 2.25× 103 m21.

At the same time for the numerical discretizations, it is
considered thatn� m� 144.

The initial distribution of the temperature in the rod is

Y0�x� � 300 K; x [ �0;L�:
The following simulations are achieved.

5.1. Computation of temperature variation of rod versus
time

The first two steps of the above algorithm, with some
minor modifications are used. Results are displayed in Fig.
2 when the temperature of hot end isU � 3650 K.

Curve c1 corresponds to the hot end, curvec4 corre-
sponds to the cold end and curvesc2 andc3 correspond to
points placed equidistantly on the rod, between ends.

It is observed that the temperature in the vicinity of the
cold end is smaller than the temperature close to the hot end,
as is expected from the physical point of view. At the same
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Fig. 2. Temperature variations in the rod.
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Table 1
Computational results for theoretical running

U [K] No. of
iterations
of AM

F0 e0 (%) Type step No. of
iterations of
principal
algorithm

F s es (%)

50 – – – Constant 2 0 0.92× 1024

Variable 5 0.92× 1028 0.11
8 0.28× 1024 6.25 Constant 2 0.14× 1028 0.42× 1021

Variable 2 0.14× 1028 0.42× 1021

350 – – – Constant 2 0.37× 1029 0.26× 1022

Variable 5 0.81× 1029 0.46× 1022

7 0.11× 1023 1.79 Constant 2 0.63× 1027 0.42× 1021

Variable 3 0.10× 1026 0.53× 1021

650 – – – Constant 2 0.28× 1027 0.15× 1021

Variable 6 0.52× 1027 0.21× 1021

7 0.11× 1023 0.96 Constant 2 0.59× 1027 0.23× 1021

Variable 3 0.97× 1027 0.28× 1021

950 – – – Constant 2 0.67× 1028 0.51× 1022

Variable 4 0.77× 1027 0.17× 1021

8 0.28× 1024 0.33 Constant 2 0.10× 1028 0.22× 1022

Variable 2 0.10× 1028 0.22× 1022

1250 – – – Constant 2 0 0
Variable 7 0.65× 1029 0.13× 1022

7 0 0 Constant 0 0 0
Variable 0 0 0

1550 – – – Constant 2 0.64× 1028 0.30× 1022

Variable 5 0.14× 1028 0.14× 1022

8 0.28× 1024 0.20 Constant 2 0.14× 1028 0.14× 1022

Variable 2 0.14× 1028 0.14× 1022

1850 – – – Constant 2 0.16× 1028 0.13× 1022

Variable 4 0.49× 1028 0.23× 1022

7 0.11× 1023 0.34 Constant 2 0.61× 1027 0.79× 1022

Variable 3 0.96× 1027 0.10× 1021

2150 – – – Constant 2 0.14× 1028 0.11× 1022

Variable 4 0.48× 1028 0.20× 1022

8 0.11× 1023 0.29 Constant 2 0.61× 1027 0.68× 1022

Variable 3 0.96× 1027 0.86× 1022

2450 – – – Constant 2 0.62× 1028 0.19× 1022

Variable 5 0.15× 1028 0.91× 1023

8 0.28× 1024 0.13 Constant 2 0.12× 1028 0.87× 1023

Variable 2 0.12× 1028 0.87× 1023

2750 – – – Constant 2 0 0
Variable 6 0.22× 10210 0.15× 1023

7 0 0 Constant 0 0 0
Variable 0 0 0

3050 – – – Constant 2 0.67× 1028 0.16× 1022

Variable 4 0.78× 1027 0.54× 1022

8 0.28× 1024 0.10 Constant 2 0.12× 1028 0.70× 1023

Variable 2 0.12× 1028 0.70× 1023

3350 – – – Constant 2 0.27× 1027 0.29× 1022

Variable 6 0.50× 1027 0.40× 1022

7 0.11× 1023 0.19 Constant 2 0.63× 1027 0.44× 1022

Variable 3 0.97× 1027 0.55× 1022

3650 – – – Constant 2 0.20× 1029 0.25× 1023

Variable 5 0.83× 1029 0.44× 1023

7 0.11× 1023 0.17 Constant 2 0.61× 1027 0.40× 1022

Variable 3 0.97× 1027 0.51× 1022

3950 – – – Constant 2 0 0
Variable 5 0.11× 1027 0.15× 1022

8 0.28× 1024 0.079 Constant 2 0.90× 1029 0.54× 1023

Variable 2 0.90× 1029 0.54× 1023



time, the temperature of the hot end can be considered in a
stationary state after 8 s, but the other temperatures are in
transitory state after a long period of time.

This simulation can be used for choosing a value of the
time T. This value must be selected not too big because the
temperatureU must be constant during the measurement
process and also because the temperature of the cold end
must be not too big. At the same time,T must be not too
small, because it is preferable that the temperature sensors
to measure significant temperature variations of the cold
end.

5.2. Numerical simulations of algorithm

Some numerical results are analysed in the following,
concerning the entire algorithm presented above. For that
purpose, it is necessary to specify a value for a number of
sensors denoted byN.

At the beginning, this algorithm is tested using a number
of sensors corresponding to some working conditions that
are nearly ideal. Therefore, the case when the temperature is
known in every discretization point near the cold end is
analysed. This case is named “theoretical running”. After
that, in “real running” case, consideration is given to a
realistic number of temperature sensors, and numerical
results are compared with the previous results.

The values of other variables used in the algorithm are
M1 � 0 K, M2 � 4000 K,T � 1 s.

Note. Therefore the class of admissible controls is
[0, 4000] K. This covers all industrial applications. The
values ofM1 andM2 could be adjusted for a given applica-
tion according to real working conditions.

A stopping criterion as shown in Step 6 is used.

5.2.1. Theoretical running
In fact, the target of this simulation is to choose the best

variant from those presented before. The problem is to
decide about using constant- or variable-length steps in
Step 4 and about using AMM or not for initialization.
Thus, it is necessary to choose the best from four variants
of this algorithm.

To compare these simulations from some points of view,
a number of steps must be used in Step 4. The smallest
length step of them is equal in all variants, and this value
is less than a half from constant1 s in the stopping criterion
defined by Step 6.

In these conditions, it is expected that simulation error,
defined as:

es�%� � uU 2 Upu
U

× 100

is uniform in all four variants.
In the previous relation,Up means the final value ofU

computed with all the algorithm Steps 0–6. Using Eq. (15),

this condition is displayed as

M2 2 M1

NC
� M2 2 M1

2NV � 210

NCM
� 210

2NVM ,
1s

2
; �22�

where NC is the number of constant-length steps when
AMM is not used; NV the number of variable-length steps
when AMM is not used; NCM the number of constant-
length steps when AMM is used; NVM the number of vari-
able-length steps when AMM is used.

To compare these simulations, it is necessary to use an
ideal number of temperature sensors, as is mentioned above.
This number isN � 49 in this present simulation.

A weak value for1 s in Step 6 is used at this stage because
a long calculus time is expected for some of these variants.
Thus,1s � 0:5 is utilized.

According to Eq. (22), the other values are: NC� 16 384;
NV � 14; NCM� 128; NVM� 7; 10 � 15:625.

These simulations are carried out for 14 values of
unknown temperatureU.

By analogy with simulation error, initial simulation error
(when AMM is used) is defined as

e0�%� � uU 2 U0u
U

100

In this relation,U0 means the value ofu(0) computed in Step
0, using AMM.

The corresponding values of cost functionF relating to
U0 andUp are denoted withF0 andF s, respectively.

Results are presented in Table 1.
Following Table 1, it is observed thatF s andes are nearly

similar in all variants for a certain temperature.
At the same time, the number of iterations of the principal

algorithm can be greater when variable-length steps are used
because the accuracy is lower in this case. This phenomenon
appears especially when AMM is not used.

Sometimes, some null values forF s andes are obtained.
These can be explained through using of a “favourable”-
length step.

These behaviours are forecasted from the beginning.
According to expectation, the shortest computation time is
obtained when AMM with variable-length steps is used. In
the same situation, the number of steps used in Step 4 is
minimum and the number of iterations of the principal algo-
rithm is nearly minimum.

Thus, only this variant of the algorithm, which is fast
convergent and can work in real time, is used in the follow-
ing.

5.2.2. Real running
A realistic number of sensors, namelyN � 3, equidis-

tantly placed in the vicinity of cold end, is considered in
the following.

Author suggests two variants for real running of the algo-
rithm:

• only data obtained from temperature sensors are used;
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• data obtained from temperature sensors and interpolation
data for points between sensors are used; interpolation
with spline functions is used.

A variant of the algorithm with AMM and variable-length
steps is considered. In this case, a strong value1s � 0:001 is
used for the stopping criterion. The other values of constants
are: NV� 16 and10 � 15:625, according to relation (22).

These simulations are carried out for 14 values of
unknown temperatureU. Results are displayed in Table 2.

Examining Table 2, it is seen that the best way is to use
only the data obtained from temperature sensors, without
interpolation.

For this variant, simulation errores is the same as in
theoretical running. Values ofF s are a little greater for
the first variant of real running in comparison with the theo-
retical running, as it is expected. Values ofF s and es are
very large when interpolation is used, in comparison with
the other situations.

Therefore, in the future, only the first variant of real
running is used.

5.3. Numerical simulations of algorithm when disturbed
data are used

From a practical point of view, it is possible that some
errors appear that are caused by technical realization of the
rod, inexact measuring of time, and so on.

Using above algorithm, in real running, the simulation
error is computed versus perturbation error, for three
temperaturesU � 350, 2150 and 3650 K. These three
curves are denoted byc1, c2 andc3, respectively.

The following perturbations are carried out.

• Perturbation of temperature measured by sensors in the
vicinity of the cold end.

Consideration is given to a relative erroreY of temperature
measurements made by all sensors, in the range 0–2%.

The dependencies of simulation error versus relative error
of temperature measurement are displayed in Fig. 3.

• Inexact placements of the sensors on the rod.

Consideration is given to a deviationDl of all sensors in
the range of 0–1.25 mm, toward the hot end.
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Table 2
Computational results for real running

U [K] Fs es (%)

Theoretical running Real running Theoretical running Real running

Data from sensors Data from
sensors and
interpolation

Data from sensors Data from
sensors and
interpolation

50 0 0 0.178× 1023 0.404× 1023 0.404× 1023 17.230
350 0.138× 10211 0.264× 10211 0.715× 1025 0.270× 1023 0.270× 1023 0.483
650 0.294× 10211 0.446× 10211 0.350× 1023 0.150× 1023 0.150× 1023 1.878
950 0.150× 10212 0.485× 10212 0.121× 1022 0.642× 1024 0.642× 1024 2.370
1250 0 0 0.258× 1022 0 0 2.634
1550 0.148× 10211 0.199× 10211 0.446× 1022 0.158× 1024 0.158× 1024 2.796
1850 0.325× 10211 0.364× 10211 0.686× 1022 0.726× 1024 0.726× 1024 2.868
2150 0.113× 10211 0.139× 10211 0.977× 1022 0.568× 1024 0.568× 1024 2.980
2450 0.230× 10210 0.278× 10210 0.132× 1021 0.130× 1023 0.130× 10203 2.997
2750 0 0 0.171× 1021 0 0 3.036
3050 0.170× 10210 0.203× 10210 0.216× 1021 0.104× 1023 0.104× 1023 3.125
3350 0.976× 10212 0.128× 10211 0.266× 1021 0.292× 1024 0.292× 1024 3.078
3650 0.709× 10212 0.808× 10212 0.320× 1021 0.268× 1024 0.268× 1024 3.168
3950 0.880.10211 0.120× 10210 0.380× 1021 0.804× 1024 0.804× 1024 3.201

Fig. 3. Plot ofes (%) versuseY (%).



The dependencies of simulation error versus deviation of
sensors are displayed in Fig. 4.

• Inexact measurement of time.

Consideration is given to an error of time measurementDt
in the range of 0–0.1 s (delay).

The dependencies of simulation error versus time delay
are displayed in Fig. 5.

Examining Figs. 3–5, note the nearly linear dependencies
between perturbation factors and simulation error in all
cases. These errors are large at the end of the perturbation
range.

According with these simulations, it is necessary to
construct the measuring system carefully, so that these
errors are as small as possible.

6. Conclusions

A new numerical algorithm and a device based on it for
extreme temperature measurements are presented.

The mathematical model of the device and new numerical
algorithm are exposed in detail. At the same time, some
possibilities of practical implementation are analysed and
the best variant from them is chosen. Behaviour of algo-
rithm in real conditions using disturbed data is shown in the
end.

Generally, the temperature sensors work in the stationary
state. The system described can be considered as a tempera-
ture sensor operating in the transient state. It uses a small
beginning part of the transient state of the heat transfer in the
rod.

The proposed device can measure any values of tempera-
ture in difficult places. In fact, it works as an attenuator of
high temperatures and as an amplifier of low temperatures.

Some observations can be noted.

• It is not necessary that temperature sensors be placed
equidistantly. This type of placement is chosen to make
the numerical implementation easier. The distances
between sensors could be arbitrary, but knowing them
exactly is necessary.

• It is not necessary that temperature sensors be placed in
the vicinity of the cold end. This type of placement is
chosen to make the explanation of the theoretical part
easier. Depending on the real working conditions, they
could be placed on another part of the rod (e.g., in the
middle of it). However, knowing these placements
precisely is necessary, otherwise an important error
could appear, as shown in Fig. 4.

• It is not necessary that time be considered from 0 toT in
the cost function (5). From a practical point of view, the
measuring of very small variations of temperature must
be avoided, because important errors can occur. There-
fore it is possible to use a subrange [T1,T] , [0,T] in the
cost function without any other modifications of the algo-
rithm.

• It is considered that the thermophysical properties of the
materials implied in the device structure do not depend
on temperature, to make the numerical implementation
easier. This hypothesis is not true in the real conditions,
because there are some slow dependencies between the
thermophysical properties and temperature. In the
general case, an appropriate form of the nonlinear heat
equation might be considered and the entire problem
must be reformulated accordingly. Because of the very
short measurement time, there are expected relatively
small temperature variations in the rod, so that the use
of the nonlinear heat equation can be avoided. In this
case, only some minor modifications in the algorithm
presented herein are necessary to take these dependen-
cies into account, considering different values for these
properties in the different temperature ranges when the
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Fig. 4. Plot ofes (%) versusDl (mm).

Fig. 5. Plot ofes (%) versusDt (s).



device works in certain conditions. Therefore, accord-
ingly to these temperature dependencies, the values of
the thermophysical properties have to be adjusted in each
iteration of the algorithm presented herein.
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[11] Arnáutu V. On approximation of the inverse one-phase Stefan
problem. International Series of Numerical Mathematics
1991;99:69–81.

[12] Sibony M. Sur l’approximation d’e´quations et ine´quations aux de´ri-
vées partielles non line´aires de type monotone. Journal of Mathema-
tical Analysis and Applications 1971;34:502–64.

[13] Ames WD. Numerical methods for partial differential equations, New
York: Academic Press, 1992.

[14] Bejan A. Heat transfer, New York: Wiley, 1996.

N. Damean / Advances in Engineering Software 31 (2000) 275–285 285


