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A renormalization procedure gives a rigorous upper bound for the ground-state energy per spin for the triangular anti- 
ferromagnetic lattice with Heisenberg interaction. 

Recently renormalization techniques have offered 
new possibilities to calculate approximate values for 

the ground-state energy of antiferromagnetic spin i 
systems [ 1, 21 or to give a rigorous upper bound for 
this energy [3]. In this letter we give an upper bound 
per spin for the triangular lattice with an antiferro- 
magnetic Heisenberg interaction between nearest 
neighbours. Anderson [4] and Fazekas and Anderson 
[5] have already given estimates of the ground-state 

energy of this lattice and have discussed in some detail 

the character of the lowest state. 
Crucial in our method is the introduction of a 

hexagonal Kadanoff cell [6], as shown in fig. 1. Each 
lattice site may correspond with any of the seven 
points of a cell and around one given cell neighbouring 
cells may be arranged in two different ways. Conse- 
quently each scaling can be performed in 14 different 
ways. This relatively large freedom for the triangular 

. . . . 

Fig. 1. Kadanoff cells in a triangular lattice. 
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lattice is very suggestive of the idea that the quantum- 

mechanical ground state does not have a sublattice 
structure [4,5], but we do not intend to discuss this 
fundamental question any further in this letter. 

The hamiltonian of the system 

is a sum over nearest neighbour pairs (i, j> of lattice 
sites. An upper bound for the ground-state energy per 
spin is now determined by first calculating the ground- 
state energy per cell [ 1,3] . After that the secular part 
of the interaction between cells in their lowest state is 

evaluated. The ground state of a single cell is con- 
structed from a stationary state of the corresponding 
hexagon (without central spin) because the energy of 
this ring, and its total spin, are constants of motion 
for the total cell. An elementary quantum-mechanical 
calculation results in a spin S = 1 for the ring and a 
spin $= i for a cell in the ground state. The energy 
is: -(2 + id) J. The ground state is invariant for the 
discrete rotations about the hexagonal axis of the cell. 
The lattice of cells is isomorphic to the original lattice 
and their lowest states are Kramers doublets, so a re- 
normalization of the hamiltonian H can be performed 

immediately. One has to determine the matrix of the 
spin operators for the individual spins of a cell for the 
corresponding Kramers doublet. 

This representation may be written in terms of the 
cell spins Si(‘), i indicating a site in the lattice of cells. 
In this way we find that a spin of the ring (sites 1, 2, 

3 , . . . . 6 in fig. 1) is equivalent to $‘{‘) for the lowest 
Kramers doublet. Taking into account that there exist 
three interacting spin pairs for two neighbouring cells 
we find an effective interaction between these cells in 
their lowest state of the form: 3(2/9)2Js,(‘) * #“. So 
we immediately arrive at the following hamiltonian for 
the lattice of cells in their lowest Kramers states, N 
denoting the total number of spins, 

H(l) = -$V(2 t ; 6) J + & J (E, S/l) - Sjl) . 

Because of H(l) being a projection of H it gives an 

upper bound for the lowest eigenvalue of the latter. 
Repeating this procedure and taking into account that 

each step results in a lattice with a number of sites 
that equals 4 of that of the previous one, we arrive 
at the following upper bound for the energy per spin: 

-+(Z+;~)[l+$ X;+($ X$)2t...]J 

= 1 2+id J=_272tifi J=_,455&jJ 

‘l-441189 ~ 185 

This value should be compared with numerical re- 
sults of the authors already cited [4,5] . First of all 
there is the expectation value for the pure NCel state 
with three different sublattices with magnetizations at 
an angle of 120’ to each other, which value equals the 
corresponding classical value and results in an energy 
per spin of -0.375 J [4]. This value is also realized for 
the pair-bond state and is an upper bound. Rough cal- 
culations of the effects of zero-point fluctuations of 
spin waves gives: (-0.463 f 0.007)J [4,7] , whereas 
extrapolations of calculations with resonating singlet 
pair bonds result in e&mates ranging from (-0.54 
+ 0.01) J (extrapolation from railroad trestle to the 
triangular lattice [4] ) to (-0.490 + 0.005) J (railroad 
trestle [4] ), and -0.46J [ 51. The last estimate of 
Fazekas and Anderson corresponds with the study of 
very large clusters with fluctuating pair bonds. 

Our result gives an improvement of more than 20% 
of the only rigorous upper bound that was known in 
the literature till now, i.e. the value -0.375 J, and does 
not differ much from the latest result of Fazekas and 

Anderson. 
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