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a b s t r a c t

In recent years CFD has proven to be a valuable and powerful tool to advance our understanding of

complex multiphase flow systems arising in industrial applications. However, the predictive

capabilities of this tool are determined by many factors of physical and numerical origin but in

particular by the quality of the closures adopted for the description of the interface forces. The objective

of this study is to improve the front tracking method in order to compute such forces with sufficient

accuracy. This paper describes the further development of a 3D front tracking model to achieve

improved volume conservation and circumvent problems related to the representation of surface

tension. First, we have included a method to handle the pressure jump at the interface. This causes the

spurious currents, observed in conventional front tracking, to decrease with two orders of magnitude.

Also the advection scheme has been adapted, using higher order velocity interpolation (using cubic

splines), and Runge–Kutta time-stepping, in order to prevent considerable volume changes of the

dispersed phase. Test simulations involving a stationary bubble, a standard advection test and an

oscillating droplet, demonstrate the effect of these improvements. The implementation of these

procedures enlarged the computational window and in particular enabled the simulation of very small

bubbles, where large surface forces dominate, without any significant spurious currents or volume loss.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Direct numerical simulations

The study of multiphase flows is extremely challenging due to
the inherent complexities that arise when two or more different
phases interact with each other. A key element of this field of
research concerns the description of the interaction between
phases that are separated by a deformable interface. In this
respect, the description of a rising bubble through a liquid has
received much attention. Traditionally, one would rely on
analytical solutions or on empirical correlations obtained from
time-consuming experiments, however due to the advent of CFD,
powerful alternative approaches have become available such as
direct numerical simulation (DNS).

For multiphase flows with deformable interfaces, many
different DNS models have been reported in literature. These
methods have their own strong and weak points. A brief overview
will be given here, but for a more thorough overview the
interested reader is referred to van Sint Annaland et al. (2006).
ll rights reserved.

: +31 53 489 2882.

M.V. Annaland).
The main difference between the methods is in the description
of the phase boundaries: while the level-set (LS), volume of fluid
(VOF) and lattice Boltzmann (LB) models all capture the interface
using data from the fixed grid, the front tracking (FT) model tracks
the interface explicitly using a Lagrangian surface mesh. As a
consequence, the LS, LB and VOF models exhibit automatic—

potentially unphysical—coalescence when two bubbles are in
close proximity. Additional measures in such codes can prevent
this behaviour. In contrast, the FT model needs a sub-grid model
to allow bubbles to merge (or breakup). For example, Singh and
Shyy (2007) can change the topology of two separate interface
meshes to a single mesh (coalescence) based on the phase fraction
that is observed by two ‘‘probes’’ normal to each mesh cell.
However, without such functionality, the front tracking method
is uniquely qualified for studying swarm effects. Secondly, the
superior interface resolution of the FT model is potentially more
accurate in the description of surface tension forces. Of course FT
also has some drawbacks, most notably the fact that the volume
of the dispersed phases is not intrinsically conserved. Also, the
need for restructuring the interface mesh is generally regarded as
a drawback in literature. The main challenges for DNS are related
to the treatment of the surface tension force, large density jumps
at the interface and high Reynolds numbers, which can all be
found in the important air/water system. A high surface tension
force (small bubbles) produces unphysical velocity vectors
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(see Fig. 9, left), often referred to as parasitic or spurious currents,
which may lead to excessive volume loss or other instabilities. For
instance, using a front-tracking code based on the technique as
given by Unverdi and Tryggvason (1992), an air bubble with a
diameter of 1 mm in water cannot be simulated due to severe
volume losses. While other DNS models do conserve the bubble
volume, they are usually plagued by even stronger numerical
stability problems, making it extremely difficult, if not impossible,
to carry out these simulations. As a consequence Scardovelli and
Zaleski (1999) and Zaleski (2005) concluded that there is no
three-dimensional calculation of a falling drop or rising bubble for
the difficult air/water conditions.

1.2. Objectives

In this article, an improved 3D front tracking model is
described. Dedicated test-cases are used to assess the accuracy
of the numerical results using analytical solutions and the
performance is compared to other front tracking models reported
in the literature. Moreover, benchmarks are used to find the
optimal computational settings. From literature it is well-known
that this type of model is often plagued by spurious currents and
volume conservation issues. Therefore, several improvements
have been made to enable the simulation of even very small
bubbles or droplets with very high surface tension forces. First of
all, a new method to account for the pressure jump at the bubble
interface is implemented, which reduces the magnitude of the
spurious currents by two orders of magnitude. Secondly, in order
to further improve volume conservation and interface smooth-
ness, the numerical implementation of the advection of the
interface has been upgraded with higher order interpolation and
time stepping methods. Finally, a novel and efficient way of
computing the phase fractions is proposed, which circumvents
the solution of a Poisson equation for the phase fractions.

In the following sections, first of all the 3D front tracking
model will be described, with the improvements given in more
detail. Then, the improvements are benchmarked using a variety
of test-cases.
2. Improved 3D front tracking model

Compared to other DNS techniques, front tracking (FT; a.o.
Unverdi and Tryggvason, 1992) offers a potentially more accurate
surface tension treatment, because of the sub-grid interface
resolution. In addition, the explicit interface tracking prevents
unphysical coalescence of bubbles, which is particularly impor-
tant when studying bubble swarms. However, FT also has some
drawbacks, most notably the fact that the volume conservation of
the dispersed elements is not intrinsically enforced. Also, the need
for restructuring the interface grid (‘‘remeshing’’) is generally
regarded as a drawback in literature.

In this article a standard 3D FT model (van Sint Annaland et al.,
2006) has been improved, to allow the simulation of even very small
bubbles, with very high surface tension forces, without numerical
problems such as volume loss and spurious currents. More
specifically, the following modifications have been implemented:
�
 Direct coupling between the surface tension force and the
pressure jump at the interface, to reduce the magnitude of
spurious currents while maintaining a sharp interface repre-
sentation.

�
 Direct calculation of the phase fractions from the interface

triangulation, eliminating the standard, but computationally
expensive solution of the Poisson equation for the phase
fractions proposed by Unverdi and Tryggvason (1992).
�
 Higher order advection of the interface, to reduce volume
conservation errors and improve interface smoothness.

�
 Semi-implicit treatment of the stress tensor, avoiding time

step limitations for highly viscous flows.
In the following paragraphs a general description of the FT model
is given, with the improvements worked out in more detail.
Subsequently, the improved model will be validated and bench-
marked using a collection of dedicated test cases.
2.1. Governing equations and numerical solution method

The Front Tracking model is based on the incompressible
Navier–Stokes equations, with a singular source-term Fs for the
surface tension force at the interface:

r @u

@t
¼ �rp� rr � ðuuÞ � r � sþrgþFs ð1Þ

where u is the velocity field, s the stress tensor and p the pressure
field. Mass conservation is enforced by the continuity equation:

r � u¼ 0 ð2Þ

Since the velocity field is continuous even across interfaces for
gases and liquids, a one-field formulation can be used to describe
all phases at once. However, the shear stress and pressure are not
continuous across the interface and the usual jump condition is
given by Eq. (3). The physical properties (viz. density r and
dynamic viscosity Z) also change discontinuously across the
interface. How these physical properties are calculated will be
explained in Section 2.6.

½�pI� s� � n¼ Fs � n ð3Þ

The interface is represented (parameterised) by an unstructured
grid of triangular markers, with the Lagrangian (control) points
situated on the corners of the markers. The Lagrangian points are
co-moving with the fluid, the triangular markers are merely a
result of the logical connection between the control points.

For each time step the following procedure is carried out: first,
the Navier–Stokes equations together with the continuity equa-
tion are solved with a fractional step projection method to obtain
the flow field. Then, the front (interface) is moved to its new
location, using locally interpolated velocities, after which the
surface grid is restructured (if necessary) and the physical
properties are updated (see Dijkhuizen, 2008). The system of
equations is solved on a Cartesian staggered grid, using a
fractional step method. First of all, an explicit estimate of the
velocity un� is calculated, using information from the previous
time step (indicated with the superscript n):

un� ¼ unþ
Dt

r ½�rp�r � uu�r � sþrgþFs�
n ð4Þ

The convective term is discretised with a second order flux-
delimited Barton scheme (Centrella and Wilson, 1984) and the
diffusion term with a second order central scheme. For highly
viscous systems at small length scales, the time step Dt can be
limited by the stability of the explicit treatment of the diffusion
terms, which is circumvented by treating part of the diffusion
terms implicitly (following Uhlmann, 2005). Therefore, the stress
tensor is split into an implicit part (sn�� ), with all the derivatives
containing the velocity component in one direction, and an
explicit part (sn) containing the other velocity components (e.g. uy

and uz when solving for ux). We have confirmed that this gives us
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the same solution in case a fully explicit treatment is used.
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Note that as a result of this partial implicit treatment, the stress
tensor has lost its diagonal symmetry (i.e. szxasxz). These implicit
terms have been chosen such that each velocity component can
be solved separately and the remaining explicit terms are
relatively small. For each velocity component this discretisation
results in a seven-point stencil (Eq. (6)) and the three independent
systems of linear equations (one for each velocity component) are
solved sequentially using an efficient ICCG matrix solver.
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All the forces in the Navier–Stokes equations have now been
accounted for; however the continuity equation has not yet been
satisfied. This is done using a standard pressure correction step
(Eq. (7)), which involves solving a linear system of equations with
a hepta-diagonal matrix.

dp� pnþ1 � pnunþ1 ¼ un�� �
Dt

r
rðdpÞ ð7Þ

2.2. Surface tension force

One of the most widespread surface tension models for FT is
based on the idea of pull-forces, which are computed directly
from the triangular markers representing the interface. The
individual pull-force of marker a acting on marker m can be
computed from their normal vectors and joint tangent:

Fs;a-m ¼ sðtma � naÞ ð8Þ

There is however a subtle difference in the way the total force on
a marker is calculated by different research groups (see Fig. 1).
Shin and Juric (2002) first compute the net inwards pointing force
on each tangent, which is defined as the sum of two pull forces.
Fig. 1. Surface tension forces acting on a triangular marker. Shin and Juric (2002) use th

use the pull-forces on the marker (right). It can be shown that both methods yield iden
These inward pointing forces are then distributed equally to both
adjacent markers, leading to the following force on marker m:

Fs;m ¼
X

i

Finward;i ¼
X

i ¼ a;b;c

Fs;m-iþFs;i-m

2
ð9Þ

Alternatively, the sum of the pull-forces acting on the marker can
be taken (Deen et al., 2004), which can be shown to give exactly
the same solution since the forces tangential to the interface
cancel each other out, yielding only an inward directed net force
(Eq. (10)). Since this variation is much simpler and requires only
half the computational work, it is used in this work. According to
Tryggvason et al. (2001) this direct approach avoids the
complicated and not very accurate polynomial interpolation of
the surface in 3D. As a consequence complicated error-
suppressing algorithms such as described by Singh and Shyy
(2007) are also avoided. Finally, the total net surface tension force
is automatically zero for a closed surface.

Fs;m ¼
1

2

X
i ¼ a;b;c

Fs;m-iþ
X

i ¼ a;b;c

Fs;i-mÞ ¼
1

2

X
i ¼ a;b;c

Fs;i-m

 
ð10Þ

When the force on a marker has been calculated, a mass-weighing
distribution function (Deen et al., 2004) is used to map the total
force to the surrounding cells based on their density:

ðFsÞi;j;k ¼

P
mri;j;kDðxi;j;k � xmÞFs;mP

mri;j;kDðxi;j;k � xmÞ
ð11Þ

DðrÞ ¼ dxðrxÞdyðryÞdzðrzÞ ð12Þ

dxðrxÞ ¼
1�
jrxj

h
if jrxjrh

0 if jrxj4h

8<
: ð13Þ

The physical background of this mass-weighing function is based
on the continuity of velocity at the interface: a force which acts
equally on the gas and on the liquid phase must yield the same
velocity at the interface. Therefore the momentum should be
balanced based on the density in the different cells, which reduces
the magnitude of the spurious currents considerably and thus
makes it possible to simulate systems with very high density
ratios of up to 104 without any numerical problems.

Other FT models described in literature typically alleviate this
problem by smearing out the surface tension forces over a large
stencil using e.g. a Peskin-like function (Tryggvason et al., 2001;
Shin and Juric, 2002; Peskin, 1977). Also they have a density
gradient over several cells at the interface, as a result of the way
the phase fractions are calculated. This may allow them to
simulate systems with moderately high surface tension forces or
high density ratios, but at the cost of a sharp interface
representation.
e net inwards pointing forces on each of the tangents (left), while Deen et al. (2004)

tical results, since the pull-forces in the plane of marker m cancel each other out.
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Fig. 2. Qualitative effect of the velocity interpolation on the surface grid for a

2 mm air bubble in water. It can be seen that the first order velocity interpolation

creates imprints on the surface grid (left), while the higher order interpolation

gives a smooth result (right). All other settings are identical.
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2.3. Interfacial pressure jump

The coupling between surface tension forces and the pressure
jump at the interface is crucially important to prevent unphysical
spurious currents, as was demonstrated by Popinet and Zaleski
(1999) using a 2D front tracking model. They used a large
computational stencil (3� 3 nodes) to accurately capture the
pressure jump at the interface. However, this is not feasible in 3D,
due to the resulting computationally prohibitive 27-band pres-
sure matrix. Moreover, it is important to understand that
interfacial tension creates a pressure discontinuity at the position
of the front, which is not easily accounted for in the Eulerian
framework, even with higher order discretisations. Our approach
of handling the pressure jump is similar to that of Francois et al.
(2006) and Renardy and Renardy (2002). The magnitude of the
pressure jump related to the surface tension force can be
calculated from the jump condition (Eq. (3)), when the shear
stress in the normal direction is neglected this results in Eq. (14).Z
@S
½p�dS¼

Z
@S

Fs � n½p� ¼

R
@SFs � nR
@SdS

¼

P
mFs;m � nmP

mSm
ð14Þ

During the surface tension force calculation, which was described
in the previous section, the surface tension force components
obtained for each marker are summed to yield the total surface
tension force over the entire bubble. By calculating the sum of the
area of all markers, the interfacial area of the bubble is also
known, and hence the pressure jump can be calculated (Eq. (14)).
By distributing the total pressure jump over all markers, weighted
by the marker area, we incorporate the pressure jump. Thus, we
obtain a pressure jump term per interface marker, and we add this
term to the right-hand side of the momentum equations (i.e. the
equations for un�

x , un�
y and un�

z ) in the same way the surface tension
force was added (i.e. by mass-weighing; Eqs. (11)–(13)). Of
course, the resulting force from the pressure jump works in the
opposite direction with respect to the surface tension force. When
we do this for all markers of a bubble, the pressure jump is
equally distributed over the entire interface of the bubble,
whereas the surface tension force is locally much higher in
strongly curved parts of a bubble than a flattened part the
interface. The advantage of using this technique with front-
tracking is that the location of the interface is exactly known, and
the surface tension force and pressure jump terms are mapped to
this exact location (as opposed to front-capturing techniques as
used by Francois et al., 2006 or Renardy and Renardy, 2002). The
pressure jump and surface tension force cancel each other out for
interfaces with a constant curvature (i.e. a sphere), and if the
curvature varies over the interface, only a relatively small net
force will be transmitted to the Euler grid. This is much more
accurate than a purely Eulerian treatment of the pressure
discontinuity, thereby leading to much lower spurious currents
and improved numerical stability. All of this is realised with no
additional computational cost, because the surface tension force
has already been calculated.
Fig. 3. Local region around the dispersed phase for calculating the cubic spline.
2.4. Surface advection

de Sousa et al. (2004) mention that when the Reynolds number
is high (Re450) small undulations may appear at the interface,
which are ‘‘due to variations in the velocity field from cell to cell.’’
The solution they present in their article is a filter to suppress
these undulations. Instead of using a filter, in this work the focus
is on tackling the cause of the disturbances, which is found to be
primarily dominated by the advection of the surface grid.

Most front tracking models in literature utilise a first order
velocity interpolation. The problem with this type of interpolation
is that it is piecewise linear, not providing a smooth transition
between nodes. As a result the first order interpolation produces
an imprint of the Euler grid on the bubble (Fig. 2, left). To keep the
surface smooth, a higher order velocity interpolation is needed,
for which a natural cubic spline (Press and Vetterling, 1992) is a
good candidate since it guarantees a smooth interpolation and
thus the bubble surface will stay smooth (Fig. 2, right). The spline
is independent for each velocity component in every direction,
because at the nodal points the interpolation matches the
interpolated values exactly. This results in three independent
tri-diagonal systems of equations, which can be solved very
efficiently in OðNÞ operations using a tri-diagonal algorithm. Of
course the spline is not determined in the whole domain, but only
in a small region around the dispersed elements. It was found that
when using a box around the bubble, which is extended by 10
cells in each direction, the results were indistinguishable from a
global spline (Fig. 3). The presence of other bubbles within the
stencil still allows the splines to be determined, because both gas
and liquid phase are calculated on the same flow field. Finally, to
complement the higher order velocity interpolation, fourth order
Runge–Kutta time-integration is used, which is capable of
tracking highly curved velocity fields.
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Fig. 5. Volume-integration in the novel phase fraction calculation. The volume

above marker m is added to or subtracted from cell km , depending on the direction

of its normal vector. Other cells above that, all receive a contribution which

corresponds to the surface area times the grid spacing.
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2.5. Remeshing

The restructuring of the front consists of two elementary
operations: marker addition and removal. For both operations the
length of the line segments is used as the criterion: when a line
segment is too small, two markers are removed (Fig. 4). For a line
segment which is longer than a prescribed value, an additional
point is placed in the middle of the line segment and two extra
markers are created. Generally, we use a maximum line segment
of 0.4 times the Eulerian grid size, and a minimum of 0.2 times the
Eulerian grid size.

Refining a marker involves the addition of a new Lagrangian
control point on the line segment, and the connections between
the control points are updated. This approach does not introduce
any loss of volume, because the resulting new markers are exactly
on top of the old marker. However, removing a control point
because a line segment is too small causes the new, larger, marker
to cut off the fine details of the interface that were represented by
the small markers, hereby introducing volume defects (see
Section 3.2).

2.6. Phase fraction calculation

Once the front has been moved, the phase fractions can be
updated, in order to find the density and viscosity field.
Traditionally the phase fractions Fp are found by solving the
following Poisson equation (Unverdi and Tryggvason, 1992),
containing the interfacial gradient Gp that is calculated from the
interface triangulation:

r
2Fp ¼r � Gp ð15Þ

Gp ¼
X
mep

Dðx� xmÞnmSm ð16Þ

The drawback of this method is that the gradient has to be
distributed to the Eulerian grid and as a consequence, the phase
fractions are smeared out. Secondly, the numerical scheme
creates under- and overshoots, which affect the volume of the
dispersed phase and have to be filtered out. Finally, solving an
additional Poisson equation is computationally demanding,
especially for large grids.

Therefore in this work a different method is introduced, which
calculates the phase fractions directly from the location of the
surface markers. It uses the triangular surface markers to
calculate the volume in each cell piece by piece (Fig. 5). The
calculation of the volume under a marker follows straight-
Fig. 4. Surface grid remeshing procedures for line segments which are either

larger (top) or smaller than a set value (bottom).
forwardly from the location of its centre of mass in the z-
direction zm;c , the surface normal nm and the surface area Sm:

Vmði; j; kÞ ¼
ð�ez � nmÞSmðkDz� zm;cÞ if k¼ km

ð�ez � nmÞSmDz if k4km

(
ð17Þ

where the integration direction is arbitrarily chosen to be the þz

direction. Depending on the direction of the outwards pointing
normal vector nm the volume under the marker in a cell is either
subtracted or added to the respective cell. After all the
contributions from the markers of a bubble are added, only the
volume inside the bubble remains (Fig. 6). Once the contribution
of each marker is known, the phase fractions can be calculated by
adding the contributions of all the markers in a cell belonging to
phase p:

Fpði; j; kÞ ¼
1

DxDyDz

X
mep

Vmði; j; kÞ ð18Þ

The only remaining problem occurs when a marker occupies more
than one cell. In this case the marker will have to be distributed
over these respective cells, for which a ‘‘cutting’’ procedure is
proposed (Fig. 7). The basis of this method is to cut each line
segment if it crosses a cell boundary, consequently creating three
smaller triangles.

Now that the phase fractions are known, the local density and
viscosity can be calculated. For the density a standard volume-
weighing method is used (Eq. (19)), while for the viscosity
harmonic averaging is employed (Eq. (20)). According to Prosper-
etti (2002) the harmonic averaging significantly improves the
continuity of tangential stress across the interface. Note that not
only the calculation, but also the interpolation of the viscosity is
carried out harmonically.

rði; j; kÞ ¼
XNph�1

p ¼ 0

Fpði; j; kÞrp ð19Þ

rði; j; kÞ
Zði; j; kÞ

¼
XNph�1

p ¼ 0

Fpði; j; kÞ
rp

Zp

ð20Þ

3. Model validation

This section demonstrates the effect of the proposed modifica-
tions to the performance of the 3D FT model. First, the
surface tension treatment is tested by comparing simulations to
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Fig. 6. Situation after all the contributions of the markers for a bubble have been collected. It can be seen that for the area above the bubble, the added volume cancels the

subtracted volume out, so that the correct bubble volume is obtained.

Fig. 7. Marker cutting procedure: (a) a marker with control points A, B and C is found in two adjacent Eulerian cells. Lines AB and AC need to be cut, (b) a point P is

determined on the marker and the Eulerian cell faces. A line PC is constructed on line AB and (c) another point Q is determined on line AC. Since BC did not need to be cut,

the operation is finished.

Table 1
Physical properties of the stationary bubble validation case.

Density gas phase rd 1.25 kg m�3

Density liquid phase rc 1000 kg m�3

Viscosity gas phase Zd 1:8� 10�5 Pa s

Viscosity gas phase Zc 1� 10�3 Pa s

Surface tension coefficient s 0.073 N m�1

Bubble diameter d 10�3 m

Time step Dt 10�6 s

Grid size Dx, Dy, Dz 5� 10�5 m

Domain size 40� 40� 40 Grid cells

W. Dijkhuizen et al. / Chemical Engineering Science 65 (2010) 1427–14371432
analytical results for a spherical, stationary bubble in a zero-
gravity field. This case is followed by a standard advection test,
which quantifies the error introduced by moving the front.
Thirdly, the discretisation of the Navier–Stokes equations is
verified by simulating an oscillating bubble with viscous damping
and comparing with an analytical solution.

3.1. Stationary bubble

The improvement achieved by the new treatment of the
pressure jump at the bubble surface is demonstrated for a
spherical bubble of 1 mm in a zero-gravity environment (see
Table 1). It is well-known that in this case there is an excess
pressure inside the bubble, exactly counterbalancing the surface
tension forces. As a result, a force balance gives the analytical
value of the pressure jump:

Dpth ¼
4s
d

ð21Þ

It can be seen that both the surface tension force and interfacial
pressure jump are proportional to the surface tension coefficient
and the inverse bubble diameter (curvature). This knowledge is
used to define suitable dimensionless errors, which are
completely independent of all physical properties and the
bubble diameter. First of all, the L2�error norm of the surface
tension force on the individual markers is defined (Eq. (22)).
Secondly, the error in the pressure jump can be directly compared
to its theoretical counterpart (Eq. (23)). Fig. 8a clearly shows that
the surface tension L2�error norm decreases with order 1

2, which
can be explained by the fact that the accuracy of the pull-forces
varies with the tangent length (	 1=

ffiffiffiffiffiffiffi
Nm

p
), with Nm the number of

markers. On the other hand, the relative error in the pressure
jump is several orders of magnitude lower and depends linearly
on the number of markers, because it is a surface force.

Es ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nm

XNm

m ¼ 1

jFs;m �DpthSmnmj
2

ðDpthSmÞ
2

vuut ð22Þ
Ep ¼
Dpsim � Dpth

Dpth
ð23Þ

with Sm the surface of marker m. The pressure jump in the
simulations, Dpsim, is obtained in the surface tension force
calculations (see Section 2.3). When the surface tension force is
calculated on a per-marker basis, a corresponding pressure jump
can be obtained using Eq. (14). Summing the partial pressure
jumps over all markers gives us the total pressure jump.

The mismatch between the surface tension force and inter-
facial pressure jump results in false momentum, which can also
be quantified in a dimensionless form:

Emomentum ¼
Dx

Dt

rjujmax

Dpth
ð24Þ

In Eq. (24), the term on the right results from the discretisation of
the pressure-correction step, and r represents the macroscopic
density as given in Eq. (19). Fig. 8b shows that with the
conventional treatment of the pressure jump the error is constant
at approximately 4%. This proves that in traditional FT models, the
treatment of the pressure jump using the Eulerian grid is the
limiting factor and not the computation of the surface tension
forces. Only with the new implementation to account directly for
the pressure jump, does the error decrease first order with the
number of markers. Note that the difference in errors between



ARTICLE IN PRESS

Table 2
Literature values for the maximum steady-state spurious currents around a perfect

sphere.

Source d=Dx La Ca

de Sousa et al. (2004) 12.5, 25 250 Oð10�3
Þ, Oð10�4

Þ

Singh and Shyy (2007) – 250–12 000 Oð10�4
Þ

This work Z10 1–10 000 o2:2� 10�5
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cases where the bubble diameter is equal to 10 and 20 Eulerian
cells is related to the smaller width of the distribution function at
higher resolution. The error can be reduced again by using a larger
stencil for mapping, however at the expense of the sharp-
interface philosophy. It can be concluded that the typical
improvement is about two orders of magnitude compared to a
classical CSF method (Brackbill et al., 1992), which has been
realised without the additional computational costs of a higher
order pressure force discretisation (Scardovelli and Zaleski, 1999).

Note that the method of handling the pressure jump still does
not eliminate the spurious currents entirely for a spherical bubble
without external forcing; the triangular grid that represents the
interface still is an approximation of the spherical shape and
therefore suffers from a slight non-constant curvature. For the
case of a 1 mm air bubble in water in zero-gravity, we thus find
that the spurious current velocity uspurious depends on the number
of markers on the interface by uspurious ¼OðN�1

m � 1Þ ½m s�1�. This
can also be seen from Fig. 8.

Finally, the steady-state magnitude of the spurious currents
with viscous damping can be compared to literature values for full
3D simulations. The two sources found in literature (Table 2)
show a rough estimate of this error in the form of a dimensionless
capillary number Ca, evaluated for a limited range of Laplace
numbers La (using the macroscopic density (Eq. (19)) and
viscosity (Eq. (20))):

Ca¼
Zjujmax

s
ð25Þ

La¼
rsd

Z2
ð26Þ

Our simulations, which have been carried out over a wide range of
Laplace numbers, show a similar error of Oð10�3

Þ for the classic
Eulerian treatment of the pressure jump. The improvement by
means of the new method to account for the pressure jump
reduces this error by two orders of magnitude , which agrees with
the instantaneous error in the momentum (Fig. 8, right). Secondly,
it was found that when using the traditional Eulerian treatment
of the pressure jump, the error depends only on the Eulerian
grid size and not on the number of markers. This is conclusive
evidence that the main problem of the traditional FT implementa-
tion is in the treatment of the pressure jump and not the accuracy
Fig. 8. (a) L2�error norm for the surface tension force on a single marker and the

dimensionless false momentum as a result of the mismatch between surface tension for

different resolutions, we have given the results for simulations with and without pres
of the surface tension model, as was first pointed out by
Scardovelli and Zaleski (1999). By using the new and more
accurate treatment of the pressure jump at the interface FT can
significantly outperform other models, which makes it possible
to run calculations with very high surface tension forces on
relatively coarse grids.

Next to a quantitative difference, there is also a qualitative
difference in the spurious currents around the bubble, as
illustrated in Fig. 9 (velocity vectors not on the same scale). It
can be seen that the traditional implementation gives erratic
velocity vectors at the interface, while the improved version has a
clear circulation pattern inside the bubble. Both are, however,
divergence free.
3.2. Standard advection test

The advection of the interface is studied using a standard
advection test (following Rider and Kothe, 1998), which involves a
bubble with radius 1

4 at a dimensionless position ð12 ;
1
2 ;

3
4Þ in a

rotational velocity field given by

uðx; y; zÞ ¼ ð0;�2sin2
ðpyÞsinðpzÞcosðpzÞ;2sin2

ðpzÞsinðpyÞcosðpyÞÞ

ð27Þ

In this case a computational domain consisting of 30� 30� 30
cells is used with 200 time steps of 0.01 s. The markers are
between 0.2 and 0.4 times the size of the Eulerian grid size, and
the bubble contains 10 Eulerian cells. Further physical properties
are irrelevant because the flow field is given. Because the velocity
field is divergence free, and the markers on the interface move
with the interpolated fluid velocity, the bubble volume should
always be conserved. Secondly, after reversing the velocity field
interfacial pressure jump as a function of the number of markers Nm and (b)

ces and interfacial pressure jump, as a function of the number of markers. For two

sure jump handling as described in Section 2.3.
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Fig. 9. Spurious vector field around the central slice of a spherical air bubble with d¼ 1 mm. It can be seen that the standard Eulerian pressure treatment (left) gives many

erratic vectors at certain locations on the interface, while the new implementation to account for the pressure jump at the interface (right) yields a much smaller and

symmetric circulation pattern. The size of the vectors of a and b differ by a factor 200 for visibility.

Table 3

Errors in the standard advection test for different advection schemes (V ¼ bubble volume; x¼ dimensionless bubble position).

Numerical scheme t¼ 1 s t ¼ 2 s

Interpolation Time stepping Remeshing ðV � V0Þ=V0 ðV � V0Þ=V0 x� x0

Linear Euler – �9:71� 10�3
�3:36� 10�2 6:93� 10�2

Linear Runge–Kutta – �8:51� 10�4 1:48� 10�8 2:03� 10�9

Spline Euler – �9:88� 10�3
�3:41� 10�2 6:99� 10�2

Spline Runge–Kutta – �8:55� 10�4 1:44� 10�8 2:03� 10�9

Linear Euler X �1:37� 10�2
�4:27� 10�2 6:92� 10�2

Spline Runge–Kutta X �4:76� 10�3 8:92� 10�3 2:72� 10�4
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halfway (after 1 s), the bubble should return exactly to its starting
position. However, due to the finite accuracy of the numerical
schemes used, there can be an error in the volume, final location
and shape of the bubble. The errors in the location and volume of
the bubble are analyzed quantitatively in Table 3.

We first consider the cases without remeshing. Considering
the volume loss at t¼ 2 s, the Runge–Kutta time integration
reduces all errors by a factor of one million, regardless of the
method for the velocity interpolation used. A more interesting
result is found half-way the advection test (at t¼ 1 s). A
significantly larger volume loss is observed (despite the R–K
timestepping procedure). Because the remeshing is not active, the
Lagrangian control points are moved increasingly further away
from each other, hereby creating volume defects. Because the
bubble volume is analytically calculated from the triangular, flat
markers between three Lagrangian control points, concave parts
from the bubble gain volume, whereas convex parts of the
interface lose volume. When the flow field has reversed, the
points move towards each other again, hereby restoring
the bubble volume to a large extend. This demonstrates the need
for remeshing. A higher order velocity interpolation (third order
spline) is still important in order to keep the bubble surface
smooth (Fig. 2).

Remeshing procedures also introduce volume defects, which
result from a similar mechanism as presented above. Therefore,
with the addition of remeshing, the error in the bubble volume
rises significantly, but it can be seen that the higher order
advection still improves the volume conservation.

The shape of the bubbles together with the streamlines are
shown in Fig. 10. It can be seen that for the standard Euler time
integration with linear interpolation, the bubble shape at the end
of the test is moved away from its initial position, while for the
higher order interpolation and time stepping the interface is
found exactly on top of the initial bubble. All together, a higher
order interpolation of the velocity (spline) and Runge–Kutta
timestepping, combined with a remeshing function, produce very
satisfying results.
3.3. Oscillating drop with viscous damping

In order to verify the correct interchange between the surface
tension force and momentum, an initially slightly prolate droplet
in a zero-gravity field is simulated. The droplet will oscillate as a
result of the surface tension force. The droplet diameter can be
calculated over time using Eq. (28) (Lamb, 1932). In this equation,
o stands for the analytical solution for the frequency of the lowest
mode, calculated by Eq. (29). The viscous damping of the initial
amplitude a0 can be described by Eqs. (30) and (31).

dðtÞ ¼ d0þa0 exp �
t

t

� �
cosðotÞ ð28Þ

o2 ¼
24s

ð3rdþ2rcÞ
d

2

� �3
ð29Þ

aðtÞ ¼ a0 exp �
t

t

� �
ð30Þ
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Fig. 10. The first three images show the evolution of the advection test. At t¼ 0 s, the bubble is subjected to a rotational flow and deformed. At t¼ 1 s, the bubble is

deformed and the flow is reversed. At t¼ 2 s, the bubble should have returned to its initial position. The d shows a cut-plane of the bubble at t ¼ 2 s. Using spline

interpolation and Runge–Kutta time integration the bubble returns completely to its initial position (black line), while using first order interpolation and first order time

integration, the bubble is slightly shifted (green line): (a) snapshot at t ¼ 0 s, (b) t¼ 1 s, (c) t ¼ 2 s and (d) difference between first order and higher order advection. (For

interpretation of the references to the colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Physical and numerical settings for the oscillating drop case.

Property (dimensionless) Value

Domain size 20� 20� 20

40� 40� 40

Grid size Dx 0.2

0.1

Time step Dt 5� 10�3

Equivalent drop diameter d0 2

Initial amplitude a0 0.05

Dispersed phase density rd 100

Dispersed phase viscosity Zd 0.35

Continuous phase density rc 1

Continuous phase viscosity Zc 1� 10�3

Surface tension coefficient s 10
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t¼ rdd

10Zd

ð31Þ

To be able to compare the model results with this analytical
solution, a system is selected with a low viscosity and density for
the continuous phase (Table 4), so that the effect of the
surrounding fluid can be neglected. Two resolutions of the
droplet have been investigated, see Table 4. It can be seen from
Fig. 11 that there is a very good agreement between the numerical
results and the analytical solution. The period of the oscillation is
perfectly reproduced with an error of 1.28% on average over the
simulated time shown in the figure.
4. Conclusions

In this article, the improvements made to a 3D front tracking
code have been described and their effects were benchmarked.
First a new method to account for the pressure jump in front
tracking models is described and it has been shown that this
method reduces the spurious currents by two orders of magnitude
and solves volume loss issues for small bubbles with high surface
tension forces. Secondly, the interface advection has been
improved (higher order velocity interpolation and time stepping),
resulting in less volume conservation errors and a noticeably
smoother interface. Finally, the time step constraint for viscous
liquids was overcome by using a semi-implicit treatment of the
stress tensor in the Navier–Stokes equations.
Notation
a
 amplitude, m

Ca
 capillary number, dimensionless

d
 equivalent bubble diameter, m
dx, dy, dz
 distribution functions in one direction,
dimensionless
D
 volume weighing distribution kernel, dimensionless
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Fig. 11. Bubble diameter for an oscillating drop with viscous damping, simulated with d¼ 20Dx¼ 2. The error in the oscillation period was 1.28%, calculated from the local

minima and maxima.
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ez
 unit vector in the z-direction, dimensionless

E
 error, dimensionless

F
 force, N

Fp
 phase fraction, dimensionless
g
 gravitational acceleration (in z direction), m s�2
Gp
 gradient of the phase fraction, dimensionless
h
 mesh spacing, m

i, j, k
 discrete Cartesian coordinates, m

La
 Laplace number, dimensionless

n
 unit normal vector, dimensionless

N
 number of cells, dimensionless

Nm
 number of markers, dimensionless

Nph
 number of phases, dimensionless
p
 pressure, Pa
Dp
 pressure jump, Pa
Re
 Reynolds number (Re¼ rcjv� ujdZ�1
c ),

dimensionless

S
 surface area, m2
t
 time, s

t
 tangent vector, m
Dt
 time step, s
u
 continuous phase velocity, m s�1
v
 dispersed phase velocity, m s�1
V
 volume, m3
x, y, z
 Cartesian coordinates, m

x
 position, m
Greek letters
dp
 pressure correction, Pa
Z
 dynamic viscosity, Pa s

r
 density, kg m�3
s
 surface tension coefficient, N m�1
t
 characteristic time, s

s
 stress tensor, N m�2
o
 oscillation period, s
Super/subscripts
d
 dispersed phase

c
 continuous phase

h
 horizontal direction

m
 marker

max
 maximum

n
 current time-level

n�, n��
 intermediate time-level

nþ1
 new time-level
p
 phase or pressure

th
 theoretical

v; z
 vertical direction

x; y
 horizontal direction

0
 initial value

s
 surface tension
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