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SHORT COMMUNICATION 

CHEMICAL CONSIDERATIONS ON PASSIVITY* 

P .  J.  GELLINGS 

Technische Hogeschool  Twente,  Enschede,  Ne ther lands  

Abstract---It  can be shown  tha t  the  value o f  the  charge/ radius  ratio o f  metallic ions determines  
whether  the  metal  on dissolut ion tends  to become passive or not.  Us ing  this  criterion it is possible to 
clarify the  influence o f  p H  and electrode potential  on the  occurrence and  breakdown of  passivity. 

I N T R O D U C T I O N  

IN MANY cases a base metal is less reactive than would be expected from its standard 
electrode potential. This important phenomenon is called passivity and when a metal 
is passive it shows a much lower corrosive rate than otherwise. 1,2 Well-known 
examples are aluminium, chromium and chromium alloys, titanium, etc. In aqueous 
solutions the explanation usually given for this phenomenon is that the surface of the 
metal is covered by a layer of oxide or adsorbed oxygen which isolates the metal from 
its environment. 

From thermodynamic considerations it can be deduced under which circumstances 
passivity may be expected. The Pourbaix diagrams s are extremely valuable in this 
respect. 

On the other hand, however, thermodynamics is not able to furnish an explanation 
why passivity occurs. In the present paper the chemical background of passivity is 
considered on the basis of the chemical reactions and the properties of  the metal 
ions involved in passivation. The discussion is limited to cases of "non-specific" 
passivity and cases such as Pb in H2SO4, which is protected by an insoluble film of 
PbSO4, are not considered, and it is assumed that no complexing agents are present 
in the solution. Finally we shall limit ourselves to metals with inert-gas configurations 
and to the transition metals. 

Basic reactions 
The basic corrosion reaction is usually written as the anodic half-reaction of a 

galvanic couple. 

M --+ M ra+ + m e -  

For  our considerations we must take into account that all ions in aqueous solution are 
hydrated, i.e. a number of  water molecules are bound strongly to the metal ion: 

M + nH20 -+ [M(H20),] "+ + me= 
*Manuscr ip t  received 15 M a r c h  1966. 
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It will be shown that the properties of these aquo-ions have a large influence on the 
corrosion-reaction. 
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Common ligands of metal ions as a function of the charge/radius ratio and pH 
in aqueous solution. 

Those properties which are of main interest are conveniently summarized in Fig. 1 
which is a modification of a similar diagram due to Jorgensen 4 and which is based on 
the ideas of Cartledge. 5 The ionic radii used in the calculations are those given by 
Pauling. s 

For low values of z/r, the effective ionic potential, the predominant form of metal 
ions in solution is the ordinary aquo-cation over most of the pH range (e.g. Na +, Ca ~+, 
etc.). When z/r increases there is an increasing tendency for the following reaction to 
O c c u r .  

[M(H~O),,] "+ + H20 ¢ [M(H20).-xOH] ('-~)+ + HaO + 

This equilibrium is shifted to the right at higher pH due to hydrolysis. 

O H -  -Jr Ha O+ --> 2H20 

We see that this is explained by the higher field around the metal ion which causes a 
repulsion of the proton. At the same time the oxygen ion is attracted more strongly. 
This explains quite neatly the more amphoteric character of, for example, Be(OH)~ 
compared with Mg(OH) 2, AI(OH) s compared with Sc(OH)a etc. In the same way this 
explains the larger tendency for hydrolysis of  iron (III)-salts compared with those of 
iron (II). 

If  z/r is increased further, particularly at high pH, more protons tend to be lost 
finally leading to ions such as [AI(OH)e] a-. At still higher values of z/r and/or pH the 
hydroxyl-groups also start to lose protons: 

M(OH) ' - "  q- H~O ~ MO,,_I(OH) m-'-~ q- HaO + 
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For  example 
Si(OH)4 + H20 ~ [Si(OH)aO]- + Hs O+ 
CrOs(OH)z + 2H20 ~ 2HsO + + CrO4 ~- 

Thus 02-  becomes the predominant ligand. For  metals with different valencies we 
see a strong tendency to increased acidic behaviour with increasing charge: 

Cr(OH)2 strongly basic, 
Cr(OH)s basic with amphoteric tendency, 
H2CrO~ strong acid. 

In cases such as this the decreasing radius with increasing charge of course causes an 
extra strong effect. 

An important consequence which can be deduced is that in intermediate cases a 
low solubility of the hydroxide results owing to the high attraction between metal ion 
and oxygen and the reaction 

M(OH)m (s) ~ [M(OH)m_x] + + O H -  

occurs only to a slight extent. At the same time it is still a weak acid so that the 
equilibrium 

MfOH)m (s) + H,O ~ [MOfOH)m_I]- + HaO + 

also lies to the left. Taken together this means that the solubility product will be small 
for amphoteric hydroxides. 

A second point of  interest is that in many cases it is not the hydroxide which 
precipitates but the oxide or a hydrated oxide (such as e.g. FeO • OH, A10 • OH)3 
The reason for this is that the lattice energy of a compound MX~ is less favourable 
than that of a compound MY~ with p < n due to the decrease in the Madelung con- 
stant with increasing n s and the higher charge of Y. This is shown in Fig. 2 for a 
particular series of structures. 

FIG. 2. 
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D I S C U S S I O N  

Application to passivity 
We can now apply this to passivity. In the first place we see that  in order to obta in  

an insoluble hydroxide or oxide in the intermediate range of  p H  (i.e. pH 5-9) z/r 
must be between about  4-7. As is shown in Table 1 this is in good agreement with the 
facts when predominant  valency under  normal  condit ions is taken (Cr 3+, Mo 4+, 
Fe 2+, etc.). 

TABLE 1. CHARGE/RADIUS RATIO AND PASSIVE BEHAVIOUR OF METALS AS A FUNCTION OF POSITION IN THE 
PERIODIC TABLE 

Li + Be 2+ P B a+ 
1-67 6"4 15 
Na + Mg2+(P) AI 3+ P 
1.05 3.1 6.0 
K + Ca~+ ScS+ ? 
0.75 2.0 3.7 

Rb + Sr2+ y s +  
0.67 1.77 3-2 

Cs + BaZ+ Laa+ 
0.59 1.48 2.6 

Si4+ ps+ 
9-8 14'7 

Ti P V P? Cr P Mn(P) Fe(P) Co Ni 
2 + 2'2 3 + 4.1 2 + 2.4 2 + 1.5 2 + 2.6 2 + 2-7 2 + 2"8 
3 + 4.0 4 + 6-7 3 + 4"3 4 + 7'4 3 + 4.7 3 + 4"8 3 + 4.8 
4 + 5"9 5 + 8.5 6 + 11.5 7 + 15-1 6+(12) 
Zr 4+ P Nb 5+ P Mo(P) Re? Ru N Rh N Pd N 

5.0 7.1 4+(6) - -  
6 + 9'7 

Hf 4+ Ta 5+ P W P Tc ? Os N Ir N Pt N 
(4) (6) 6+(8) - -  

P = Usually passive. 
(P) = Passive under a limited set of conditions. 
N = Noble. 
Usual valence state under normal conditions are shown in bold type. 

An  impor tan t  point  is the effect of strongly oxidizing condit ions,  e.g. due to a high 
electrode potential  caused by anodic polarizat ion or by oxidizing media such as 
nitric acid. For  those metals with a higher valency state this will lead to destruction 
or weakening of passivity due to format ion of oxy-anions (CrXrt: Mo w, Fe vr) cor- 

responding with transpassive behaviour.2, 9 In  the cases of chromium or chromium 
alloys this leads to dissolution as chromate ions. When no higher valency is available 
(A1, Ti, Zr) passivity will be destroyed even under  highly oxidizing condi t ionsA 11 

Sometimes mildly oxidizing condit ions are favourable for the onset of  passivity, 
the most impor tan t  case being iron. This also follows from the theory, and providing 
i ron dissolves directly as Fe z+ ions the format ion of a protective, insoluble film then 
becomes possible. On the other hand,  if i ron dissolves as Fe 2+ ions which are subse- 
quently oxidized in the solution, e.g. by dissolved 02, at some distance from the metal,  
loose hydroxide is precipitated which does not  lead to passivity. 

I t  follows that  reducing condit ions will lead to a destruction of passivity where a 
lower valency is available (Cr, Fe) but  will have a relatively small influence otherwise 
(e.g. Al). 

The above is valid at intermediate values of the pH. When the pH is decreased 
there will be a larger tendency for the metal to go into solut ion in the form of aquo-  
cations.  This will only lead to destruction or weakening of the passivity for low values 
z/r (Fe, Cr and to a lesser extent AI). ~,a° 
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On the other hand, at a high pH there will also be a tendency toward diminished 
passivity due to dissolution in the form of oxy-anions, particularly for metals with a 
high value of z/r: AI, Ti, Nb. 2,1° 

It is seen that this theory explains several important facts about passivity. In the 
first place it shows that the metals which show passive behaviour will be found in a 
slightly downward sloping region in the middle of the periodic table. Those to the 
left and below have low values of  z/r  and dissolve preferably as aquo-cations, those 
metals to the right and above tend to dissolve as oxy-anions. 

Reduction and low pH favour aquo-cations, whereas oxidation and high pH 
favour oxy-anions. Depending on the value of  z /r  and the availability of  high or low 
valencies this may lead to destruction of passivity in one or both directions. When 
under oxidizing conditions a higher valence state with more favourable z /r  is possible 
(Fe) this may lead to enhanced passivity. 

Even when z/r  and pH are favourable for passivity to occur another condition 
to be fulfilled is that the oxide lattice has to fit reasonably well on the metal lattice. 
However, for the very thin layers which are assumed to be responsible for passivity 
(50-200 A) this condition is not very stringent because their plasticity is high enough to 
avoid cracking of the layer in cases where a perfect fit is not possible. It  is clear from 
the above, however, that these topochemical considerations can never explain the 
occurrence of passivity as this is decided by the z /r -pH conditions. I t  may explain, 
however, the absence of passivity when the misfit is too large. There is no clear case 
known where this occurs, except perhaps vanadium and niobium. 

CONCLUSION 

From the discussion given above it follows that the simple model of  ionic bonding 
of inorganic compounds is able to explain satisfactorily the occurrence of passivity of  
certain metals and the influence of ~he external conditions thereon. 

Of course this only applies to the static aspects. The kinetics of  passivation is 
influenced by several other variables also, e.g. availability of  reactants, diffusion in the 
passive layer and the kinetics of the cathodic reaction which have not been considered. 
But, similar to the topochemical considerations above, the kinetics can only explain 
the absence of passivity as the occurrence of passivity is determined by the chemical 
variables z /r  and pH. 
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