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Abstract

Meissner effect in the diffusive normal metal/insulator/s-wave superconductor junctions is studied in the presence of

the magnetic impurities for various situations, where we have used the Usadel equation with Nazarov�s generalized

boundary condition. It is shown that the susceptibility of the diffusive normal metal for s-wave superconductor is

almost independent of the height of the insulating barrier at the interface.

� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In diffusive normal metal/superconductor (DN/

S) junctions, the DN acquires induced supercon-
ductivity, i.e. Cooper pairs penetrate into the

DN. This proximity effect has been studied since
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the BCS theory was established. The proximity in-

duced Meissner demagnetization in DN/S junc-

tions was measured experimentally by Oda and

Nagano [1] and Mota et al. [2]. It has T�1/2 depen-
dence in the dirty limit. The quasiclassical Green�s
function theory was used earlier to study Meissner

effect in proximity structures.

The quasiclassical Green�s function theory was

developed by Eilenberger [3] and applied by Zaikin

[4] and Kieselmann [5] to study the Meissner effect

in DN/S junctions. Narikiyo and Fukuyama [6]

calculated the Meissner screening length in a
ed.
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semi-infinite system containing Anderson impu-

rity. Higashitani and Nagai studied the Meissner

effect in the clean limit [7]. Belzig et al. [8] have

studied more realistic system assuming a perfectly

transparent N/S interface. Up to now the bound-
ary conditions derived by Kupriyanov and Luki-

chev (KL) [9] were widely used to study

proximity effect in DN/S structures.

A more general boundary conditions were

derived by Nazarov [10] based on the Keldysh-

Nambu Green�s function formalism [11] within

the framework of the Landauer–Büttiker scatter-

ing formalism. The merit of this boundary condi-
tion is that the BTK theory [12] is reproduced in

the ballistic limit while in the diffusive limit with

a low transmissivity of the interface, the KL

boundary condition is reproduced. Although al-

most all of previous papers on Meissner effect in

mesoscopic NS junctions are either based on the

KL boundary conditions or on the BTK model,

in the actual junctions, transparency of the junc-
tion is not necessarily small and impurity scatter-

ing in the DN is important. Tanaka et al. [13]

and Yokoyama et al. [14] calculated tunneling con-

ductance using the Nazarov�s boundary condition.

The timely problem is to study theoretically the

Meissner effect in DN/s-wave junctions using the

new boundary conditions [13]. In the present

paper, we calculate the susceptibility of the DN
layer in DN/s-wave S junctions for various para-

meters such as the height of the insulating barrier

at the interface, resistance Rd in DN, density of

states at Fermi energy, the magnetic scattering rate

in DN, and the Thouless energy ETh in DN.
dx
2. Formulation

In this section we introduce the model and the

formalism. We consider a junction consisting of

vacuum (VAC) and superconducting reservoirs

connected by a quasi-one-dimensional diffusive

conductor (DN) with a length L much larger than

the mean free path. We assume that the interface

between the DN conductor and the S electrode
at x = L has a resistance Rb, the DN/VAC inter-

face at x = 0 is specular, and we apply the general-

ized boundary conditions by Tanaka [13] to treat
the interface between DN and S. A weak external

magnetic field H is applied in z-direction. The

vector potential can be chosen to have only the

y component which depends on x.

We model the insulating barrier between DN
and S by the delta function U(x) = Hd(x � L),

which provides the transparency of the junction

Tm ¼ 4cos2/=ð4cos2/þ Z2Þ, where Z = 2H/vF is

a dimensionless constant, / is the injection angle

measured from the interface normal to the junc-

tion and vF is Fermi velocity.

In the following calculations we apply the

Usadel equations [15] and use the standard h-
parameterization, where h(x) is a measure of the

proximity effect in DN and is determined by the

following equation:

D
o2

ox2
hðxÞ � 2ðxn þ c cos½hðxÞ�Þ sin½hðxÞ� ¼ 0; ð1Þ

where c, D and xn denote magnetic scattering rate

in DN, the diffusion constant and Matsubara fre-

quency respectively. The boundary condition for

h(x) at the DN/S interface is given in Ref. [13].
The interface resistance Rb is given by

Rb ¼ R0

2
R p=2
�p=2 d/T ð/Þ cos/

ð2Þ

with T ð/Þ ¼ 4cos2/=ð4cos2/þ Z2Þ. Here R0 is
Sharvin resistance R�1

0 ¼ e2k2FSc=ð4p2Þ, where kF
is the Fermi wave-vector and Sc is the constric-

tion area. Note that the area Sc is in general

not equal to the cross-section area Sd of the nor-

mal conductor, therefore Sc/Sd is independent

parameter of our theory. The current distribution

is given by

jðxÞ ¼ �8pe2Nð0ÞDT
X

xn>0

sin2hðxÞAðxÞ; ð3Þ

where A(x), N(0) and T denote vector potential,

density of states at Fermi energy and temperature

of the system respectively. The Maxwell equation

reads

d2

2
AðxÞ ¼ �4pjðxÞ. ð4Þ
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The boundary conditions for A(x) are

d

dx
Að0Þ ¼ H ; AðLÞ ¼ 0; ð5Þ

where we have neglected the penetration of the

field into the superconductor assuming small pen-

etration depth in S.

Finally we get the following expression for the

susceptibility of the DN;

�4pv ¼ 1þ Að0Þ
HL

. ð6Þ

In the following we denoteK = 16pe2N(0)D2 and

D(T) is the magnitude of pair potential at a given

temperature T. It should be remarked that in the

present circuit theory, Rd/Rb can be varied indepen-

dently of Tm, i.e., independently of Z, since one can

change the magnitude of the constriction area Sc

independently. In other words, Rd/Rb is no more

proportional to Tav(L/l), where Tav is the averaged

transmissivity of the barrier and l is the mean free

path in the diffusive region. Based on this fact, we

can chooseRd/Rb andZ as independent parameters.
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Fig. 1. Susceptibility for low transparent ju
3. Results

Figs. 1–4 show T�1/2 dependence of the suscep-

tibility of the DN. It is linear in the intermediate

region. Let us first focus on the low transparent
junctions with Z = 10 and Rd/Rb = 10 for various

c/D(0) (Fig. 1). As T increases, the magnitude of

�4pv is reduced and finally becomes zero. Mag-

netic scattering suppresses the Meissner effect. As

K decreases, this suppression is enhanced. The sus-

ceptibility is enhanced with an increase in ETh/D(0)
at relatively high temperature. For Z = 10 and Rd/

Rb = 1 (Fig. 2), the magnitude of �4pv is somehow
reduced compared to those for corresponding

parameters in Fig. 1. As Rd/Rb increases, Meissner

effect is enhanced while the suppression on Meiss-

ner effect by magnetic scattering becomes weak.

For Z = 0 (Figs. 3 and 4), line shapes are almost

the same as those for corresponding parameters

in Figs. 1 and 2, that is, Z dependence of the sus-

ceptibility is very weak. The saturated value of the
susceptibility is determined by K, Rd/Rb.
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Fig. 2. Susceptibility for low transparent junctions with Z = 10 and Rd/Rb = 1.
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Fig. 3. Susceptibility for high transparent junctions with Z = 0 and Rd/Rb = 10.
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In the following we confine ourselves to c = 0.

Now we look at the K, Rd/Rb and Z dependence
of the susceptibility at T/Tc = 0.01. We will plot

the K and Rd/Rb dependence of the susceptibility
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Fig. 4. Susceptibility for high transparent junctions with Z = 0 and Rd/Rb = 1.
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in Fig. 5. The magnitude of �4pv is an increasing

function of K and Rd/Rb. For sufficiently large K

and Rd/Rb, it becomes constant. Fig. 6 shows the

Z dependence of the susceptibility. Z dependence

of the susceptibility is very weak especially for

large Rd/Rb.

Finally let us make a brief explanation for the

above results. As shown in Ref. [14], where re-
tarded Green�s function is used, magnetic impurity
scattering suppresses proximity effect, i.e., h
whereas h increases with an increase in Rd/Rb

and is almost independent of Z. We can regard

xn= cos hðxÞ þ c as effective magnetic scattering

rate in the Usadel equation with retarded Green�s
function at zero energy. So the proximity effect

and the magnitude of �4pv are suppressed with

an increase in T, increased with an increase in
Rd/Rb and almost independent of Z.
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4. Conclusions

In the present paper, a detailed theoretical

investigation of the susceptibility of diffusive

normal metal/s-wave superconductor junctions in

the presence of magnetic impurity is presented.

We have clarified that Z dependence of the suscep-

tibility for s-wave superconductor is very weak

especially for large Rd/Rb.
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