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Abstract

A new algorithm for measurement of extreme temperature is presented. This algorithm reduces the measurement of the unknown
temperature to the solving of an optimal control problem, using a numerical computer. Based on this method, a new device for extreme
temperature measurements is projected. It consists of a hardware part that includes some standard temperature sensors and it also has
software section.

The principal component of the device is a rod. The variation in the temperature, which is produced near one end of the rod, is determined
using some temperature measurements at the other end of the rod and the new algorithm described here.

The mathematical model of the device and the algorithm are explained in detail. At the same time, some possible practical implementa-
tions and a collection of simulations are presen@@000 Elsevier Science Ltd. All rights reserved.
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Nomenclature o thermal diffusivity [nf s™]
volumetric thermal expansion coefficient of the
C thermal exchange coefficient between rod and measurement medium [K]
measurement medium [ v kinematic viscosity of the measurement medium
d diameter of the rod [mm] m?sY
h convection heat transfer coefficient [W K 4] At time step [s]
ke thermal conductivity of the rod [W m K™ Ax space step [m]
L length of the rod [mm] subscripts
Ll |ength of the part of the rod on which the i associated with a space position
temperature sensors are not placed [mm] j associated with a time position
m number of the division parts df superscripts
N number of the temperature sensors k iteration number of the numerical algorithm
n number of the division parts df
T duration of contact between the hot end and the
point where the temperature is measured [s]
t time [s] 1. Introduction
U unknown temperature to be measured [K] ) ]
[M1,M,] temperature range including the unknown Itis known that for temperature measurement some kmt_:ls
temperaturdJ [K] of transducers are used. They are divided in .two main
X distance along the rod relating to the hot end [mm] classes: modylatmg tra.nsducers and self-generating transdu_-
Y(tx) temperature of the rod at the momei the point cers. Thermistors, resistance-temperature detect.ors, semi-
x [K] conductor temperature transducers are in the first class.

Y"(t,X) temperature at the momenof a pointx at the cold ~ Thermocouples are important elements in the second class

end of the rod which is measured by the tempera- [1,2]. )
ture sensors [K] All these usual transducers have in common that they can

only measure usual temperatures, in the range 200—2000 K
with good accuracy. Pyrometric methods are used for
* Tel: + 31-53-489-2778: fax:+ 31-53-489-1067. measurement of high temperature out of this range.
E-mail addressn.damean@el.utwente.nl (N. Damean). Unfortunately, some integration effects appear using these
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Fig. 1. The scheme of the devicé&) [detachable lid; Z) rod; (3) thermic insulating layer;4) common temperature sensors.

methods, so that practical results are disturbed by a lot of on the rod, under the thermic insulating layer. Temperature
errors. Some cryogenic temperature sensors are developedensors are coupled with a computer.
in the last decade. However, the technical feasibility of these  The scheme of this device is shown in Fig. 1.
sensors and the achievement of a good metrological perfor- Its operation is explained in the assumption that the
mances may be adversely affected by a broad working rangeunknown temperatur® is higher than the temperature of
[3,4]. Thus itis necessary to develop new devices and meth-the environment, and is constant during the time of
ods for extreme, i.e. very high and very low, temperature measurement.
measurements. The device is introduced into the medium of measure-
In this work, the author proposes a new method to ment so its hot end is in the measurement point and the
measure extreme temperatures using standard sensors ilid is removed for a short timeJ. During this period,
the usual range, where their behaviour is known with temperature versus time variations are measured with the
great accuracy. One possible way to obtain this extensionN sensors near the cold end. In fact, the hot end is excited by
of range is to use an adequate software tool. a step function having valud as amplitude, and its influ-
Therefore, the author consider the problem in which ence over the vicinity of the cold end is observed. The
the unknown temperature is determined through the unknown temperaturd is computed from the temperatures
formulation of the measurement problem as an optimal measured by th&l sensors.
control one. The last problem is solved using a numerical From the above description it is noticed that the tempera-
algorithm. ture of the cold end is much less than the measured tempera-
The principal component of the device for which a new ture U. Therefore, it can be considered that this device
numerical algorithm is developed is a long cylindrical rod performs the function of a temperature attenuator.
with a diameter as small as possible. It is covered by a Obviously, the device works in a similar manner when the
thermic, insulating layer. temperature to be measured is lower than the temperature of
One end of the rod, called the “hot end”, is in contact with the environment. In this case it can be considered that it
the point in which the temperature is measured. This end is performs the function of a temperature amplifier.
covered with a detachable lid made of a thermic insulating
material.
The other end of the rod is termed the “cold end”. In its 2. Theoretical approach
vicinity, on a small distance along a generating line of the
rod, a numbeN of standard temperature sensors, e.g. ther-  The phenomenon described above is modeled by a partial
mocouples, are placed equidistantly. They are stuck directly differential equation of parabolic type, named the heat
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equation [5] Theorem. If the pair{U*,Y*_(t, X)} is.an optimfal one for
Vit %) — @Yt ) = O, (t.x) € (0.T) X (0.L) o Lr:ibp;;?:]):lem(l)—(S) then a size &,X) is a solution of the
with the boundary conditions of Newton type At %) + aAy(t, %) = YAt %) — Y™(L,X),

Y(t,0) = Ci(Y(1,0) —U),  tE[0,TI, 2 ©)

(t,x) € (0, T) X [Lq,L),
NWth=0  teloT] @AM F AL =0, (LX) E (0,T)X(O,Ly),
and the initial condition

AX(t’ O) = ClA(t7 0)’ te [Oa T]& (7)
Y(0,X) = Yu(X), x € [0, L]. 4
The existence and regularity for the problem (1)—(4) are AL L) =0, te (0TI, ®)
well known [6].
As is noticed, unknown temperatukbappears in condi-  A(T:0 =0, X&€[0,L] ©
tion (2) in a boundary condition of Newton type. and it happens that
The problem is to computd, using the mathematical N
model and the set of measured temperatures in the vici- M, if J' A®t,0) dt > 0
nity of the cold end of the rod, during time of measure- | . 0
U™ = . (10
ment T. (T
This poblem is considered in terms of an optimal M, if JO At,0dt=0

control one, denoted by (P), with the following typical
elements [7]:

(i) equations of state are given by (1)—(4);

(ii) the class of admissible controls]isl;, M, ], whereMy,

M, are chosen from the beginning by the physical limita-
tions on the problem, as being the extreme values where
the unknown temperaturd can be situated;

(i) the cost function to be minimized is

Relations (6)—(10) make the necessary conditions for opti-
malization.

The results presented in this section show that entire
problem has only one solution in accordance with physical
reality. At the same time, they suggest the possibility for
numerical implementation that is developed in the following

T oL section.
PD(u) = JO J [Y(t, %) — Y(t, ] dx dt ®
L

for u € [My, M,]. Quantity Y(t,x) is the solution of the < Numerical approach
above problem (1)—(4), which correspondsutoy™(t,x)

is temperature of a point near the cold end that is
measured by the common temperature sensors.

For the numerical calculation of the temperaturavhich
is an optimal control problem, as seen before, one type of
gradient algorithm is used [9,11].
The optimal control problem (P) is now formulated as Using formula (10) as the main one, the following itera-
(P). tive algorithm is developedk(being iteration number). In
view of relations (1)—(10) one considers the following itera-
Find an admissible contrdd* € [M,, M,] that minimizes tive algorithm:
the cost functiond. Step 0:Chooseu® € [M;, M,]; setk := 0.
The algorithm is initialized with an admissible control
Concerning the enunciated optimal problem (P), it is and a counter of the iterative algorithm sets to zero.
proved that it admits only one solution [8]. Thus, there exists ~ Step 1: Compute Y®¥(t,x), that is, the state system
a pair {U", Y*(t,x)}, such thatU* € [M;, M,] is the optimal described by Egs. (1)—(4)
control of problem (P) and*(t,x) is the optimal state that
corresponds t&J*. This is equivalent to:

T rL
WU = YVt - YUt dedt = min dw. Yo GO =CIY¥E0-u®],  te0T], (12
o)y ’ ’ UE[M1.M;]

. o YR¥aLh =0 teT] (13)
The development of an descent algorithm [9] is detailed in

the following. For that, the necessary conditions for optima-
lization have to be established. The following theorem is
already proved [10]. Step 2:ComputeA®(t,x), that is, the adjoint state system

Y®(t, x) — aY®(t,x) = 0, t,X) € (0,T) X (0,L), (11)

Y®(0, %) = Yo%), X € [0, L]. (14
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described by Egs. (6)—(9)

AR, %) + ARt x) = YR, x) — Y™(t, %),

(t,x) € (0, T) X [Ly,L),

AR, %) + AR (t,x) = 0, (t,X) € (0, T) X (O, Ly),

APt L)=0, teE0T],

ART, x) =0, X € [0, L].

Step 3:Use relation (10) to compute the optimal control
W from

at iterationk, denoted asI’

;
M, if J A®(t,0)dt >0
U — 0

. .
M, if J A®(t,0)dt =0
0

An approximation of the optimal control problem (P) is
derived.

Step 4:Computed™ € [0, 1] as a solution to the mini-
mization process

min{ ®u® + (1 — su®); s [0, 1]}

where @ is the cost function of problem (1)—(4) given by
Eq. (5). Itis verified if the optimal control derived in Step 3
minimizes the cost function.

Step 5:Set
urD = 50000 4 (1 — 500y,
A new admissible contral®"? placed between® andu*®

is computed.
Step 6:(the “stopping criterion”)

IF u*D — u®| = &

THEN U* = u**®

STOP
ELSE k:= k+1
GO TO Step 1

The “stopping criterion” in Step 6 can also be as follows.

Step 6
IF |ou*Y) — du)| = &,
THEN U* = u**P

STOP
ELSEk:= k+1
GO TO Step 1

The symbolss, and 5 in Step 6 and Step’&enote two
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small, positive real values chosen in accordance with prac-
tical requirements.

As is observed from the practical implementation of this
algorithm, there are difficulties in trying to find a good
“guess” ofu® in Step 0. For avoiding it, in Step 0 a local
variation procedure is used, namely, the “azimuth mark”
method (AMM) [12].Two “stopping criterions” that could
be used for this procedure are:

IF|r +1) —r() = &
THEN STOP AMM
ELSE

CONTINUE AMM

i=i+1

and
IFi=i
THEN STOP AMM
ELSEi:=i+1

CONTINUE AMM

wherer (i) is the radius of the azimuth mark (AM) at th¢h
iteration of this procedure, ang} andiy are natural and real
numbers, respectively. They are specified in the initializa-
tion stage of the algorithm.

Steps 1 and 2 are solved using some implicit finite-differ-
ence approximations, namely, the O’Brian et al. formula
and the Crank—Nicolson formula [13]. Boundary conditions
impose the need to use a “false” boundary for practical
implementation of these formulas.

Step 3 does not cause any serious problems from an
applicative point of view.

Concerning Step 4, at the beginning it used a carefully
supervised loop with the form (s € N¥)

Ad:= 1/nn
DO FORI =0,1,...nn
6:=1A6

Compute®[su® + (1 — 8)u*®] using Eq. (5)
END DO

This procedure, with constant-length steps to solve a mini-
mization problem, could be improved (from a computa-

tional time point of view) using variable-length steps.

Afterwards, it has been used a carefully supervised loop
of the form(mm € N*)

DO FORI=0,1,..mmX é

|
§:=> (U2%-1
kk=0

Computed[su® + (1 — §)u*®] using Eq. (5)
END DO
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Between nrx é and mmx & there is the following performed:
relation:

K y(,i) —y(4 — Li)
2™ = nn (15) Yt Xl = At ’
_ 17
obtained from the condition to have the same smallestj =1,2,..m+ 1, i=0,1,...n+ 1,

length step in the two loops. It means that the second loop

has a smaller number of steps than the first. Generally, theY(")(t X ~

second procedure is faster, but the accuracy is lower than the ** 7 ™!

first. :
The double integrals from Step 4, as well as Step 5 and/ =1

Step 6 (Step 9, do not lead to potential problems from a

AX? (18)
2,.m+1i=12..n

numerical point of view. Y,((k)(t 0)|j L=~ y(j’i)i_ IRY i=12..m+1 (19
,0);. Ax , 2, ... ,
4. Implementation of the algorithm Yo, D1 = yd.n +iA) — Y0, n)’ =12 ..m+1,
’ X
In the following, it is referred only to Step 1 and Step 2, (20

because the others are implemented without difficulties, as
is seen in the previous paragraph.

where

Steps 1 and 2 are solved using some implicit finite differ- ,, _ T, L ~_ At 21
ence approximations; the grids in effect with equidistant m’ n’ AX?’
knots are: Using the discretizations (16)—(21), the valueY8i(t,x)
O=t1 <L <..<th1=T is obtained in Step 1 from Egs. (11)—(14) as follows.
[aCCAX+aC+1 —aC 0 0 0 0 0O Ir vi,n T CY(j — 1,1) + aCC AXUT
—aC 1+2aC  —aC 0 .. © 0 0 v, 2) yi—12)
0 —aC  1+2aC —aC .. O 0 0 v(,3) y( — 1,3)
0 0 0 0 .. —aC 1+2aC —aC y(G,n— 1) y(G—1n—1)
| 0 0 0 0 0 —aC 1+2aCJL vy(G,n | y(G — 1,n) |

e The quantitiesy(j,i), j=2,3,...m+1,i=12...n,

Xo < 0= X < Xp < o < Xuq = L are computed by solving the following system of linear
- M 2 n+1 —

equations:
The existence of a “false” boundary, denoted Xy is e The quantitiey/(j,n + 1) are computed like this:
noticed in the previous relation. ) . .
In the following, it is presented a detailed algorithm using ~ YU-n+ 1) = y(.n, ]=23.m+1

the O'Brian et al.’s formula. n _ . .
Implementation of the algorithm and results when the ® The quantitieg/(1,i) are computed like this:

Crank—Nicolson formula is used are similar [13]. V(L 1) = Yo%), i=1,2..n+1
Denote
In a similar manner as Step 1, Step 2 is developed. Now
V. = Y¥t.x),  j=12..m+1i=01..n+1 denote
(16) a(j.i) = A¥t, %),
i=12,.m+1i=01..n+1
u=u®.

The value ofA¥(t,x) is obtained as follows.
The following usual discretizations for derivatives are e The quantitiesa(j,i), j=212,...m, i=2,3,...,.n+ 1,
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are computed solving the following system of linear At the same time for the numerical discretizations, it is

equations: considered thah = m= 144,
[—aC/1+ CiAx+1+2aC  —aC 0 0 .. O© 0 0 r ai.2 7 [ aj+1,2—-Atw{2 ]
—aC 1+2aC —aC 0 .. O0 0 0 ag,3) a( + 1,3) — Atw(,3)
0 —aC 14+2aC —aC .. O 0 0 agj, 4) a(j + 1,4 — Atw(, 4
—aC 1+ 2aC —aC a(j,n), a(j + 1,n) — Atw(, n)
| 0 0 .. O —aC  1+2aCllajn+1] Laj+1,n+1)— Atwin+1)]
where The initial distribution of the temperature in the rod is
O YO, %) = Y. %)  (4.%) € (0.T)X [Ly. L) Yo =300K  x€&[0.L].
w(,i) = . . . . .
| 0 (. %) € (0, T)x(O,Ly) The following simulations are achieved.
5.1. Computation of temperature variation of rod versus
e The quantitiesa(j,1) are computed like this: time
a(j,1) = a(j, 2/(1 + C,Ax), j=12..m+1 The first two steps of the above algorithm, with some

minor modifications are used. Results are displayed in Fig.
2 when the temperature of hot endUs= 3650 K.

Curve cl corresponds to the hot end, curgé corre-
am+1,i) =0, i=23..n+1 sponds to the cold end and curnesandc3 correspond to
points placed equidistantly on the rod, between ends.

It is observed that the temperature in the vicinity of the
cold end is smaller than the temperature close to the hot end,
as is expected from the physical point of view. At the same

e The quantitiesa(m + 1,) are computed like this:

The matrix of the both systems is a band one (the band-
width is 3), therefore the both systems are solved by a
special Gauss routine.

. AYxy cl
5. Numerical results 3600 —] :. 2

For numerical tests, it is considered that the rod is made
from tungsten, and the measurement medium is melting
AISI 304 steel. The thermophysical properties of these
materials used in the numerical simulations are those corre- 5775
sponding to a temperature of 1800 K, namely

e for tungsten (the rod):k = 174Wm iK™,
a=633%x10 °m?sh
o for melting AISI 304 steel (the measurement medium):

1950
a=1395x10 *m?s %, B=585x10"°K?,
r=1x10"m?s %

The geometrical characteristics of the rod @e: 3,L =
30 andL; = 20 mm. The thermal exchanged coefficient is 1125
defined as usual:
h
Cl = E
Using the Morgan’s formula for a long horizontal cylinder 300

in the case of the external free convection flows [5,14], the
average Nusselt number is Nu6.75. Finally, the thermal
exchanged coefficient is gotten @g = 2.25%X 10°m™ L Fig. 2. Temperature variations in the rod.
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Table 1
Computational results for theoretical running
U [K] No. of D, & (%) Type step No. of Dy e (%)
iterations iterations of
of AM principal
algorithm
50 - - - Constant 2 0 0.92107*
Variable 5 0.92x 10°® 0.11
8 0.28x 10°* 6.25 Constant 2 0.1% 10°® 0.42x 107!
Variable 2 0.14x 10°® 0.42x 1071
350 - - - Constant 2 0.3710°° 0.26x 1072
Variable 5 0.81x 107° 0.46x 1072
7 0.11x 1073 1.79 Constant 2 0.68 1077 0.42x 107!
Variable 3 0.10x 10°® 0.53x 107!
650 - - - Constant 2 0.281077 0.15x 107!
Variable 6 0.52¢ 1077 0.21x 107*
7 0.11x 1073 0.96 Constant 2 0.58 1077 0.23x 107!
Variable 3 0.97% 1077 0.28x 107!
950 - - - Constant 2 0.6110°8 0.51x 1072
Variable 4 0.77x 1077 0.17x 107!
8 0.28x 107* 0.33 Constant 2 0.18 1078 0.22x 1072
Variable 2 0.10x 10°® 0.22x 1072
1250 - - — Constant 2 0 0
Variable 7 0.65x< 10°° 0.13x 102
7 0 0 Constant 0 0 0
Variable 0 0 0
1550 - - - Constant 2 0.6410° 0.30x 1072
Variable 5 0.14x 10°8 0.14x 1072
8 0.28x 10°* 0.20 Constant 2 0.1% 10°® 0.14% 1072
Variable 2 0.14x 10°® 0.14%x 102
1850 - - - Constant 2 0.610°8 0.13x 1072
Variable 4 0.49< 1078 0.23x 1072
7 0.11x 10°® 0.34 Constant 2 0.6% 1077 0.79%x 1072
Variable 3 0.96x 1077 0.10x 107!
2150 - - - Constant 2 0.1410°8 0.11x 1072
Variable 4 0.48x 10°® 0.20% 102
8 0.11x 10°° 0.29 Constant 2 0.6% 1077 0.68x 1072
Variable 3 0.96x 1077 0.86x 102
2450 - - - Constant 2 0.6210°® 0.19% 1072
Variable 5 0.15x 10°® 0.91x10°°
8 0.28x 10°* 0.13 Constant 2 0.1210°8 0.87x 1072
Variable 2 0.12¢< 10°® 0.87x 107
2750 - — - Constant 2 0 0
Variable 6 0.22x 10" 0.15x 10°°
7 0 0 Constant 0 0 0
Variable 0 0 0
3050 - - - Constant 2 0.6710°8 0.16x 1072
Variable 4 0.78< 1077 0.54% 1072
8 0.28x 10°* 0.10 Constant 2 0.1210°8 0.70x 1072
Variable 2 0.12¢< 10°® 0.70x 1073
3350 - - - Constant 2 0.271077 0.29% 1072
Variable 6 0.50¢ 1077 0.40x% 1072
7 0.11x 1073 0.19 Constant 2 0.68 1077 0.44% 1072
Variable 3 0.97x 1077 0.55% 1072
3650 - - - Constant 2 0.2010°° 0.25x 1072
Variable 5 0.83x 10°° 0.44% 1073
7 0.11x 1073 0.17 Constant 2 0.6x 1077 0.40x 1072
Variable 3 0.97x 1077 0.51x 1072
3950 - — - Constant 2 0 0
Variable 5 0.11x 1077 0.15x 1072
8 0.28x 10°* 0.079 Constant 2 0.9R10°° 0.54x 1072
Variable 2 0.90x 10°° 0.54x 1073




282 N. Damean / Advances in Engineering Software 31 (2000) 275-285

time, the temperature of the hot end can be considered in athis condition is displayed as
stationary state after 8 s, but the othgr temperatures are m,v|2 M M- My 260 260 &
transitory state after a long period of time. = W = = oo < o

This simulation can be used for choosing a value of the NC 2 NCM 2 2
time T. This value must be selected not too big because thewhere NC is the number of constant-length steps when
temperatureJ must be constant during the measurement AMM is not used; NV the number of variable-length steps
process and also because the temperature of the cold endvhen AMM is not used; NCM the number of constant-
must be not too big. At the same timé must be not too  length steps when AMM is used; NVM the number of vari-
small, because it is preferable that the temperature sensorable-length steps when AMM is used.
to measure significant temperature variations of the cold To compare these simulations, it is necessary to use an
end. ideal number of temperature sensors, as is mentioned above.

This number isN = 49 in this present simulation.
) ] ) ] A weak value foregin Step 6 is used at this stage because

5.2. Numerical simulations of algorithm a long calculus time is expected for some of these variants.
Thus, & = 0.5 is utilized.

According to Eq. (22), the other values are: NCL6 384;
NV = 14; NCM = 128; NVM = 7; g, = 15.625.

These simulations are carried out for 14 values of
unknown temperature.

By analogy with simulation error, initial simulation error
éwhen AMM is used) is defined as

(22

Some numerical results are analysed in the following,
concerning the entire algorithm presented above. For that
purpose, it is necessary to specify a value for a number of
sensors denoted by.

At the beginning, this algorithm is tested using a number
of sensors corresponding to some working conditions that
are nearly ideal. Therefore, the case when the temperature i
known in every discretization point near the cold end is U — Uy
analysed. This case is named “theoretical running”. After (%) = TIOO

that, in “real running” case, consideration is given to a ) ) of® )
realistic number of temperature sensors, and numericalln this relation,U, means the value af™” computed in Step

results are compared with the previous results. 0, using AMM. _ .
The values of other variables used in the algorithm are  The corresponding values of cost functidnrelating to
M; = 0K, M, = 4000 K,T = 1s. Uy andU" are denoted withb, and &, respectively.

Note. Therefore the class of admissible controls is  Results are presented in Table 1.
[0,4000] K. This covers all industrial applications. The  Following Table 1, itis observed thdt; ande; are nearly

values ofM; andM, could be adjusted for a given applica- Similar in all variants for a certain temperature.
tion according to real working conditions. At the same time, the number of iterations of the principal

A stopping criterion as shown in Step 6 is used. algorithm can be greater when variable-length steps are used
because the accuracy is lower in this case. This phenomenon
appears especially when AMM is not used.

5.2.1. Theoretical running Sometimes, some null values fdrs ande; are obtained.

In fact, the target of this simulation is to choose the best These can be explained through using of a “favourable-
variant from those presented before. The problem is to length step.
decide about using constant- or variable-length steps in These behaviours are forecasted from the beginning.
Step 4 and about using AMM or not for initialization. According to expectation, the shortest computation time is
Thus, it is necessary to choose the best from four variantsobtained when AMM with variable-length steps is used. In
of this algorithm. the same situation, the number of steps used in Step 4 is

To compare these simulations from some points of view, minimum and the number of iterations of the principal algo-

a number of steps must be used in Step 4. The smallestrithm is nearly minimum.
length step of them is equal in all variants, and this value  Thus, only this variant of the algorithm, which is fast
is less than a half from constast in the stopping criterion ~ convergent and can work in real time, is used in the follow-

defined by Step 6. ing.
In these conditions, it is expected that simulation error,
defined as: 5.2.2. Real running
; A realistic number of sensors, namdl/= 3, equidis-
ey(%) = M x 100 tantly plaged in the vicinity of cold end, is considered in
U the following.
. . . . Author suggests two variants for real running of the algo-
is uniform in all four variants. Hithm:

In the previous relation” means the final value df
computed with all the algorithm Steps 0—6. Using Eq. (15), e only data obtained from temperature sensors are used;
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Table 2
Computational results for real running

U [K] by & (%)
Theoretical running Real running Theoretical running Real running
Data from sensors Data from Data from sensors Data from
sensors and sensors and
interpolation interpolation
50 0 0 0.178x 10°° 0.404x 1073 0.404x 1073 17.230
350 0.138x 101t 0.264x 10 0.715x 10°° 0.270x 10°° 0.270x 10°° 0.483
650 0.294x 1071 0.446x 107 0.350x 10°% 0.150x 1073 0.150x 10°% 1.878
950 0.150x 102 0.485x 10 1 0.121x 1072 0.642x 107 0.642x 107* 2.370
1250 0 0 0.258¢ 1072 0 0 2.634
1550 0.148x 10 0.199x 10 0.446% 1072 0.158x 10°* 0.158x 10°* 2.796
1850 0.325¢ 1071 0.364x 1071 0.686x 1072 0.726x 107* 0.726x 107* 2.868
2150 0.113< 107 0.139x 107 0.977x 1072 0.568x 107* 0.568x 107* 2.980
2450 0.230x 10720 0.278x 10710 0.132x 107! 0.130x 1073 0.130x 107% 2.997
2750 0 0 0.17Xx 10! 0 0 3.036
3050 0.170x 10720 0.203x 1020 0.216x 107! 0.104x 1072 0.104x 10°% 3.125
3350 0.976x 10 12 0.128x 107 0.266x 107! 0.292x 10°* 0.292x 10°* 3.078
3650 0.709x 1072 0.808x 1072 0.320x 107! 0.268x 107* 0.268x 107* 3.168
3950 0.880.10% 0.120x 1020 0.380x 107! 0.804x 10°* 0.804x 10°* 3.201

¢ data obtained from temperature sensors and interpolation Examining Table 2, it is seen that the best way is to use
data for points between sensors are used; interpolationonly the data obtained from temperature sensors, without
with spline functions is used. interpolation.

For this variant, simulation errogs is the same as in
theoretical running. Values ofg are a little greater for
the first variant of real running in comparison with the theo-
retical running, as it is expected. Values @f and e are
very large when interpolation is used, in comparison with
the other situations.

Therefore, in the future, only the first variant of real
running is used.

A variant of the algorithm with AMM and variable-length
steps is considered. In this case, a strong vajue 0.001 is
used for the stopping criterion. The other values of constants
are: NV= 16 andgy = 15.625, according to relation (22).

These simulations are carried out for 14 values of
unknown temperaturt). Results are displayed in Table 2.

A & (%)

267 4 5.3. Numerical simulations of algorithm when disturbed
el data are used

From a practical point of view, it is possible that some
errors appear that are caused by technical realization of the

REREES c2 rod, inexact measuring of time, and so on.
..... c3 Using above algorithm, in real running, the simulation
‘ error is computed versus perturbation error, for three
ey (%) temperaturesU = 350, 2150 and 3650 K. These three
> curves are denoted 1, c2 andc3, respectively.

The following perturbations are carried out.

¢ Perturbation of temperature measured by sensors in the
vicinity of the cold end.

Consideration is given to a relative errar of temperature
measurements made by all sensors, in the range 0—2%.

The dependencies of simulation error versus relative error
of temperature measurement are displayed in Fig. 3.

¢ Inexact placements of the sensors on the rod.

Consideration is given to a deviatidxi of all sensors in
Fig. 3. Plot ofe, (%) versusey (%). the range of 0—1.25 mm, toward the hot end.
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A & (%)
c3
25
12.5 <
0 T T >

0 0.625 1.25

Fig. 4. Plot ofes (%) versusAl (mm).

The dependencies of simulation error versus deviation of e

sensors are displayed in Fig. 4.
¢ Inexact measurement of time.

Consideration is given to an error of time measurermént
in the range of 0—0.1 s (delay).

The dependencies of simulation error versus time delay

are displayed in Fig. 5.

Examining Figs. 3-5, note the nearly linear dependencies

between perturbation factors and simulation error in all

cases. These errors are large at the end of the perturbation

range.
According with these simulations, it is necessary to

construct the measuring system carefully, so that thesee

errors are as small as possible.

A & (%)
24 pe c3
...... c2
...... cl
At [s]
0 I T >

0 0.05 0.1

Fig. 5. Plot ofe; (%) versusAt (s).

6. Conclusions

A new numerical algorithm and a device based on it for

extreme temperature measurements are presented.

The mathematical model of the device and new numerical

algorithm are exposed in detail. At the same time, some
possibilities of practical implementation are analysed and
the best variant from them is chosen. Behaviour of algo-
rithm in real conditions using disturbed data is shown in the
end.

Generally, the temperature sensors work in the stationary

state. The system described can be considered as a tempera-
ture sensor operating in the transient state. It uses a small
beginning part of the transient state of the heat transfer in the
rod.

The proposed device can measure any values of tempera-

ture in difficult places. In fact, it works as an attenuator of
high temperatures and as an amplifier of low temperatures.

Some observations can be noted.

It is not necessary that temperature sensors be placed
equidistantly. This type of placement is chosen to make
the numerical implementation easier. The distances
between sensors could be arbitrary, but knowing them
exactly is necessary.

It is not necessary that temperature sensors be placed in
the vicinity of the cold end. This type of placement is
chosen to make the explanation of the theoretical part
easier. Depending on the real working conditions, they
could be placed on another part of the rod (e.g., in the
middle of it). However, knowing these placements
precisely is necessary, otherwise an important error
could appear, as shown in Fig. 4.

It is not necessary that time be considered from U o

the cost function (5). From a practical point of view, the
measuring of very small variations of temperature must
be avoided, because important errors can occur. There-
fore it is possible to use a subrande,l] C [0,T] in the

cost function without any other modifications of the algo-
rithm.

It is considered that the thermophysical properties of the
materials implied in the device structure do not depend
on temperature, to make the numerical implementation
easier. This hypothesis is not true in the real conditions,
because there are some slow dependencies between the
thermophysical properties and temperature. In the
general case, an appropriate form of the nonlinear heat
equation might be considered and the entire problem
must be reformulated accordingly. Because of the very
short measurement time, there are expected relatively
small temperature variations in the rod, so that the use
of the nonlinear heat equation can be avoided. In this
case, only some minor modifications in the algorithm
presented herein are necessary to take these dependen-
cies into account, considering different values for these
properties in the different temperature ranges when the



N. Damean / Advances in Engineering Software 31 (2000) 275-285 285

device works in certain conditions. Therefore, accord- [7] Knowles G. An introduction to applied optimal control, New York:
ingly to these temperature dependencies, the values of _ Academic Press, 1981.

the thermophysical properties have to be adjusted in each
iteration of the algorithm presented herein.
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