On a Linear Differential Equation of the Advanced Type*

George P. Papavassilopoulos ${ }^{\dagger}$ and Geert Jan Olsder
Department of Applied Mathematics, Twente University of Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands
Submitted by George Leitmann

Abstract

A linear differential equation of the advanced type is considered. Existence of solutions for any finite interval is shown. Also, a method for generating all the solutions is described and justified.

Introduction

The purpose of this short paper is to study a simple differential equation of the advantage type, see Eq. (1). Such equations appear in several branches of applied mathematics, for example, see [1] for an application in probability.

In this paper and for the simple type of equation considered, we show existence of a solution on any interval $[0, T]$, where T is any positive finite constant, and provide and justify the procedure for generating all solutions on $[0, T]$. There are several papers in the literature dealing with differential equations of the advanced type. A local existence theorem for equations more general that the one considered here is given in Theorem 2 of [2], by using the Schauder fixed point theorem. This result of [2] generalizes a result of [3]. The existence theorem of [3] is a local existence theorem proved under a hypothesis which does not hold in our case (see Remark 1). In [4] an advanced type of differential equation is studied and several asymptotic results are obtained. The analysis of [4] does not apply to the case considered here (see Remark 1). In [5], analytic solutions are considered and it is shown that for the advanced case, they almost never exist. Finally, [6] and [7] consider analytic solutions on the half axis.

[^0]
Problem Statement

Consider the differential equation

$$
\begin{equation*}
\dot{y}(t)=a y(b t), \quad y(0)=c, \quad t \geqslant 0 \tag{1}
\end{equation*}
$$

where a, b, c are real constants, $a \neq 0$ and $b>1$. We say that a function y is a solution of (1) in the interval $[0, T]$ (T is a positive finite constant), if y is a real-valued, continuous function defined on $[0, T]$, satisfies $\dot{y}(t)=a y(b t)$ for $t \in[0, T / b)$ and $y(0)=c$. Notice that since $b>1,(1)$ is of the advanced type.

An alternative formulation of (1) is the following. ${ }^{1}$ Let

$$
\begin{equation*}
\bar{y}(t)=y\left(e^{\lambda t}\right), \tag{2}
\end{equation*}
$$

where λ is a nonzero constant. Then \bar{y} satisfies

$$
\dot{\bar{y}}(t)=a \lambda e^{\lambda t} \bar{y}\left(t+\frac{\ln b}{\lambda}\right), \quad\left\{\begin{array}{l}
\lim _{t \rightarrow+\infty} \bar{y}(t)=c, t \in\left[\frac{\ln T}{\lambda},+\infty\right), \text { if } \lambda<0 \tag{3}\\
\lim _{t \rightarrow-\infty} \bar{y}(t)=c, t \in\left(-\infty, \frac{\ln T}{\lambda}\right], \text { if } \lambda>0
\end{array}\right.
$$

If $\lambda<0$, then the differential equation for $\bar{y}(t)$ is a retarded differential equation (recall: $b>1$ and thus $(\ln b) / \lambda<0)$. Obviously, the study of (1) on $[0, T]$ with $y(0)=c$ is equivalent to studying the limit of $\bar{y}(t)$ as $t \rightarrow+\infty$, if $\lambda<0$.

Existence of Solutions

A way of studying (1) comes from the following considerations. Given an arbitrary continuous function y_{0} defined on the interval $[T / b, T]$, we can uniquely define a function y_{1} on $\left[T / b^{2}, T / b\right)$ by

$$
\begin{equation*}
y_{1}\left(\frac{T}{b}\right)=y_{0}\left(\frac{T}{b}\right), \quad \dot{y}_{1}(t)=a y_{0}(b t), \quad \frac{T}{b^{2}} \leqslant t \leqslant \frac{T}{b} . \tag{4}
\end{equation*}
$$

We can similarly define y_{2} on $\left[T / b^{3}, T / b^{2}\right]$ and continue backwards, so that at the nth step we define y_{n} on $\left[T / b^{n+1}, T / b^{n}\right]$ by

$$
\begin{gather*}
y_{n}\left(\frac{T}{b^{n}}\right)=y_{n-1}\left(\frac{T}{b^{n}}\right) \tag{5}\\
\dot{y}_{n}(t)=a y_{n-1}(b t), \quad \frac{T}{b^{n+1}} \leqslant t \leqslant \frac{T}{b^{n}} .
\end{gather*}
$$

[^1]Piecing together $y_{0}, y_{1}, y_{2}, \ldots$ we have a function y defined on $(0, T]$ which is continuous on $(0, T]$ and satisfies $\dot{y}(t)=a y(b t)$ on $(0, T]$, with the possible exception of the point T / b; had we chosen y_{0} as to satisfy $\dot{y}_{0}^{+}(T / b)=a y_{0}(T)$, (here $\dot{y}_{0}^{+}(T / b)$ stands for the right derivative of y_{0} at $\left.T / b\right)$, then y would be continuously differentiable at T / b as well. Actually, as $t \rightarrow 0, y$ becomes more and more smooth, as is also the case with functional retarded differential equations when $t \rightarrow+\infty$ (recall (2)-(3)). The only thing that is not obvious is what the behaviour of $y(t)$ will be as $t \rightarrow 0$. We will show that this limit exists for any choice of $\left(y_{0}, T\right)$ and that there are infinitely many (y_{0}, T)'s which result to the same limit of $y(t)$ as $t \rightarrow 0$.

Our first objective is to show existence of a solution of (1) for sufficiently small T. Let ϕ be an element of the space of continuous functions on $[0, T]$, $C[0, T] . C[0, T]$ is equipped with the usual sup norm. We define the mapping $Q: C \rightarrow C$ as follows:

$$
[Q \phi](t)=\left\{\begin{array}{l}
c+\frac{a}{b} \int_{0}^{b t} \phi(s) d s, \quad 0 \leqslant t \leqslant \frac{T}{b} \tag{6}\\
c+\frac{a}{b} \int_{0}^{T} \phi(s) d s-\phi\left(\frac{T}{b}\right)+\phi(t), \quad \frac{T}{b} \leqslant t \leqslant T
\end{array}\right.
$$

Obviously $Q \phi \in C[0, T]$. The idea is to create a sequence $\left\{\phi_{n}=Q^{n} \phi\right\}$, which is Cauchy; then its limit ϕ^{*} exists in $C[0, T]$ and satisfies $Q \phi^{*}=\phi^{*}$ or equivalently $\dot{\phi}^{*}(t)=a \phi^{*}(b t)$ for $t \in[0, T / b), \phi^{*}(0)=c$, i.e., ϕ^{*} solves (1). Thus, we have to guarantee the Cauchy character of this sequence.

Lemma 1. It holds:

$$
\begin{equation*}
[Q \phi](t)-[Q \phi]\left(\frac{T}{b}\right)=\phi(t)-\phi\left(\frac{T}{b}\right), \quad \frac{T}{b} \leqslant t \leqslant T . \tag{7}
\end{equation*}
$$

Proof. If $T / b \leqslant t \leqslant T$, using (6) we obtain

$$
\begin{aligned}
& {[Q \phi](t)-[Q \phi]\left(\frac{T}{b}\right)} \\
& \quad=c+\frac{a}{b} \int_{0}^{T} \phi(s) d s-\phi\left(\frac{T}{b}\right)+\phi(t)-\left[c+\frac{a}{b} \int_{0}^{T} \phi(s) d s\right] \\
& \quad=\phi(t)-\phi\left(\frac{T}{b}\right) .
\end{aligned}
$$

Let us now study the sequence $\left\{\phi_{n}=Q^{n} \phi_{0}\right\}$, where ϕ_{0} is an arbitrary element of $C[0, T]$. For $0 \leqslant t \leqslant T / b$, we have

$$
\begin{align*}
\left|\phi_{n+1}(t)-\phi_{n}(t)\right| & =\left|\frac{a}{b} \int_{0}^{b t} \phi_{n}(s) d s-\frac{a}{b} \int_{0}^{b t} \phi_{n-1}(s) d s\right| \\
& =\left|\frac{a}{b} \int_{0}^{b t}\left[\phi_{n}(s)-\phi_{n-1}(s)\right] d s\right| \leqslant \frac{|a|}{b}\left\|\phi_{n}-\phi_{n-1}\right\| \cdot T . \tag{8}
\end{align*}
$$

For $T / b \leqslant t \leqslant T$ we have

$$
\begin{align*}
&\left|\phi_{n+1}(t)-\phi_{n}(t)\right| \\
&= \left\lvert\, c+\frac{a}{b} \int_{0}^{T} \phi_{n}(s) d s+\phi_{n}(t)-\phi_{n}\left(\frac{T}{b}\right)\right. \\
& \left.-\left(c+\frac{a}{c} \int_{0}^{T} \phi_{n-1}(s) d s+\phi_{n-1}(t)-\phi_{n-1}\left(\frac{T}{b}\right)\right) \right\rvert\, \\
&= \left\lvert\, \frac{a}{b} \int_{0}^{T}\left[\phi_{n}(s)-\phi_{n-1}(s)\right] d s\right. \\
& \left.+\left[\phi_{n}(t)-\phi_{n}\left(\frac{T}{b}\right)-\left(\phi_{n-1}(t)-\phi_{n-1}\left(\frac{T}{b}\right)\right)\right] \right\rvert\, \\
&= \left\lvert\, \frac{a}{b} \int_{0}^{T}\left[\phi_{n}(s)-\phi_{n-1}(s)\right] d s+\left\{\left[Q \phi_{n-1}\right](t)-\left[Q \phi_{n-1}\right]\left(\frac{T}{b}\right)\right.\right. \\
&\left.-\left(\phi_{n-1}(t)-\phi_{n-1}\left(\frac{T}{b}\right)\right)\right\} . \tag{9}
\end{align*}
$$

The second term in (9) is zero by Lemma 1 and thus for $T / b \leqslant t \leqslant T$

$$
\begin{equation*}
\left|\phi_{n+1}(t)-\phi_{n}(t)\right| \leqslant \frac{|a|}{b}\left|\int_{0}^{T}\left[\phi_{n}(s)-\phi_{n-1}(s)\right] d s\right| \leqslant \frac{|a|}{b}\left\|\phi_{n}-\phi_{n-1}\right\| \cdot T \tag{10}
\end{equation*}
$$

Combining (8) and (10) we have

$$
\left|\phi_{n+1}(t)-\phi_{n}(t)\right| \leqslant \frac{|a|}{b} T\left\|\phi_{n}-\phi_{n-1}\right\|, \quad 0 \leqslant t \leqslant T
$$

and thus

$$
\left\|\phi_{n+1}-\phi_{n}\right\| \leqslant \frac{|a|}{b} T\left\|\phi_{n}-\phi_{n-1}\right\|
$$

We can show now that $\left\{\phi_{n}\right\}$ is a Cauchy sequence if $(|a| / b) T<1$. Let n, m be any positive integers, and assume that

$$
\begin{equation*}
d=\frac{|a| T}{b}<1 \tag{11}
\end{equation*}
$$

$$
\begin{aligned}
& \left\|\phi_{n+m}-\phi_{m}\right\| \\
& \quad \leqslant\left\|\phi_{n+m}-\phi_{n+m-1}\right\|+\left\|\phi_{n+m-1}-\phi_{n+m-2}\right\|+\cdots+\left\|\phi_{m+1}-\phi_{m}\right\| \\
& \quad \leqslant(d)^{n+m-1}\left\|\phi_{1}-\phi_{0}\right\|+(d)^{n+m-2}\left\|\phi_{1}-\phi_{0}\right\|+\cdots+(d)^{m}\left\|\phi_{1}-\phi_{0}\right\| \\
& \quad \leqslant d^{m}\left\|\phi_{1}-\phi_{0}\right\|\left(1+d+d^{2}+\cdots\right) \\
& \quad=\frac{d^{m}}{1-d}\left\|\phi_{1}-\phi_{0}\right\| .
\end{aligned}
$$

So, $\left\|\phi_{n+m}-\phi_{m}\right\| \rightarrow 0$ as $n, m \rightarrow+\infty$. We have thus proved:
Proposition 1. If $T<b /|a|$, then the sequence $\left\{Q^{n} \phi_{0}\right\}$ converges in $C[0, T]$ to a unique limit ϕ which satisfies

$$
\dot{\phi}(t)=a \phi(b t), \quad 0 \leqslant t \leqslant T / b, \quad \phi(0)=c .
$$

On $[T / b, T]$, it holds

$$
\begin{equation*}
\phi(t)-\phi\left(\frac{T}{b}\right)=\phi_{0}(t)-\phi_{0}\left(\frac{T}{b}\right) . \tag{12}
\end{equation*}
$$

Remark 1. Proposition 1 is actually a local existence theorem for (1). In [3] a local existence theorem for $y^{\prime}(t)=F(t, y(g(t))), y(0)=c$ is given, but the assumptions under which the proof of [3] holds includes the following: for some constants L, h with $h \geqq L \geqq 0$ it holds $|g(t)| \leqslant \max \{|t|, L\}$ for $|t| \leqslant h$. In our case $g(t)=b t, b>1$ and this assumption does not hold. Thus the existence theorem of [3] does not apply here.

Remark 2. In [4] the equation

$$
\begin{gathered}
\dot{y}(t)=F\left(t, y(t), y\left(t+h_{1}\right), \ldots, y\left(t+h_{p}\right)\right) \\
0 \leqslant t<+\infty, \quad 0<h_{1}<h_{2}<\cdots<h_{p}<+\infty, \\
y\left(t_{0}\right)=c, \quad 0 \leqslant t_{0}<+\infty
\end{gathered}
$$

is considered. It was shown that studying (1) is equivalent to studying

$$
\begin{aligned}
\bar{y}(t) & =a \lambda e^{\lambda t} \bar{y}\left(t+\frac{\ln b}{\lambda}\right), \\
\lim _{t \rightarrow-\infty} \bar{y}(t) & =c, \quad t \in\left(-\infty, \frac{\ln T}{\lambda}\right]
\end{aligned}
$$

where $\lambda>0$. Thus the existence results of [4] do not apply to the case considered here.

Remark 3. Let $T<b /|a|$. Had we started with a different ϕ_{0}, say, $\bar{\phi}_{0}$, we would have ended up with a different solution $\bar{\phi}$, which would have the same
value c at $t=0$ as ϕ does; i.e., the initial condition $y(0)=c$ in (1) does not determine uniquely the solution as was to be expected since we are dealing with a functional differential equation.

Remark 4. Let $T<b /|a|$. If $c \neq 0$ and we start with $\phi_{0}(t)=c_{1}$ (a constant), Proposition 1 guarantees the existence of a solution of (1) which will satisfy $y(0)=c$, and $y(t)=c_{2}$ for $t \in[T / b, T]$ where c_{2} is some constant. c_{1} cannot be zero, since if it were zero, y would have to be zero on $\left[T / b^{2}, T / b\right]$ (since $\left.\dot{y}(t)=a y(b t)\right),\left[T / b^{3}, T / b^{2}\right], \ldots$ and thus $y(0)=c$ would have to be zero, and it is not. Using the linearity of (1), it is easy to see now that $y(0)$ is a linear function of the constant function $y_{0}(t)$ and that $y(0) \neq 0$ if and only if $y_{0} \equiv 0$ on $[T / b, T]$.

Remark 5. $\phi(t)$ differs from $\phi_{0}(t)$ only by some constant.
Combining Remarks 4 and 5 we can prove the following theorem, which is the central result of this section.

ThEOREM 1. If we employ the procedure described in (4)-(5) with an arbitrary fixed finite T and an arbitrary continuous function y_{0} defined on $[T / b, T]$, generate the y_{n} 's on $\left[T / b^{n+1}, T / b^{n}\right]$ backwards and piece them together, then the resulting y has a well-defined limit as $t \rightarrow 0$ and satisfies (1).

Proof. Let us first prove this theorem under the assumption $T<b /|a|$. Let ϕ_{0} be any element of $C[0, T]$ which coincides with y_{0} on $[T / b, T]$. The sequence $Q^{n} \phi_{0}$ converges to some $y_{1} \in C[0, T]$ which satisfies

$$
\begin{array}{ll}
\dot{y}_{1}(t)=a y_{1}(b t), & y_{1}(0)=c, \\
y_{1}(t)=y_{0}(t)+c_{2}, & t \in\left[0, \frac{T}{b}\right] \\
& t \in\left[\frac{T}{b}, T\right]
\end{array}
$$

where c_{2} is some constant. By Remark 2, there is a solution $y_{2}(t)$ of (1) on $[0, T]$ which satisfies

$$
y_{2}(t)=c_{2}, \quad t \in\left[\frac{T}{b}, T\right] .
$$

Let $y=y_{1}-y_{2}$. Obviously, y satisfies

$$
\begin{array}{ll}
\dot{y}(t)=a y(b t), & t \in\left[0, \frac{T}{b}\right] \\
y(t)=y_{0}(t), & t \in\left[\frac{T}{b}, T\right] \\
y(t)=c-c_{2} .
\end{array}
$$

Had we employed (4) and (5) starting with $y_{0}(t)$ on $[T / b, T]$ we would have obviously generated the y and the limit of $y(t)$ as $t \rightarrow 0$ would be $c-c_{2}$.

We thus proved that Theorem 1 holds if $T<b /|a|$.
If $T \geqslant b /|a|$, then if we start with an arbitrary y_{0} on $[T / b, T]$, after a finite number of backward extensions we will be in an interval $\left[T / b^{k+1}, T / b^{k}\right]$ with a y_{k} defined there on, where $T / b^{k}<b /|a|$ if $k>1 / \ln b \cdot \ln (T|a| / b)$. Thus, considering that we start on $\left[T / b^{k+1}, T / b^{k}\right]$ with y_{k} we are back in the first case considered in this proof.

A remaining issue to be settled is how we can generate solution of (1) which satisfies $y(0)=c$, since the procedure of (4) and (5) does not immediately guarantee that. If $y(t)$ satisfies $\dot{y}(t)=a y(b t)$ and $y(0) \neq 0$, then obviously the function $(c / y(0)) y(t)$ satisfies the differential equation and the initial condition. Another way is the following: we use the procedure (4) and (5) starting with $y_{0}(t) \equiv 1$ on $[T / b, T]$ and generate the solution $y^{1}(t)$ which will have $y^{1}(0) \neq 0$ (recall Remark 4). If $y(t)$ is any other solution of (1) with $y(0) \neq c$, then the function $y(t)-\left((y(0)-c) / y^{1}(0)\right) y^{1}(t)$ is again a solution of (1) satisfying the initial condition. Of course, if $T<b /|a|$ we can also generate solutions of (1) with $\boldsymbol{y}(0)=c$ by generating Cauchy sequences $Q^{n} \phi_{0}$ according to (6) with arbitrary ϕ_{0} 's.

Discussion and Conclusions

Given that $y(t)$ solves (1) on $[0, T]$, we could ask whether it can be extended to the right of T. This can be done by defining the function y_{-1} on [$T, b T$] by

$$
y_{-1}(t)=\frac{1}{a} \dot{y}_{0}\left(\frac{t}{b}\right), \quad T \leqslant t \leqslant b T
$$

as long as y_{0} is differentiable and $y_{-1}(T)=y_{0}(T), \dot{y}_{-1}^{T}(T)=\dot{y}_{0}^{-}(T)$ which can be easily guaranteed by an appropriate choice of $y_{0}(+$ and - denote right and left derivatives). We can similarly extend the solution to $\left[b T, b^{2} T\right]$, [$\left.b^{2} T, b^{3} T\right]$ and so on, as long as y_{0} is sufficiently differentiable and such as to have $y_{-n}(T)=y_{-(n+1)}(T), \dot{y}_{-n}(T)=\dot{y}_{-(n+1)}(T)$ which, as can be easily seen, amounts to

$$
\begin{equation*}
y_{0}^{(n+1)}\left(\frac{T}{b}\right)=a b^{n} y_{0}^{(n)}(T) \tag{13}
\end{equation*}
$$

(the superscript denotes the order of the derivative). There are many functions y_{0} which satisfy (13) for $n=0,1,2, \ldots, N$; for example, y_{0} can be chosen as a polynomial of sufficiently high degree and appropriate coef-
ficients so as to satisfy (13). If (13) holds for $n=0,1, \ldots, N$ and y_{0} is at least N times continuously differentiable, we can extend the solution up to $b^{N} T$. An immediate question is whether there are choices of y_{0} on $[T / b, T]$, so that the solution can be extended to $+\infty$. A y_{0} which has this property is

$$
\exp \left(1 /\left[1-\left(\frac{2 b}{T(b-1)} t+\frac{1+b}{1-b}\right)^{2}\right]\right)
$$

which is infinitely continuously differentiable and satisfies (13) as $0=0$.
As was shown in [5] in a more general setup, Eq. (1) cannot have an analytic solution around zero. This can be directly verified by plugging in (1) $y(t)=\sum_{n=0}^{\infty} d_{n} t^{n}$, equating the coefficients of the powers of t on both sides and showing that the radius of convergence of this series is zero.

On could consider linear equations more general than (1), for example,

$$
\dot{y}(t)=\sum_{i=1}^{n} a_{i} y\left(b_{i}(t)\right), \quad y(0)=c
$$

where $b_{1}>b_{2}>\cdots>b_{n}>0$. It is easy to see that considering the differential equations

$$
\dot{y}_{i}(t)=a_{i} y_{i}\left(b_{i} t\right), \quad y_{i}(0)=c_{i}, \quad i=1, \ldots, n
$$

where the c_{i} 's have sum $c_{1}+c_{2}+\cdots+c_{n}=c$, but otherwise are arbitrary, enables one to easily prove existence of solutions. There are several issues to be settled concerning Eq. (1) or the above-mentioned generalization. One of the most important ones has to do with the solutions of (1) which exist over the whole half axis $[0,+\infty)$ and remain bounded for any t or go to zero as $t \rightarrow+\infty$. For example, it can be shown that if a solution $y(t)$ of (1) exists on $[0,+\infty)$, it cannot go to zero faster than any exponential. (If this were the case, then the Laplace transform $Y(s)$ of $y(t)$ is analytic around zero. Transforming $\dot{y}(t)=a y(b t), \quad y(0)=c$ in the Laplace domain yields $s Y(s)-y(0)=(a / b) Y(b s)$; substituting $Y(s)$ in a series form in it and calculating the coefficients yields zero radius of convergence.) The study of possible periodic solutions as $t \rightarrow \infty$ is another important issue.

References

1. T. S. Ferguson, Lose a dollar or double your fortune, in "Proceedings, Sixth Berkeley Symposium," Vol. III, pp. 657-666, Univ. of California Press, Berkeley, 1972.
2. R. J. Oberg, On the local existence of solutions of certain functional differential equations. Proc. Amer. Math. Soc. 20 (1969), 285-302.
3. D. R. Anderson, An existence theorem for a solution of $f^{\prime}(x)=F(x, f(g(x)))$ ", SIAM Rev. 8 (3) (1966), 359-362.
4. C. A. Anderson, Asymptotic oscillation results for solutions to first-order nonlinear differential difference equations of advanced type, J. Math. Anal. Appl. 24 (1968), 430-439.
5. R. J. Oberg, Local theory of complex functional differential equations, Trans. Amer. Math. Soc. 161 (1971), 269-281.
6. G. R. Morris, A. Feldstein, and E. W. Bowen, The Phragmén-Lindelöf principle and a class of functional differential equations, in "Ordinary Differential Equations, 1971 NRL-MRC Conference" (L. Weiss, Ed.), pp. 513-540, Academic Press, New York/ London, 1972.
7. P. O. Frederickson, Dirichlet series solutions for certain functional differential equations, in "Japan-United States Seminar on Ordinary Differential and Functional Equations," pp. 249-254, Springer-Verlag, New York/Berlin, 1971.

[^0]: * This work was supported in part by the U.S. Air Force Office of Scientific Research under Grants AFOSR-80-0171 and 82-0174.
 ${ }^{\dagger}$ On leave of absence from the Department of Electrical Engineering Systems, University of Southern California, Los Angeles, California 90089.

[^1]: ${ }^{1}$ This reformulation of the problem was suggested to us by Professor M. L. J. Hautus.

