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A linear differential equation of the advanced type is considered. Existence of
solutions for any finite interval is shown. Also, a method for generating all the
solutions is described and justified.

INTRODUCTION

The purpose of this short paper is to study a simple differential equation
of the advantage type, see Eq. (1). Such equations appear in several branches
of applied mathematics, for example, see [1] for an application in
probability.

In this paper and for the simple type of equation considered, we show
existence of a solution on any interval [0, T|, where T is any positive finite
constant, and provide and justify the procedure for generating all solutions
on [0, T]. There are several papers in the literature dealing with differential
equations of the advanced type. A local existence theorem for equations
more general that the one considered here is given in Theorem 2 of [2], by
using the Schauder fixed point theorem. This result of [2] generalizes a resuit
of [3]. The existence theorem of [3] is a local existence theorem proved
under a hypothesis which does not hold in our case (see Remark 1). In [4]
an advanced type of differential equation is studied and several asymptotic
results are obtained. The analysis of [4] does not apply to the case
considered here (see Remark 1). In [5], analytic solutions are considered and
it is shown that for the advanced case, they almost never exist. Finally, [6]
and [7] consider analytic solutions on the half axis.
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PROBLEM STATEMENT

Consider the differential equation
y@)=ay(dt), y0)=c¢, 20 (1)

where a, b, ¢ are real constants, a # 0 and b > 1. We say that a function y is
a solution of (1) in the interval [0, T] (T is a positive finite constant), if y is
a real-valued, continuous function defined on [0, T}, satisfies y(t) = ay(bt)
for ¢t € |0, T/b) and y(0) = ¢. Notice that since b > 1, (1) is of the advanced
type.

An alternative formulation of (1) is the following.' Let

() = y(e*), @)

where A is a nonzero constant. Then j satisfies

InT
lim 5(t)=c, t€ [—I—l—,+oo), if A<0
. N Inb t~+ 00 A
y(t) = ale ’}7(!+—l——), T 3)
'lim J(t)=¢c, t€ (—-oo,T], if 1>0.

If A1 <0, then the differential equation for y(f) is a retarded differential
equation (recall: b > 1 and thus (In b)/A < 0). Obviously, the study of (1) on
[0, T] with y(0) = c is equivalent to studying the limit of 7(t) as t - 400, if
A <O0.

EXISTENCE OF SOLUTIONS

A way of studying (1) comes from the following considerations. Given an
arbitrary continuous function y, defined on the interval [T/b, T], we can
uniquely define a function y, on [T/b?, T/b) by

T T ) T T
n(F)en(3) ro=wen gy @

We can similarly define y, on [T/b%, T/b?] and continue backwards, so that
at the nth step we define y, on [7/b"*', T/b"] by

() (2

. T T
Vu() = ay,_,(b1), WQIQb—,,-

! This reformulation of the problem was suggested to us by Professor M. L. J. Hautus.

)



76 PAPAVASSILOPOULOS AND OLSDER

Piecing together y,, »,, V,,.-- we have a function y defined on (0, T which is
continuous on (0, T] and satisfies y(¢) = ay(bt) on (0, T], with the possible
exception of the point T/b; had we chosen y, as to satisfy yg (T/b) = ayy(T),
(here p§ (T/b) stands for the right derivative of y, at T/b), then y would be
continuously differentiable at 7/b as well. Actually, as ¢— 0, y becomes
more and more smooth, as is also the case with functional retarded
differential equations when t— +oo (recall (2)-(3)). The only thing that is
not obvious is what the behaviour of y(¢) will be as - 0. We will show that
this limit exists for any choice of (y,, T) and that there are infinitely many
(¥, T)’s which result to the same limit of y(¢) as - 0.

Our first objective is to show existence of a solution of (1) for sufficiently
small T. Let ¢ be an element of the space of continuous functions on [0, T,
C[0,T]. C[0,T] is equipped with the usual sup norm. We define the
mapping Q : C - C as follows:

bt
e+ LM, 0<i<y
b Jy b
[Q9](1) = (6)

c+—‘;—j:¢(s)ds—¢(—bT—)+¢(z), —Z—<t<T.

Obviously Q¢ € C[0, T']. The idea is to create a sequence {¢, = Q"¢}, which
is Cauchy; then its limit ¢* exists in C[0, 7] and satisfies Qp* =¢* or
equivalently ¢*(¢) = ag*(bt) for t € [0, T/b), *(0)=c, i.e., #* solves (1).
Thus, we have to guarantee the Cauchy character of this sequence.

LEmMMA 1. It holds:

| N
N
N
H

8100~ (091 () =90 ¢ (). )
Proof. If T/b<t< T, using (6) we obtain
o910 - 1e¢] ()
—c+t %j: 4(s) ds — ¢ (—bT—) +4() — [c +—‘;—j: 4(5) ds]
=604 (5)- 1

Let us now study the sequence {¢,= Q"d,}, where ¢, is an arbitrary
element of C[0, T]. For 0 ¢ < T/b, we have
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9000 = 000 = | 5[ 9.6 ds= 5[ 6, (00

Ial

bt
='%L [90(5) = 8,1 ()]ds | <=9, — 4,1l - T. (8)

For T/b <t < T we have

6010 — 9,00
e+ 5[ 80 ds+9,0-6, ()

BT L]

= 2 160~ o)1 ds

to0—0 ()~ (06 (5)) |

%Lr [$4(s) — @,_1(s)] ds + 3[Q¢,,_1](t)— (06,_,] (%)

Tyy| !
= (S0 () ) { | ©)
The second term in (9) is zero by Lemma 1 and thus for T/b<t< T

Ial

<Ay, g, 01
(10)

'¢n+l(t) ¢n(t)' <

j [9a(5) — B0 ()] d5 | <

Combining (8) and (10) we have

80O = 4O <2 T8, 9, 0<i<T

and thus
Ia |

“¢n+1 ¢n”< T”¢n ¢n—1”-

We can show now that {¢,} is a Cauchy sequence if (ja|/b) T < 1. Let n,m
be any positive integers, and assume that

la| 7

d=
b

<1 (11)
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”¢n+m _¢m”
< ”¢n+m _¢n+m—l” + ”¢n+m—l —¢n+m—2” +eeet ”¢m+l _¢m“
@™ g~ doll + (@D "2y — foll + - + (D)™ 161 — ol
<d™[|¢—doll 1 +d+d* + )
dar
=1__‘7“¢1 = Poll.

S0, |0psm — ml| = O as n,m > +o0o. We have thus proved:

ProPosITION 1. If T < b/|a|, then the sequence {Q"¢,} converges in
C[0, T to a unique limit ¢ which satisfies

d(0)=adbt), 0<Li<T/b, ¢(0)=c.

On [T/b, T), it holds

T T
409 (5) =40~ 4o (5)- (12)

b b
Remark 1. Proposition 1 is actually a local existence theorem for (1). In
[3] a local existence theorem for y'(t) = F(t, y(g(t))), ¥(0) = c is given, but
the assumptions under which the proof of [3] holds includes the following:
for some constants L, 2 with A= L >0 it holds |g(#)| < max{|¢|,L} for

|¢] < h. In our case g(t)=bt, b > 1 and this assumption does not hold. Thus
the existence theorem of [3] does not apply here.

Remark 2. In [4] the equation
YO =Ft,y@), ¥t + ks y(t + 1))
0t < 4w, 0<h <hy<-+<h,<+0o0,
() =¢, 0< <+

is considered. It was shown that studying (1) is equivalent to studying

7(¢) = ake*y (t + 1%2) ,
A

where 4 > 0. Thus the existence results of [4] do not apply to the case

considered here.

L |
tll{l’l J@) =c, tE(—oo, nT]

Remark 3. Let T < b/|a|. Had we started with a different ¢, say, o, WE
would have ended up with a different solution g, which would have the same



ADVANCED-TYPE LDE 79

value c at =0 as ¢ does; i.e., the initial condition y(0) = ¢ in (1) does not
determine uniquely the solution as was to be expected since we are dealing
with a functional differential equation.

Remark 4. Let T<b/la|. If ¢+0 and we start with ¢,(f)=c, (a
constant), Proposition 1 guarantees the existence of a solution of (1) which
will satisfy y(0) = c, and y(t) = c, for t € [T/b, T] where c, is some constant.
c, cannot be zero, since if it were zero, y would have to be zero on
[T/b%, T/b] (since y(t)=ay(bt)), |T/b’, T/b*],... and thus y(0)=c would
have to be zero, and it is not. Using the linearity of (1), it is easy to see now
that (0) is a linear function of the constant function y(t) and that y(0) # 0
if and only if y,=0 on [T/b, T].

Remark 5. ¢(t) differs from ¢4(¢) only by some constant.
Combining Remarks 4 and 5 we can prove the following theorem, which
is the central result of this section.

THEOREM 1. If we employ the procedure described in (4)-(5) with an
arbitrary fixed finite T and an arbitrary continuous function y, defined on
[T/b, T], generate the y,s on [T/b"*',T/b"]| backwards and piece them
together, then the resulting y has a well-defined limit as t - 0 and satisfies

(1).

Proof. Let us first prove this theorem under the assumption T < b/|a|.
Let ¢, be any element of C[0, T] which coincides with y, on [T/b, T]. The
sequence Q"9, converges to some y, € C[0, T] which satisfies

WO=a,60.  70)=c ze[o,%]

Y1) =yy() + ¢35 t€ [% T]

where ¢, is some constant. By Remark 2, there is a solution y,(#) of (1) on
{0, T'] which satisfies

T
Y2(t)=cZ, te I:?, T].

Let y =y, — »,. Obviously, y satisfies

y@)=aybt), € [0,

YO=yo) L€ [% T]

yt)=c—c,.

409/103/1-6
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Had we employed (4) and (5) starting with y,(¢) on [T/b, T] we would have
obviously generated the y and the limit of y(¢) as ¢ » 0 would be ¢ —c,.

We thus proved that Theorem 1 holds if T < b/|a|.

If T > b/|a|, then if we start with an arbitrary y, on [T/b, T, after a finite
number of backward extensions we will be in an interval |T/b**, T/b*] with
a y, defined there on, where T/b* < b/|a| if k> 1/Inb - In(T|a|/b). Thus,
considering that we start on [T/b**', T/b*] with y, we are back in the first
case considered in this proof. |l

A remaining issue to be settled is how we can generate solution of (1)
which satisfies y(0)=c, since the procedure of (4) and (5) does not
immediately guarantee that. If y(¢) satisfies y(¢) = ay(bt) and y(0) # 0, then
obviously the function (c/y(0)) y(¢) satisfies the differential equation and the
initial condition. Another way is the following: we use the procedure (4) and
(5) starting with yo(¢)=1 on [T/b, T| and generate the solution y'(z) which
will have y'(0) # O (recall Remark 4). If y(¢) is any other solution of (1) with
¥(0) # ¢, then the function y(¢) — ((¥(0) — ¢)/¥*(0)) y'(¢) is again a solution
of (1) satisfying the initial condition. Of course, if T < b/|a| we can also
generate solutions of (1) with y(0) = ¢ by generating Cauchy sequences Q"¢,
according to (6) with arbitrary ¢,’s.

Discussion AND CONCLUSIONS

Given that y(t) solves (1) on [0, T]|, we could ask whether it can be
extended to the right of T. This can be done by defining the function y_, on
[T, bT] by

1. ¢
y_l(t)=7yo(3), Tt<bT

as long as y, is differentiable and y_,(T) = y,(T), y* ,(T) = y; (T) which can
be easily guaranteed by an appropriate choice of y, (+ and — denote right
and left derivatives). We can similarly extend the solution to [bT,b*T],
[6°T, b°T) and so on, as long as y, is sufficiently differentiable and such as

to have y_,(T)=y_(ny )(T) ¥_n(T) =P _(n+1)(T) which, as can be easily
seen, amounts to

s () =i (3
(the superscript denotes the order of the derivative). There are many

functions y, which satisfy (13) for n=0, 1, 2,..., N; for example, y, can be
chosen as a polynomial of sufficiently high degree and appropriate coef-
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ficients so as to satisfy (13). If (13) holds for n =0, 1,..., N and y, is at least
N times continuously differentiable, we can extend the solution up to b"T.
An immediate question is whether there are choices of y, on [T/b, T}, so that
the solution can be extended to +00. A y, which has this property is

: [ { 2b 1+b 2])

CXP(/ (T(b—l)t+1—b>

which is infinitely continuously differentiable and satisfies (13) as 0=0.
As was shown in [5] in a more general setup, Eq. (1) cannot have an

analytic solution around zero. This can be directly verified by plugging in

(1) y(t)=32 ,d,t", equating the coefficients of the powers of ¢ on both

sides and showing that the radius of convergence of this series is zero.
On could consider linear equations more general than (1), for example,

0= ayb@),  0)=c

where b, > b, > --+ > b, > 0. It is easy to see that considering the differential
equations

yly=a,yib;),  y0)=c;, i=l.,n

where the ¢;s have sum ¢, + ¢, + --- + ¢, = ¢, but otherwise are arbitrary,
enables one to easily prove existence of solutions. There are several issues to
be settled concerning Eg. (1) or the above-mentioned generalization. One of
the most important ones has to do with the solutions of (1) which exist over
the whole half axis [0, +00) and remain bounded for any ¢ or go to zero as
t - +o0. For example, it can be shown that if a solution y(¢) of (1) exists on
[0, +00), it cannot go to zero faster than any exponential. (If this were the
case, then the Laplace transform Y{(s) of y(f) is analytic around zero.
Transforming y(t) =ay(bt), y(0)=c in the Laplace domain yields
sY(s) — y(0) = (a/b) Y(bs); substituting Y(s) in a series form in it and
calculating the coefficients yields zero radius of convergence.) The study of
possible periodic solutions as ¢ — oo is another important issue.
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