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A linear differential equation of the advanced type is considered. Existence of 
solutions for any finite interval is shown. Also, a method for generating all the 
solutions is described and justified. 

The purpose of this short paper is to study a simple differential equation 
of the advantage type, see Eq. (1). Such equations appear in several branches 
of applied mathematics, for example, see [ 1 ] for an application in 
probability. 

In this paper and for the simple type of equation considered, we show 
existence of a solution on any interval [0, T], where T is any positive finite 
constant, and provide and justify the procedure for generating all solutions 
on [0, T]. There are several papers in the literature dealing with differential 
equations of the advanced type. A local existence theorem for equations 
more general that the one considered here is given in Theorem 2 of [2], by 
using the Schauder fixed point theorem. This result of [2] generalizes a result 
of [3]. The existence theorem of [3] is a local existence theorem proved 
under a hypothesis which does not hold in our case (see Remark 1). In [4] 
an advanced type of differential equation is studied and several asymptotic 
results are obtained. The analysis of [4] does not apply to the case 
considered here (see Remark 1). In [5], analytic solutions are considered and 
it is shown that for the advanced case, they almost never exist. Finally, [6] 
and [7] consider analytic solutions on the half axis. 
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PROBLEM STATEMENT 

Consider the differential equation 

i)(t) = uy(bt), Y(O) = c, t>O (1) 

where a, b, c are real constants, Q # 0 and b > 1. We say that a function y is 
a solution of (1) in the interval [0, T] (T is a positive finite constant), if y is 
a real-valued, continuous function defined on [0, T], satisfies j(t) = uy(bt) 
for t E [0, T/b) and y(0) = c. Notice that since b > 1, (1) is of the advanced 
type. 

An alternative formulation of (1) is the following.’ Let 

P(t) = y(e9, 

where d is a nonzero constant. Then y satisfies 

(2) 

lim y(t)=c, tE[y,+m), if 2<0(3) 

$(t)=aAe’y (t+y), 1*+m 

1 
lim At) = c, t E 

( lnT7 

--co,--- , if I>O. 
t---co A 

If 1 < 0, then the differential equation for J(t) is a retarded differential 
equation (recall: b > 1 and thus (In b)/3, < 0). Obviously, the study of (1) on 
[0, T] with y(0) = c is equivalent to studying the limit of y(t) as t + +co, if 
A < 0. 

EXISTENCE OF SOLUTIONS 

A way of studying (1) comes from the following considerations. Given an 
arbitrary continuous function y,, defined on the interval [T/b, T], we can 
uniquely define a function y, on [T/b’, T/b) by 

y, (+)=yo ($), 9,(t)=uy,(bt), $gt<$. (4) 

We can similarly define y2 on [T/b3, T/b*] and continue backwards, so that 
at the nth step we define y, on [T/b”“, T/b”] by 

Y” (C) =Y”--l ($I) 

(5) 

3,(t) = w, - ,tWv & 

’ This reformulation of the problem was suggested to us by Professor M. L. J. Hautus. 
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Piecing together y,, y,, y, ,... we have a function y defined on (0, T] which is 
continuous on (0, T] and satisfies j(t) = ay(bt) on (0, T], with the possible 
exception of the point T/b; had we chosen y, as to satisfy 3: (T/b) = a~,,( T), 
(here Ji:(T/b) stands for the right derivative of y, at T/b), then y would be 
continuously differentiable at T/b as well. Actually, as t -+ 0, y becomes 
more and more smooth, as is also the case with functional retarded 
differential equations when t + +a, (recall (2~(3)). The only thing that is 
not obvious is what the behaviour of y(t) will be as t--t 0. We will show that 
this limit exists for any choice of (y,, , 7’) and that there are infinitely many 
(yO, 7”)‘s which result to the same limit of y(t) as t -+ 0. 

Our first objective is to show existence of a solution of (1) for sufficiently 
small T. Let d be an element of the space of continuous functions on [0, T], 
C[O, Tl. C[O, Z-1 is equipped with the usual sup norm. We define the 
mapping Q : C-+ C as follows: 

C+a b I :’ !#) ds, 
LQ#lW = (6) 

c++jo’q+)ds-( (5) +4(t), $gt$ T. 

Obviously Q# E CIO, T]. The idea is to create a sequence (4, = en@}, which 
is Cauchy; then its limit d* exists in C[O, T] and satisfies Q#* = d* or 
equivalently d*(t) = a(*(bt) for t E [0, T/b), 4*(O) = c, i.e., #* solves (1). 
Thus, we have to guarantee the Cauchy character of this sequence. 

LEMMA 1. It holds: 

ProoJ If T/b < t < T, using (6) we obtain 

[Q41(0 - IQ41 (f ) 

,c+a jT 4(s) ds - 4 (f j + 40) - [c + + joT i(s) ds] b o 

Let us now study the sequence {#, = Q”#,}, where tie is an arbitrary 
element of C[O, T]. For 0 Q t < T/b, we have 
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For T/b < t < T we have 

I 4, + 1(t) - fiw)l 

9,(s) ds + h,(t) - On ( f ) 

- jc+qlm,-,(S)dsfd,-l(t)-m.-1 (;)) j 

MS> - 4-,@)1 ds 

= /%~o~l),(s)-~.-,(s)lds+ ) [Q4,-,lW- lQLJ(f) 

(9) 

The second term in (9) is zero by Lemma 1 and thus for T/b < t ,< T 

kt+&)-At(r (~or~~~O-h,c)ld~ j <k$hL,II~T~ 

(10) 
Combining (8) and (10) we have 

~~,+~(~)-m.(~)l~~Tllh-h-,ll. O,<t,<T 

and thus 

II# .+I-4 lld%l -4 - II n b n Pll’ 

We can show now that {#.} is a Cauchy sequence if (jai/b) T < 1. Let n, m 
be any positive integers, and assume that 

&blT -T<l. (11) 



78 PAPAVASSILOPOULOS AND OLSDER 

II4 II+* -htll 

Q IIi,+m -h+m-111 +Ilh+m-I -/n+m-*II+ *** + Ilhn+l -t4rlII 

G (4 n+m--l II/l - (,,ll + (d)“+m-2 1141 -hII + ... + W” 1141 ---&II 

<d’“II#,-#,II(l +d+d*+-) 

=&llh -hJll. 

so9 IIht+m - $,,,I] --t 0 as n, m + +co. We have thus proved: 

PROPOSITION 1. If T < b/la I, then the sequence { Qn#,} converges in 
C[O, T] to a unique limit 4 which satisfies 

d(t) = a#(bt), 0 < t < T/b, ((0) = c. 

On [T/b, T], it holds 

et) -Q (+) = $0(t) - 40 (5) * (12) 

Remark 1. Proposition 1 is actually a local existence theorem for (1). In 
[3] a local existence theorem for y’(t) = F(t,y( g(t))), y(O) = c is given, but 
the assumptions under which the proof of [3] holds includes the following: 
for some constants L, h with h 1 L 2 0 it holds ] g(t)( < max{] t 1, L} for 
) t ] ( h. In our case g(t) = bt, b > 1 and this assumption does not hold. Thus 
the existence theorem of [3] does not apply here. 

Remark 2. In [4] the equation 

3(t) = W,r(t),Y(t + W,...,N + h,)) 

O<t<+co, 0 < h, <h, < a.. < hp < +mo, 

Y&J = c9 O<t,<+oo 

is considered. It was shown that studying (1) is equivalent to studying 

y(t) = aleAfy t +!/f , 
( ) 

lim y(t) = c, 
t-+--m 

tE (-c+] 

where 1 > 0. Thus the existence results of [4] do not apply to the case 
considered here. 

Remark 3. Let T < b/la I. Had we started with a different #,,, say, &,, we 
would have ended up with a different solution $, which would have the same 
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value c at t = 0 as 4 does; i.e., the initial condition y(0) = c in (1) does not 
determine uniquely the solution as was to be expected since we are dealing 
with a functional differential equation. 

Remark 4. Let T ( b/lal. If c # 0 and we start with do(t) = c, (a 
constant), Proposition 1 guarantees the existence of a solution of (I) which 
will satisfy y(0) = c, and y(t) = c2 for t E [T/b, T] where c, is some constant 
c, cannot be zero, since if it were zero, y would have to be zero on 
[T/b*, T/b] (since j(t) = ay(bt)), [T/b3, T/b’],... and thus y(0) = c would 
have to be zero, and it is not. Using the linearity of (l), it is easy to see now 
that y(0) is a linear function of the constant function y,,(t) and that y(0) # 0 
if and only if y0 z 0 on [T/b, T]. 

Remark 5. #(t) differs from #&) only by some constant. 
Combining Remarks 4 and 5 we can prove the following theorem, which 

is the central result of this section. 

THEOREM 1. If we employ the procedure described in (4)-(5) with an 
arbitrary Jixed jinite T and an arbitrary continuous function y0 d&ted on 
[T/b, T], generate the y,)s on [T/b*+‘, T/b”] backwards and piece them 
together, then the resulting y has a well-defined limit as t + 0 and satisfies 
(1). 

Proof. Let us first prove this theorem under the assumption T < b/l a 1. 
Let #0 be any element of CIO, T] which coincides with y0 on [T/b, T]. The 
sequence Q’#, converges to some y, E C[O, T] which satisfies 

~40) = ay,(W Y,(O) = c9 fE 0,; [ 1 
Yl(O =Yo(t) + c2, tE f,T [ 1 

where c2 is some constant. By Remark 2, there is a solution y*(t) of (1) on 
[0, T] which satisfies 

Let y = y, - y,. Obviously, y satisfies 

JW = w(W, fE 0,; [ 1 

409/103/l-6 
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Had we employed (4) and (5) starting with ye(t) on [T/b, T] we would have 
obviously generated the y and the limit of y(t) as t --) 0 would be c - c2. 

We thus proved that Theorem 1 holds if T < b/la I. 
If T > b/] a ( , then if we start with an arbitrary y0 on [T/b, T], after a finite 

number of backward extensions we will be in an interval [T/bk+‘, T/bk] with 
a y, defined there on, where T/bk < b/la ] if k > l/in b . ln(T [al/b). Thus, 
considering that we start on [T/b k+l, T/bk] with yk we are back in the first 
case considered in this proof. I 

A remaining issue to be settled is how we can generate solution of (1) 
which satisfies y(0) = c, since the procedure of (4) and (5) does not 
immediately guarantee that. If y(t) satisfies j(t) = uy(bt) and y(0) # 0, then 
obviously the function (c/y(O)) y(t) satisfies the differential equation and the 
initial condition. Another way is the following: we use the procedure (4) and 
(5) starting with ye(t) = 1 on [T/b, T] and generate the solution y’(t) which 
will have y’(O) # 0 (recall Remark 4). If y(t) is any other solution of (1) with 
y(O) # c, then the function y(t) - ((y(0) - c)/y ‘(0)) y’(t) is again a solution 
of (1) satisfying the initial condition. Of course, if T < b/la I we can also 
generate solutions of (1) with y(0) = c by generating Cauchy sequences Q”#,, 
according to (6) with arbitrary (,,‘s. 

DISCUSSION AND CONCLUSIONS 

Given that y(t) solves (1) on [0, T], we could ask whether it can be 
extended to the right of T. This can be done by defining the function y-, on 
[T, bT] by 

as long as y, is differentiable and y-,(T) =yO(T), j?,(T) =3;(T) which can 
be easily guaranteed by an appropriate choice of y, (+ and - denote right 
and left derivatives). We can similarly extend the solution to [bT, b2T], 
[b2T, b3T] and so on, as long as y, is sufficiently differentiable and such as 
to have y-,(T) =y- (n+,,(T), ~-,JT)=JJ-(~+,,(T) which, as can be easily 
seen, amounts to 

= ub”yp’(q (13) 

(the superscript denotes the order of the derivative). There are many 
functions y. which satisfy (13) for n = 0, 1,2,..., N, for example, y. can be 
chosen as a polynomial of sufficiently high degree and appropriate coef- 
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ticients so as to satisfy (13). If (13) holds for n = 0, l,..., N and y,, is at least 
N times continuously differentiable, we can extend the solution up to bNT. 
An immediate question is whether there are choices of y, on [T/b, T], so that 
the solution can be extended to +a. A y0 which has this property ‘is 

l+b 2 
l-b ) I) 

which is infinitely continuously differentiable and satisfies (13) as 0 = 0. 
As was shown in [5] in a more general setup, Eq. (1) cannot have an 

analytic solution around zero. This can be directly verified by plugging in 
(1) y(t) = C,“=. d,P, equating the coefficients of the powers of t on both 
sides and showing that the radius of convergence of this series is zero. 

On could consider linear equations more general than (l), for example, 

4’(t) = 2 aiY(bi(t)), 
i=l 

Y(O) = c 

where b, > b, > ..- > b, > 0. It is easy to see that considering the differential 
equations 

jr(t) = aiYi(bit), Y,(O) = ci 7 i = l,..., n 

where the cts have sum ci + c2 + . . . + c, = c, but otherwise are arbitrary, 
enables one to easily prove existence of solutions. There are several issues to 
be settled concerning Eq. (1) or the above-mentioned generalization. One of 
the most important ones has to do with the solutions of (1) which exist over 
the whole half axis [0, +co) and remain bounded for any t or go to zero as 
t -+ +co. For example, it can be shown that if a solution y(t) of (1) exists on 
[0, +co), it cannot go to zero faster than any exponential. (If this were the 
case, then the Laplace transform Y(s) of y(t) is analytic around zero. 
Transforming j(t) = ay(bt), y(0) = c in the Laplace domain yields 
sY(s) -y(O) = (u/b) Y(bs); substituting Y(s) in a series form in it and 
calculating the coefficients yields zero radius of convergence.) The study of 
possible periodic solutions as t -+ co is another important issue. 
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