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Synchronization Theory for Forced Oscillations 
in Second-Order Systems ~ 

J. A. M. BOLLEN 2 

Communicated by L. Cesari 

Abstract. We consider differential equations of the form 

~ + ~f(x, ~ ) + x  = Eu, 

where E > 0 is supposed to be small. For piecewise continuous controls 
u(t), satisfying lu( t ) l - -1 ,  we present sulIicient conditions for the 
existence of 2¢r-periodic solutions with a given amplitude. We present 
a method for determining the limiting behavior of controls fi, for which 
the equation has a 27r-periodic solution with a maximum amplitude 
and for determining the limit of this maximum amplitude as • tends to 
zero. The results are applied to the linear system 5/+ e2+ x = eu, the 
Duffing equation 5i+ e (2+  x 3) + x  = eu, and the Van der Pol equation 
5/+ ~(x 2 -  1 )2+x  = eu. 

Key Words. Control theory, synchronization theory, periodic solutions, 
maximum amplitude. 

1. Introduction 

In  this  pape r ,  we cons ide r  different ia l  equa t ions  o f  the  fo rm 

~ +  if(x,  ~ ) + x  = Eu, (1) 

where  e > 0, 

u e f~ := {u :R ~ [ - 1 ,  + l ] [ u  is 21r-per iodic  and  p iecewise  cont inuous},  

and  f is con t i nuous ly  dif ferent iable .  We s tudy  the behav io r  o f  2~ ' -pe r iod ic  
so lu t ions  x( t ,  E, u) o f  (1) for  small  e > 0 and  a rb i t ra ry  u e ~ .  Espec ia l ly  for  
smal l  E > 0, we ask for  a cont ro l  ti~ c f l  such tha t  (1) admi ts  a 2~--per iodic  
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solution x(t ,  ~, ~ )  with a maximum amplitude. Thus, for small e > 0 ,  we 
want to solve the following amplitude maximization problem (AMP): 

(AMP) max { max Ix(t, •, u)] Ix(t, E, u) is a 2~--periodic solution of  (1)}. 
u c Y l  O<--t<--2rr 

If e >  0, u ~ ~,  and x(t, •, u) is a corresponding 2~r-periodic solution 
o f ( l ) ,  then, for any ~'~ R, the shifted control u ( t +  .r) is in ~ and the shifted 
solution x ( t +  .r, E, u) is a corresponding 2~r-periodic solution of  (1). Hence, 
by shifting the control, it can always be arranged that the maximum ampli- 
tude is attained at t = 0. Therefore, for fixed e > 0, we formulate the so-called 
initial-value maximization problem (IVMP): 

(IVMP) max {Ix(0, E, u)[]x(t, •, u) is a 2~r-periodic solution of (1)}. 

If the IVMP has a solution, then the AMP has a solution and vice 
versa. Moreover, the maximum amplitude equals the maximum (absolute) 
initial value. It also follows that 

5(0, ~, a ,)= 0, 

for a solution where the maximum amplitude is attained at t = 0. In addition, 
it follows that a solution of  the AMP is not unique. As far as the existence 
of  the maximum amplitude and an optimal control is concerned, we refer 
to the Appendix and Ref. 1, Chapter 2. The results of this paper are based 
on a perturbation theorem from the synchronization theory for ordinary 
differential equations. This theorem is applied to differential equations of 
the form (1) in Section 2 and is discussed further in Sections 3 and 4, where 
special attention is paid to the Duffing equation ,~ 

ii + e( Yc + x3) + x = •u. 

In Section 5, we illustrate the results for the linear differential equation 

5~+ e ~ + x  = •u. 

In Section 6, we apply the results to the Van der Pol equation 

~ +  e(x 2 -  1 ) 2 + x  = eu. 

2. Sufficient Conditions for the Existence of 2~--Periodic Solutions 

In this section, we derive sufficient conditions for the existence of a 
2~--periodic solution of (1) for a given u ~ ~ and small • > 0. A well-known 
perturbation theorem is the following (cf. Ref. 2, Chapter 12). 
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Theorem 2.1. Consider the system 

= Ef(x, t, E), (2) 

where f is defined and continuously differentiable on G xR x [ - E o ,  co], 
with G a region in R" and Eo> 0. Let f be periodic in t of  period T. Let 
F :  G ~ R "  be defined by 

f(x):=(1/r) f(x,t,O)dt, 

and let Fx denote the corresponding functional matrix. If F ( a ) =  0 and 
Fx(a) is nonsingular for some fixed a e G, then, for sufficiently small lel, 
there exists a unique T-periodic solution x(t,  ~) of  (2), converging to a, 
uniformly with respect to t for e-~ 0. 

The proof  of this theorem is based on the implicit function theorem. 
In Ref. 2, this theorem is also proved for the case where f has finitely many 
discontinuity points in t on [0, T]. The n equations 

F(a)=0 

are called synchronization equations. In order to be able to apply this theorem 
to Eq. (1), we describe the solutions by polar coordinates r and ~b in the 
following way: 

x ( t ) = r ( t ) c o s ( t + c b ( t ) ) ,  ~ ( t ) =  - r ( t )  s in(t+ch(t)) .  (3) 

The definition is completed by the conditions 

r(0)>--0, 0--< ~b(0) <2rr. 

From the differential equation (1), we obtain, in the new coordinates, the 
system 

i ~ = e [ f ( r  cos(t + ~b), - r sin(t + ~b)) - u] sin(t + ~b), (4a) 

(b = e r - ; [ f ( r  cos( t+  ~b), - r s in( t+ ~b)) - u] cos( t+  ~),  (4b) 

while the periodicity conditions 

x(O) = x(27r), .2(0) = ~(2rr) 

result in 

r(0) = r(2~-), ~b(0) = ~b(2rr) ; 

cf. Subsection 7.4. We have obtained a system of  the form (2). tn applying 
Theorem 2.1, we have to exclude r = 0  in the region G, in view of  the 
differential equation for 4~. For the function F : ~ 2 +  R 2, depending on u, 
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we have in this case 
~'2~r 

[ f (r  cos(t + g5), - r s in( t+  4~)) 
0 

- u(t)]  s in( t+  qS) dt 
F,(r ,q~):=(1/2~) , (5) 

r -I [ f (rcos( t+qS) ,  - r sin(t + 4~)) 

. -  u ( t)] cos( t + dr) at 

where r and 4, have to be considered as real constants. Since the integral 
over a complete period of a periodic function is invariant with respect to 
arbitrary shifts of the integrand, the synchronization equations can be written 
in the form 

a ( r )  = a~(6) ,  /3(r) =/3~(6), (6) 

where 

f; a( r )  := f ( r c o s t , - r s i n t ) s i n t d t ,  (7a) 

I; /3(r) := f ( r  cos t, - r sin t) cos t dt, (Tb) 

au(qS) : = sin(t + ~b) u(t) dr, (7c) 

I? /3u(~b) := cos ( t+  ~b) u(t) dr. (Td) 

Now, let u c f l ,  and let ~(30) ,  4 ~ R  satisfy the synchronization 
equations (6), and let also 

det F,,x(~, q~) # 0. 

Then, according to Theorem 2.1 and the transformation (3), it follows that, 
for sufficiently small • > 0, the differential equation (1) with control u admits 
27r-periodic solutions x(t, •, u), converging to Fcos(t+4~), for • $ 0 uni- 
formly with respect to t. A point (~, ~) satisfying the previous conditions 
is called a synchronization point of u. 

3. S y n c h r o n i z a t i o n  P o i n t s  

In this section, we show" how to determine synchronization points for 
a given u c Ft. The Duffing equation 

. ~ +  E ( X + X 3 )  + X  = EU 
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is used as a concre te  example .  F rom the definit ion of  a ( r ) ,  it fol lows that  

o~(r) = f ( r c o s ( t + ~ ) ,  - r s i n ( t +  ~-)) s i n ( t +  or) dt 

I/ = -  f ( - r c o s t ,  +rs in t )  s i n t d t = - a ( - r ) .  

Similarly,  

f l ( r ) = - f l ( - - r ) .  

Hence,  the funct ion  

sc(r) := (,~(r), ~(r))  

is odd,  

(sc(r )  = - s c ( -  r)).  

F rom the definit ion of  a ~ ( ¢ )  and f l~(¢) ,  it fol lows that  

f lu(¢) .]  - s i n e  c o s ¢  /3~, ' (8) 

where  

au := a'u (0) = sin t u(t) dr, (9a) 

fo flu := fl~(0) = cos t u(t) dt. (9b) 

Thus,  the poin t  ( a , ( ¢ ) ,  f l , ( ¢ ) )  is ob ta ined  by  rotat ing (au, f t , )  clockwise 
over  an angle ¢ a round  the origin. In order  to ident ify the set {(a , ,  flu)] u c ~t}, 
we first define a subclass o f  controls u ~ fL Let s c [0, 2~-). Then,  the control  
/~ ~ f~ is defined by 

u,(t) := s ign(s in( t  - s)) .  

Such a control  is called bang-banger: More  generally,  a control  u ~ f~ for  
which 

u ( t ) = + l  or u ( t ) = - l ,  

for  every t ~ ~,  is called a bang-bang control. A discont inui ty  poin t  o f  a 
bang-bang  control  is cal led a switch point. Hence ,  a bang-bange r  is a 
bang-bang  control  for  which the dis tance be tween  two consecut ive switch 
points  equals  7r. 
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Theorem 3.1. {(au, f l , ) l u c ~ } = { ( x , y ) ~ R 2 l x 2 + y  2<- 16}. 

Proof. Each point (x, y) satisfying 

x2+ y 2< - 16 

can be written in the form (p cos s, - p sin s), where 

p ~ [0, 4], s C [0, 2w). 

Define 

:= ( 1/4)p/zs. 

Then, t7 ~ f~, and it is easy to verify that 

( ~ ,  fix) = (p cos s, - p  sin s). 

On the other hand, let u ~ f~, and let p -> 0 and s ~ [0, 27r) be defined by the 
relation 

p eiS ---- flu--k iau. 

Since p ~ R, we have 

p = e - ~ ( f l . + i a ~ ) = e  -~s ( c o s t + i s i n t )  u ( t ) d t  

= ei(t-S)u(t) at= c o s ( t - s )  u(t) at. 

Therefore, 

p-< Icos(t-s)l dt=4; 

thus, 

2 a~+fl~--< 16- Z] 

From the first part of the proof, it even follows that 

{(,~. # . )1  u ~ ~ }  = {(,~°. #.)I u = pro, p ~ [o, 1], s c [o, 2 ~ ) } .  

The part of  the circle 

x 2 + y  2= 16 

in the upper half plane is reached by bang-bangers/xs, rr < s < 2~, whereas 
the part of  the circle 

x2 + y  2= 16 
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in the lower half plane is reached by bang-bangers/~s, 0 < s < 7r. The points 
(4, 0) and ( -4 ,  0) are reached by ~o and tx~, respectively. Now that we 
know {(au, fl~)luef~}, it is easy to find a point (~, ~b) satisfying the syn- 
chronization equations (6) for a given u e 12. We deal with a concrete 
example, viz., the Duffing equation 

~ + e ( 2  + x 3 ) +  x = eu. 

For this case, 

f ( x ,  2 )  = 2+x3;  

hence, by definition, 

(r 3 COS 3 t - -  r sin t) sin t d t  = - 7rr, 

(r 3 COS 3 t - r  sin t)cos t d t  = 37rr3/4.  

4 

r=r 

" - 4  
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\ 
\ 

2 . 4 3 3 ,  

-4 

(au,6 u) 

\ 
/ 

J 

\ 

\ 

I 
I 

sc(r) 

Fig. 1. Synchronization curve for the Duffing equation. 
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Consequently, the so-called synchronization curve 

sc(r)=(a(r),13(r)) 

satisfies the equation 

4~r2y = - 3 x  3 ; 

see Fig. 1. 
Now, let u ~ f~, and calculate o~u and/3u from (9). The circle with center 

0 and passing through (a , , /~ , )  (the dotted circle part) intersects sc(r) in 
the point ()?,)7), with Y < 0. Determine the angle q~ as indicated in Fig. 1. 
Determine 7> 0, satisfying 

sc(r)  = (~, y) .  

Now, by virtue of (8), we have 

(~u(~),  Bu(4;)) = (~,)7) = (~ (~), t~(~)) ; 

hence, (F, ~)  satisfies the synchronization equations. Moreover, if 

det F,.x(~, ~)  ~ 0, 

then (~, q~) is a synchronization point of  u. 

Remark 3.1. Note that 

( ~ u ( g  - ,~), ~ . ( g  - ~ ) )  = _ ( < ) 7 )  = ( .  ( - ; ) ,  ~ ( -  ; ) ) ;  

therefore, ( - ~, 4~ - 7r) also satisfies the synchronization equations. This is 
not surprising, since, if r(t), rb(t) is a 2~r-periodic solution of  the system 
(4), then - r ( t ) ,  ~b(t)-~r is also a 2~r-periodic solution of the system (4). 
The two corresponding 2~-periodic solutions of  (1) coincide; hence, we 
only concentrate on (?, q~). Furthermore, for the shifted control 

a(t):=u(t+~), ~ e ,  

we have 

ce~(,~+ ~') = sin(t+~+~')u(t+~) dt= sin(t+~)u(t) dt 

= ~ . ( 4 ; ) .  

Similarly, 

Consequently, (~, q~+ r) satisfies the synchronization equations for u. This 
agrees with the fact that, if r(t), 4~ (t) is a 2¢r-periodic solution of the system 
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(4) for the control u, then r(t+ r), &(t+ r)+ ~" is a 27r-periodic solution of 
the system (4) for the control t~, which, in turn, agrees with the shifting 
property of controls u and periodic solutions x, mentioned in Section 1 for 
the differential equation (1). 

We now consider det F~,x(r, ~). From (5) and the definitions in (7), it 
follows that, for arbitrary r, 4, ~ N, we have 

(47r2r) det Fu,x(r, &. ) = a'~(d))fl'(r)- r-la'(Cb)(fl(r)-flu(~)) 
I t - t3 , (6 )a  (r), 

where the prime means differentiation with respect to the argument. Since 

~ ( ~ )  = t L ( ~ ) ,  t ~ ' ( ~ )  = - ~ ( ~ ) ,  

it follows that, for a point (7, q~) satisfying the synchronization equations, 
we have 

(47/'27) det F~,~(Y, 4~) = a'(~)a(7) +/3'(7)fi(7). (10) 

Hence, for a point (7, 4~) satisfying the synchronization equations, 

det F,,~(7, ~) =0,  iff (a2(r)+fl2(r))'=O, at r =  7, 

or equivalently iff the square of the Euclidean length of the vector sc(r) is 
stationary at r = E Usually, in such a point the synchronization curve will 
be orthogonal to the radius. For the Duffing equation, we have 

a2(r) + fl2(r) = ~r2(r 2 + (9/16)r6) ; 

therefore, 

det F,,~(7, 4~) = (16+2774)/64> 0. 

Consequently, every point (~, ~), 7#0 ,  satisfying the synchronization 
equations for some u ~ f~ is a synchronization point of u. 

Remark 3.2. Since, for arbitrary r, 6 ~ ~, 

( ~ - u ( 6 ) ,  j9 u ( ~ ) )  = - ( ~ ( ~ ) ,  ~ . ( ~ ) )  = - ( ~ ( r ) ,  ~ ( r ) )  

= ( a ( -  r ) , / 3 ( -  r)), 

it follows that ( -  7, ¢~) is a synchronization point of the control - u .  If  the 
function f is odd, 

f(x, y) = - f ( - x ,  - y ) ;  

this is not surprising; in that case, if r(t), &(t) is a 2zr-periodic solution of 
the system (4) for the control u, then - r(t), b(t) is a 27r-periodic solution 
of the system (4) for the control -u .  However, i f f  is not odd; then this is 
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not necessarily true (cf. Section 5). If the function f is even, 

f ( x , y ) = f ( - x ,  - y ) ,  

then 

a ( - r )  = f ( -  r cos l,r sin t) sin t d t  

= f ( r  cos t, - r sin t) sin t dt = c~ (r);  

and, since 

a ( - r ) =  - a ( r ) ,  

even for arbitrary f, it follows that 

,~(r)-O. 

Similarly, 

/3(r)-=-0. 

Consequently, 

det F,,x(r, 4,) =0,  

for every point (r, 4,) satisfying the synchronization equations; hence, 
Theorem 2.1 gives no information i f f  is even. If the function 

f ( x ,  y )  = ½If(x, y)  - f (  - x, - y)] + ~[f(x,  y)  + f (  - x, - y ) ]  

contains a nonzero odd and a nonzero even part, then o~(r) and fl(r)  do 
depend only on the odd part, and so do the synchronization points (~, q~). 
Consequently, for fixed u ~ l'~, the limiting 2~r-periodic solution ? cos(t + 4,) 
of (1) does not depend on the even part o f f  However, the 2¢r-periodic 
solutions of (1) itself will depend in general, for fixed u ~ f~ and E > 0, on 
the odd and even parts of f This will be shown in Section 5 for the linear 
system 

5 i + E ( a + Y c ) + x = e u ,  a ~ R .  

4. Maximum Amplitude and Optimal Controls 

So far, we have considered arbitrary u ~ ~2 and pointed out how to find 
values F, 4' such that, for sufficiently small E > 0, Eq. (1) with the control 
u has 27r-periodic solutions x(t ,  ~, u ) u n i f o r m l y  converging to F cos( t+  ~) 
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for E $ 0. For small • > 0, the value off71 is an approximation of the amplitude 
of these 2~--periodic solutions. Since we are searching for 2~r-periodic 
solutions with maximum amplitude, it seems to make sense to determine 
controls u in f~ which yield synchronization points (F, ~)  with maximum 
I~]. The maximum tr~ for a synchronization point (F, ~)  equals the maximum 
1~1 for which 

sc(f) ~ {(x, y)  c R21x2+y 2 = 16}, 

at least if 

det Fu,~(P, O) # O. 

To avoid the need of distinguishing between positive and negative ~ and 
to avoid the complications resulting from it, we assume from now on that 
f is an odd function. Then, according to the related part of Remark 3.3, 
we can restrict ourselves to the maximization of £ One may wonder to what 
extent the maximum 7 is an approximation of the maximum amplitude for 
small e > 0, since the synchronization theory constitutes only a sufficient 
condition for the existence of 2~r-periodic solutions for small e > 0. In the 
next theorem, we present conditions under which the maximum F is the 
limiting value of the maximum amplitude as e $ 0. For a complete proof, 
we refer to the Appendix. 

Theorem 4.1. Let the function f be odd and twice continuously differ- 
entiable, and let the initial values xo, YCo of 2~--periodic solutions of the 
differential equation (t) be uniformly bounded for all 27r-periodic, measur- 
able controls u, [u(t)[ <-1, and small e >  0. Furthermore, let 

:= max{r ~ ~]~2(r) + ]32(r) = 16} 

exist, and assume that, for r = ~, there holds 

(d/dr)(o~2(r) + ~2(r)) # 0. 

Then, for 

(i) 

(11) 

(12) 

the differential equation (1), we have: 

the maximum amplitude A~ exists for each sufficiently small e > 0 
and A ~  ~(e $ 0); 

(ii) for sufficiently small e > 0, the optimal controls t/~ ~ 1] are bang- 
bang controls with two switch points on [0, 2~r); 

(iii) there is exactly one bang-banger ~ ~ fL such that 

,~  =,~(~), t ~ = ~ ( ~ ) ;  (13) 

(iv) the optimal controls G ~ ft for which there exists a 2~r-periodic 
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solution with the maximum amplitude attained at t = 0 satisfy 

o ~ l f t , ( t ) - ~ ( t ) [ d t ~ O ,  e&O. (14) 

We first give some comments. The uniform boundedness condition in 
this theorem is a rather obvious necessary condition, with the exclusion of 
the fact that it must hold not only for all piecewise continuous controls, 
but for all measurable controls. The measurability concept often appears 
in optimal control problems for proving closedness of reachable sets (see 
e.g., Ref. 3), and so it did in the proof  of Theorem 4.1 in order to prove (i). 

The result (ii) follows from a result on the minimal distance of success- 
ive zeros of  differential equations of the type 

2 + w2 + ( l  + v ) x = O ,  

where w(t)  and v( t )  are small continuous functions. 
If ~, as defined in (1 1), exists, then obviously sc(r) is a boundary point 

of {(x, y ) ~  E21x2+y2_< 16}, and then (iii) follows directly from the proof  
of  Theorem 3.1. From (12) and (13), it follows that (~, 0) is a synchronization 
point of  tZ 

For the 27r-periodic solutions x(t ,  ~, ~ )  of  (iv), there holds 

~(o, E, a , )=0 ;  

(cf. Section 1). According to (ii), the controls ~i, of  (iv) have two switch 
points on [0,2~r). If ~i=/xs, for some s~(0 ,  ~-) or s~(Tr, 2~r), then the 
convergence of the integral in (14) implies that the two switch points of ~i, 
on [0, 2~) tend to the two switch points, s and s + ~-, of t7 as e $ 0. If  fi =/xo 
or ~ =/x~,, then the convergence of the integral in (14) implies that o n e  
switch point of ~7, on [0, 2~r) tends to ¢r and the other switch point tends 
to either 0 or 2~r as e $ 0. In Ref. 1, it is proved that the conditions of 
Theorem 4.1 are satisfied for the linear system 

5i + ~2 + x = eu, 

the Duffing equation 

5/+ ~ ( ~ + x 3 ) + x  = eu, 

and the Van der Pol equation 

5i+ e( x 2 -  1 ) 2 + x  = ~u. 

We now finally interpret Theorem 4.1 for the Duffing equation. In this 
case, ~ must satisfy 

9~-2?6/16+ ~.2?2 = 16. 



JOTA: VOL. 45, NO. 4, APRIL 1985 557 

It follows that 

F= 1.011, a(F) = -3.175,  fi(F) =2.433. 

Consequently, ~7 = Ixs, where s satisfies 

4 cos s = -3.175, - 4  sin s = 2.433. 

It follows that 

s = 3.795. 

Summarizing, for the Duffing equation, the limit of  the maximum amplitude 
equals 1.011 as E~ 0; and the optimal bang-bang controls, for which the 
maximum amplitude is attained at t = 0, have two switch points on [0, 27r) 
for sufficiently small e > 0, tending to 0.654 and 3.795, respectively, as e + 0. 
Furthermore, around these two switch points, for increasing t, u ( t )  changes 
from +1 to -1  and from -1  to +1, respectively. We note that, from the 
synchronization theory, it follows that, for the control ~ =/z~ itself, there 
also are 27r-periodic solutions with an amplitude tending to F as e $ 0; 
however, they are not necessarily optimal. 

5. Linear Case 

We consider the linear differential equation 

2 + E x + x = ~ u  (15) 

and some modifications to illustrate the results of  the previous sections. 
Throughout  this section, we assume that e ~ (0, ,J-3). We first determine, 

for arbitrary e 6 (0, 43) and u ~ 12, the initial values 

x~. := x(0,  e, u), ~u  := ~(0, E, u) 

of 27r-periodic solutions x( t ,  E, u) of (15). Let 

~ (0 , . /3) ,  u~f~ ,  Xo,~oCR. 

Then, the solution x ( t )  of Eq. (15), with initial values 

x(O) = x0, x(o)  = ~o, 

reads 

x(  t ) = e -~t  {(cos(½fij) + efl ~ 1 sin(½flJ ) )Xo + (2fl~ ~ sin(½/3j))~o} 

fo t e - ½ ~ ( t - ~ - )  • 1 
+ 2e f t ; '  sm[~fl~(t - ~-)]u(r) dz, (t6) 
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where 

]3, := ( 4 -  e2) ~/2. 

The initial values Xo, 2o are the intial values of a 2or-periodic solution if[ 

x(2~r) = Xo, ~(27r) = xo. 

Taking t = 2~r in (16), these two equations convert into two linear equations 
in the variables Xo, Xo- It turns out that these equations have a unique 
solution. For Xo, there holds 

xo = e/3~-' e '~ (cosh(Tre) -cos(~/3~))- '  h~(T)U(T) d';, (17) 

where 

h~(t) = e -1~(2'~-'~ {sin[½/3~(2~r - t)] + e -'~" sin(½/3d)}. (18) 

Hence, for every e e (0, ~/3) and u e f t ,  there is exactly one 2~r-periodic 
solution x(t,  e, u), and the initial value x~ is given by (17). As we mentioned 
already in Section 1, the maximum amplitude A, equals the maximum 
initial value Ix~.l. Since, in the case of (15), 

f ( x ,  Xc) : 2 

is odd, A~ equals the maximum x~u. From (17), it follows that x~ is 
maximized for the bang-bang control 

~7~(t) := sign(h~(t)). 

One can show that, for every e e (0, ,f3), the function h~ has two zeros, T~ 
and T2~, on (0, 27r), satisfying 

Tl~ := 2~ ' -  2/321(M~ + 7r), T2~ := 2Tr-- 2/3~-~M,, (19) 

where 

M, := arctan[sin(~-fl,)/(cos(~r/3~) - e~)] .  

Furthermore, 

h,(t) <0,  on (0, T , , ) u  (r2~, 2~v), 

h~(t)> 0, on (Tl,, T2,). 

Consequently, the bang-bang controls u, have two switch points, T~, and 
T2,, on (0, 27r), and 

tT,(t) = ~ - t ,  t e [0 ,  Tt,) w [T2,, 2~), (20) 
t +1, t e [T l , ,  T2,). 
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Using this, (17), and (18), one can show by integration over three separate 
intervals that the maximum amplitude x~a, equals 

x,~, = - E(2 sin M~(e ~'T,, + e½~T2~)/(sin(Trfl,)+ 1). (21) 

It turns out that, for e ~, O, we have 

Tt, 1' rr, T2, I' 27r, x~a, ~, 4 /~ ,  

with 

T1, = ~r - E /4+ O(E3), 

T2, = 27r - E/4+ ~-e2/8 + O(e3), 

x,a, = 4/7r + [7 r /12 -  5/87r]E2 + O(E3). 

Consequently, the limit of  the maximum amplitude A, is 4/~r as e 
approaches zero, and the optimal controls ~, converge to ti :=/x,~ in the 
sense of  (14). We now deduce these results by applying the synchronization 
theory to Eq. (15). From the definitions in (7), we obtain, for the case 

f ( x ,  2) = 2, 

that 

a ( r ) =  - r s in  2 t d t =  -~rr, 

/~(r) = - rs in  t cos tdt=O. 

Consequently, for f defined by (11), there must hold 

7rZf 2 = 16; 

hence, 

f=4 /q r .  

Since 

(~r2r2) ' = 2~2r ~ 0, r = f, 

it follows from (i) of Theorem 4.1 that the limit of the maximum amplitude 
is, indeed, 4/rr. Since 

(ct (f), f l ( f))  = ( -4 ,  0), 

the control ti defined by (13) is a = / ~  and then the foregoing convergence 
result for the optimal controls a, indeed coincides with (14) of  Theorem 4.1. 
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Remark 5.1. 

g(x, 2) := a, 

to the function 

f ( x ,  x )  = 

If we add the even function 

a E ~ ,  

i.e., if we consider the linear differential equation 

5i + e(a + 2) + x = eu, (22) 

then, obviously, 

xa(t, E, u):= x(t, e, u ) - c a  

is a 2~r-periodic solution of (22), where, as before, x(t, e, u) is the 2~r- 
periodic solution of (15). From the uniqueness of 2~r-periodic solutions of 
(15), it follows that this is the only 2~--periodic solution of (22) for fixed 

a ~ ,  u~f~,  e > 0 .  

Obviously, xa(t, e, u) does depend on a, but lim~+0 xa(t, e, u) does not. 
This illustrates the final statement of Remark 3.3. Maximizing the initial 
value 

IXo .t := IXo(0, u)l 

means maximizing 

le/3~ -' e~[cosh('rre) - cos(~]3~)]-1 h~("c)u(r) d t -ea[ .  

Hence, the maximizing controls tTa~ must satisfy 

~( t )=s ign(h~( t ) ) ,  if a < 0 ,  

~ ( t )  = -sign(h~(t)),  if a > 0. 

Thus, for a < 0, 

z/a~ = ~ ; 

and, for a > 0, 

where fi~ is given by (20). Consequently [cf. formula (19)], as in the case 
of (15), the optimal controls are bang-bang controls and have two switch 
points on (0, 2~r); for a < 0, these optimal controls converge to t /=  ~=; for 
a > 0, these optimal controls converge to t /=  -/~= in the sense of  (14). On 
the other hand, for both cases, a < 0 and a > 0, we have, for the limit of 
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the maximum amplitude, 

lim [x~ (0, e, tin,)] = lim Ix(O, e, ria,)[ = lim ix(O, e, ri,)[ = 4/zr. 
~$0 ~$0 ~o  

We observe that the control r7 =/x~ has synchronization point (+  ?, 0), 
whereas the control a = - t z =  has synchronization point ( -~ ,  0). So, this 
example shows that, in the case o f f  containing a nonzero even part, there 
are two (inverse) candidates for the limit a of the optimal controls in the 
sense of (14), characterized by the fact that they correspond to the syn- 
chronization points (+  ?, 0) and ( - ? ,  0), where ? is defined by (11). The 
synchronization theory of the previous sections gives no decisive answer 
on the question of which of the two candidates is the right one. However, 
the limit of the maximum amplitude is ?, not depending on the nonzero 
even part o f f  

Remark 5.2. For the linear differential equation 

5i + ea + x = eu, 

where 

f (x ,  :;c) = a, a ~ •, 

is an even function, the general solution with initial values 

x(0 )  -- Xo, ,~(0) = ~o, 

reads 

fo' x(t)=XoCOS t+2o sin t+e  s i n ( t - r ) ( u ( r ) - a )  d~= 

The conditions 

x(o )  = x(2~-) ,  ~ (0 )  = ~ ( 2 ~ )  

now yield the two linear equations 

Xo= Xo--~ 

~o=~o+e  

Hence, if 

f? 

foZ=(u(r ) -a)s in  rd~  

I j= ( u ( z ) - a )  cos ~d~ 

fO '¢r sin zu ( r )  d'r =0  = cos ~'u(z) d~', 

(23) 
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for the control u ~ f~, then every solution of (23) is 2~-periodic. Otherwise, 
there are no 2~r-periodic solutions of (23) for the control u. Consequently, 
for Eq. (23) the AMP has no solution. 

6. Van der Pol Equation 

We apply the synchronization theory to the Van der Pol equation 

5/+ E(x 2 -  1)~+x = Eu. 

The function 

f(x,  )b) = (x 2 -  1)~ 

is odd. According to the definitions in (7), we have 

a ( r ) =  (1-r2 cos2 t)rsin2 tdt=~rr(1-r2/4),  

/3(r) = (I 

The function a( r )  
is zero at r = 0 and 

a(r)-+ -CO, 

The synchronization curve 

sc(r)=(a(r),lg(r)) 

follows the trajectory reflected in Fig. 2. Note that 

4~r-~/9 --~ 2.418, 2/43 ~- 1.155. 

The point (47r.,/3/9, 0) is the point for which 

r=-4/ , / '3  or r=2/4r3. 

For all values of r, except - 2 / ~ ,  2/x/3, -2,  2, the synchronization 
curve is not orthogonal to the radius. Consequently, for points (r, 6) which 
satisfy the synchronization equations and for which r is not equal to -2/x/3, 
2/',/7, -2 ,  2, we have 

det Fu, x(r, 6) ~ O. 

This agrees indeed with [cf. formula (10)] 

det Fu, x(r, 6) = (8~'2r)-~ (ct2(r)+/32(r) ') = ( 4 -  r2)(4- 3 rZ)/64. 

- -  r 2 COS 2 t)r sin t cos t dt = O. 

is odd, has a local maximum 4~r~C3/9 at r = 2/,/3, and 
r = 2. Furthermore, 

r ~ o o .  
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From Fig. 2, it follows that, for controls u e 12, for which 

0 2 2 < a u + / 3 ,  < 16=2/27, 

there are at least three 2=-periodic solutions for small E > 0, and the limiting 
value of  the corresponding amplitudes is less than 4/x/3. For controls u e 12, 
for which 

2 2 a , + / 3 , _ >  16=2/27, 

there is at least one 2=-periodic solution for small e > 0, and the limiting 
value of  the amplitude is greater than 4/.f3. For ? defined by (11), clearly 

73_4~_ 16/= = 0 

holds. It turns out that the only real solution is 

? = 2.4632459. 

The bang-banger ~ of  (iii) of Theorem 4.1 must satisfy 

(o~a,/~,) = ( -4 ,  0), 

which implies 

r=-2/~ 

4 

.... 4'- 

(r) 

Fig. 2. Synchronization curve for the Van der Pol equation. 
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Table 1. Numerical results for the Van der Pol equation. 

e A, T1, T2, e A, T1, T2, 

0.005 2.46324 3.141409 6.282848 0 . 5 0 0  2.45450 3.103538 6.281387 
0.010 2.46324 3.141169 6.282550 0 . 6 0 0  2.45089 3.099759 6.282134 
0.020 2.46323 3.140480 6.282171 0 . 7 0 0  2.44681 3.098152 6.282594 
0.030 2.46321 3.139874 6.281726 0 . 8 0 0  2.44232 3.098304 6.282872 
0.040 2.46318 3.139248 6.281310 0 .900  2.43753 3.099876 6.282987 
0.050 2.46315 3.138602 6.280922 1 .000  2.43251 3.102226 6.283080 
0.100 2.46288 3.135016 6.279471 1.300 2.41689 3.110826 6.283107 
0.130 2.46263 3.132630 6.278940 1 .600  2.40153 3.114540 6.283135 
0.170 2.46219 3.129223 6.278585 2 . 0 0 0  2.38306 3.094372 6.283160 
0.200 2.46179 3.126554 6.278534 2 . 1 0 0  2.37900 3.078114 6.283167 
0.300 2.46000 3.117592 6.279184 2 . 2 0 0  2.37526 3.050149 6,283173 
0.400 2.45756 3.109598 6.280338 2 . 3 0 0  2.37202 2.983813 6.283179 

Thus,  the max imum ampli tude A, tends to f as e + 0. Moreover ,  for  
sufficiently small E > 0, the optimal controls  are bang-bang  controls with 
two switch points  on [0, 2~r); and the opt imal  controls  aie ~ 12 for which 
there exists a 2~--periodic solution with the max imum ampli tude attained 
at t - - 0  converge to a =/z= in the sense o f  (14) as E $ 0. Therefore,  one 
switch point  o f  ti~ tends to ~ and the other  tends to either 0 or 2~r as e $ 0, 
Regarding the results for the linear system (15), we may expect the other  
switch point  to tend to 27r. Furthermore,  

t i , ( t ) ~ - l ,  t ]' 27r. 

In  order  to verify the foregoing analytic results concerning the limit o f  A,  
and the convergence o f  ~ ,  the IVMP has been solved numerical ly  for some 
values o f  E in the interval (0, 2.3]; for details, we refer to Ref. 1. The results 
are given in Table 1. The columns denoted by A,, 7"1,, T2, indicate, respec- 
tively, the computed  value o f  the max imum ampli tude,  the first switch point  
on  (0, 2~-), and  the second switch point  on (0, 2~r) o f  li,. The numerical  
results agree with the analytic results. Obviously,  

A ,  = 2.4632459 + O(e2), e $ 0; 

hence,  the coefficient o f  the term of  order  one seems to be zero, as it is the 
case for  the linear system (15). 

7. Appendix 

Here, we will prove the statements (i), (ii), (iv) o f  Theorem 4.1. The 
statement (iii) follows immediately from the p roof  of  Theorem 3.1. 
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In this appendix, we do not distinguish explicitly between points in 
~ and column vectors in ~". By Ix t, we mean the Euclidean norm (or 
Euclidean distance to zero) of  the vector or point x e Nn. We extend the set 
of admissible controls, 

fY:= { u : N - ~ [ - l ,  + l ] lu  is 27r-periodic and measurable on (0, 2zr)}. 

7.1. Existence of Optimal Measurable Controls for the AMP. As in 
Theorem 4.t,  we assume that the initial values 

(x(o), ~(o))=: Xo~ ~2 

of  2~r-periodic solutions of  the differential equation (1) are uniformly 
bounded, say [Xo]-< m, for all controls u ~ It '  and sufficiently small E > 0, 
say 0 < E < era. By xu(t, to, Xo, a), we mean the 2-dimensional vector solution 
of  the 2-dimensional system corresponding to (1), for control u e It', para- 
meter value a _ 0, and initial values 

xu(to, to, )Co, e) =Xo6R 2. 

If  a~-0 and u ~ i t ,  then the solution xu(t, 0, xo, 0) exists on the whole 
interval [0,27r)], for each xocR 2. Retracing the proofs of the standard 
results (Theorem 7.4, Chapter l and Theorem 4.1, Chapter 2, Ref. 5) 
concerning the dependence of  the solutions of differential equations on the 
initial condition and parameters, one can show that there exists an % not 
depending on u ~ It '  and 

XoC xm := {Xo~ ~21 lxol-< m}, 

but only o n f  such that xu(t, O, xo, a) exists on [0, 2¢r] for all 

0 - < a < %  u E W ,  xo c X,~. 

From Theorem 3.1 and Remark 3.2 of  Ref. 6, it then follows that 

W,(xo) := {x,(2rr, 0, Xo, a)lu e It'} 

is compact for every 0 <  a < a s and each Xoe Xm. The convexity condition 
in Theorem 3.1 of Ref. 6 is fulfilled, since (1) is linear in u. We are now 
ready to prove an existence theorem. 

Theorem 7.1. Under the condition of Theorem 4.1, the maximum 
amplitude A, of  the AMP exists for differential equation (1) for sufficiently 
small e > 0, if the set of admissible controls is IT. 

Proof. In view of  the definition of Xm and the equivalence of the 
AMP and the IVMP, it suffices to show that, for 

0 < ~ < min(em, ei), 
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the set 

v, := {XoC X[xo~ W,(xo)} 

is compact. Let 

0 < e < rain(e,,, es). 

Obviously, V, is bounded. We show that V, is closed. Let 

xke V,, xk-~ ~, k ~ .  

If d(., .) denotes the Hausdorff distance of  two nonempty compact subsets 
of  R 2, then we have 

rain l ~ - Y t - < l ~ - x d +  min I x k - y l  
y~ w,(~) y~ w,(~) 

<--I~-xkl+d(W,(xk), W,(~))-~ 0, k - ~ ,  

since the map xo~ W,(x0) is continuous with respect to the Hausdorff 
distance (cf. Ref. 7, Theorem 3.3). Hence, ~ W,(~), and thus W,(:~) is 
closed. [] 

7.2. Neeessary Conditions for Optimal Controls. The IVMP for the 
differential equation (1) can be reformulated as follows: determine a control 
u 6 fY such that the differential system and the boundary conditions 

Xl = X2, XI(0) = y l ( 0 ) ,  ( 24a )  

x2 = - e f ( x l ,  x2) - x~ + eu, x2(0)= y2(0), (24b) 

291 = 0, x~(2~-) = yl(27r), (24c) 

2)2 = 0, x2(ZTr) = y2(2~'), (24d) 

have a solution, such that Xl(27r) is maximal. This is a continuous-time 
optimal control problem, described in Section 5 of  Ref. 8, with 

T:= 2~, n :=4 ,  U:= [ -1 ,  +1], 

f ( x l ,  xz, Yl ,  Y2, u)  := (x2, - Ef(x t ,  xz) - x l  - eu, O, 0), 

go 2= Xl 2= {(X1, X2, Yl, Y2) e R4l(xl, x2) = (yt,  Y2)}, 

h (x l ,  x2, Yl, Y2) := xl. 

From the version of  Pontryagin's maximum principle for this problem, 
derived in Ref. 8, we obtain the following result. 
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Theorem 7.2. I f  ~ ~ t] '  and x is an optimal solution of the IVMP, then 
there exists a number p->0 and a function ~O: [0, 2zr]~R, solution of the 
differential equation 

+ ~ = e{&[(d /d t ) f .~(x , ,  x2 ) - f~ (x~ ,  x2)] + ~f.2(x,, x2)}, (25) 

satisfying the boundary conditions 

4,(0) = q , (2~ ) ,  ~b(O) = q;(2~)  + p, 

such that 

( i)  (p,  ~ ( 0 ) ,  d ( 0 ) )  ~ 0;  
(ii) 5/+x = e(~i - f ( x ,  2)), x(0) = x(2~r), 2(0) = 2(27r); 
(iii) a(t) = sign(O(t))on [0, 2~r], almost everywhere. 

Proof, We apply Theorem 5.15 of Ref. 8 to Eqs. (24) for the case of 
measurable controls (cf. Appendix B of Ref. 8). At an arbitrary point b e Xo, 
Xj, the cones 

Eo := E1 := {(Pl, P2, ql, q2)l(Pl, P2) = (qb q2)} 

are derived cones. The polar cones are 

/~o ° = E~  = { (v , ,  v2, w,,  w2)l(v, ,  v2) = - (w , ,  w g } .  

Consequently, Theorem 5.15 guarantees that, if ti¢I'Y, (x~, x2, y~, Y2) 
is an optimal solution of the problem given by (24), then there exists a 
function 

~:[0, 2rr]-+ R4(qT(t)= ~b,(t), ~:(t), X~(t), X2(t)), 

a vector 

and a number fi-> O, such that 3 

(/~ 0,(2¢r), ~2(2rr), X,(27r), X2(2"/r), ~,, ~2, )q, a2) # 03 (26a) 

~J1 = @2 "-~ EqJ2fx~(X,, X2), )(, = 0, (26b) 

~2 = - qll + etP2f,,2( xl, x2), )(2 = 0, (26c) 

~01(0) = - XI (0) ,  ~b, = - A,,  (26d) 

tp2(0) = -X2(0), q~2 = -Ae, (26e) 

~l(2~r) --- ,6-  ¢bl, ¢/,2(2rr) = - ¢b2, (26f) 

X,(2rr) = - az, X2(2~) = - a2, (26g) 

3 Relation (26a) is called the nontriviality condition. 
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and,  almost  everywhere  on [0, 2~r], 

01x2+ 02( - Ef(xl,  x2) - xl + ~ )  

= max q q x 2 + O 2 ( - a f ( x b x 2 ) - x l + e v ) .  
v~[-l ,  +1] 

We will show that  the number  fi and the funct ion 02 satisfy the statements 
of  Theorem 7.2. Differentiating the differential equat ion for 02 and substitut- 
ing the differential equat ion for  01 yields indeed (25) for  0> We have 

0,(2~r) = fi - ~b, =/~ + A, =/~ - Xl(27r) =/~  -- xI(O) = P + 01(0), 

qt2(2¢r) = -- 4)2 = A2 = -- X2(2 ~r) = - x2(O) = 02(0). 

Consequent ly ,  

¢2(0 )  = -- 01(0)  "{- eO2(O)f.2(x,(O), x2(O)) 

= f i -  O, (2~r) + eOz(Z~r)fx2(x, (2rr), xz(2~r)) = fi + qJ2(2~r). 

So, 02 satisfies both the boundary  condit ions.  Since 

4h = - it, = x,(Zrr)  = xl(O) = - 01(0) 

and, similarly, 

~ 2  = - 0 2 ( 0 ) ,  

it follows f rom the nontriviali ty condi t ion (26a) that 

( £  02(0), ~2(0)) ~ O. 

Finally, 

e0zti = m a x  ff02/.)~ 
~[--1,+1] 

almost everywhere on [0, 2~r], which implies 

~(t)  = sign(02(t)) ,  on [0, 2~r], 

almost  everywhere.  {:3 

7.3. Number of Switch Points for Optimal Controls. According to 
Theorem 7.2, a point  r ~ [0, 2~)  can only be a switch point  of  the opt imal  
bang-bang control  f i ~ l ) '  if 0 ( r ) = 0 ,  where 0 satisfies (25). If  0 ( t )  has a 
finite number  o f  zeros on [0, 2~) ,  then there exists an optimal piecewise 
cont inuous bang-bang control  fi ~ 12. For  small e > 0, we can give an upper  
bound  for  the number  of  zeros on [0, 27r) of  nontrivial  solut ion of  differential 
equat ions o f  the type (25). This is based on the fol lowing result. 
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Lemma 7.1. The dis tance be tween two adjacent  zeros of  a nontr ivial  
solut ion o f  the differential equat ion  

~ + w ~ + ( l + v ) x = O ,  

where  w(t) and v(t) are two cont inuous  funct ion satisfying 

I w ( t ) l - < m  I v ( t ) l ~ z ,  /~>-0, 

is at least "rr/(1 +2 /z ) .  

Proof .  Wi thout  toss o f  generality,  we assume 

x(O) = O, ~(0) = 1. 

Let T > 0 be the smallest  n u m b e r  for  which 

x( T) = 0 .  

Obviously ,  

~ ( T ) < 0 .  

We consider  the t r ans fo rma t ion  

x(t) = r(t) c o s ( t +  05(t)), :f(t) = - r(t) s i n ( t +  05(t)). 

In  terms o f  the new var iables  r(t) and 05(t), we obtain  the system 

= r ( v  c o s ( t +  05) - w s i n ( t +  05)) s i n ( t +  05), 

= (v c o s ( t +  4') - w s i n ( t +  05)) c o s ( t +  05), 

and the initial condi t ions  

r(O) = 1, 05(0) = - zr/2. 

Consequent ly ,  for  all 0 ~ t -< T, 

t~(t)[  <~ 2/z ; 

hence,  

105(t) + 7r/21-< 2~t. 

On (0, T),  we have  

x(t)>0; 

hence,  

Ir(t)l>o. 
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Since 

r(0) = 1 > 0, 

we have 

r( t )  > 0, on (0 ,  T). 

Since fu r the rmore  

x(t)  = r(t) cos(t  + &(t))  > O, 

and 

0 + ¢ ( 0 )  = - ~-/2, 

it follows that  

I t+~(t)[<~r/2,  o n ( 0 ,  T). 

Consequent ly ,  

T +  ¢ ( T )  = + ~r/2. 

Since 

2 ( T )  = - r (T)  sin( T +  & ( r ) )  < O, 

it follows tha t  

T +  &(T)  = ¢r/2. 

So, finally we obtain 

on (o, y) ,  

r ( r )  > 0, 

T =  r r / 2 - & ( T ) >  r r / 2 - ( - ¢ r / 2  + 2 / .T)  = ¢ r -  2b~T. []  

The differential equat ion  (25) can be writ ten as 

~;+w¢+(1+~)0=o, 
where 

v( t) := e[fxl(xl( t), x2( t) ) - (  d /  dt)(fi~(xt( t), Xz(t)))], 

w( t ) := - e( fx2)( x,( t ), x2( t ) ). 

The op t imal  2~r-periodic solut ion x~(t), x2(t) is un i formly  b o u n d e d  for  
small e > 0 ,  and so are v( t ) /e  and w(t)/e. Hence,  for  sufficiently small  
e > 0, cer ta inly 

Iv( t ) l<l /8 ,  Iw( t ) l<l /8;  

then, f rom L e m m a  7.1, it fol lows that  the dis tance o f  two zeros o f  0 ( t )  is 
at least 4~r/5. Consequent ly ,  for  sufficiently small  e > 0, g,(t) has at most  
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three zeros on [0, 2¢r) ; then, O(t) has at most three switch points on [0, 2~r). 
Since a 27r-periodic bang-bang control has an even number of  switch points 
on [0, 27r), it follows that, for sufficiently small e > 0, the optimal control 
is a bang-bang control ti, ~ i2 with zero or two switch points on [0, 27r). 

7.4. Limit of the Maximum Amplitude and Limiting Behavior of Optimal 
Controls as ~ $ 0. In Section 2, we introduced the polar coordinates r(t) ,  
&(t), given by (3), to describe the solution of  the differential equation (1). 
The periodicity conditions 

x(O) = x ( 2 ~ ) ,  ~(o)  = ~e(2~) 

were replaced by 

r(0) = r(2rr), 6(0)  = &(2~r). 

A solution r(t) ,  ~b(t) of (4), satisfying 

r(0) = r(2rr), &(0) = &(2rr) + 2krr, 

for some k E 7/, also yields a 2~r-periodic solution of (1). For sufficiently 
small e > 0, however, the optimal 2rr-periodic solutions with a maximum 
initial value A, satisfy 

4, (o)  = 4,(2~r) ,  

as we will show now. Since f is odd and continuous, 

f(O, O) = O; 

hence, there exists an a > 0 such that 

l u ( t ) i : = l f ( a  cos t, - a  sin t ) [ -  1, tEN. 

For this control u E f~, 

( x ( t ) ,  2(t))  := (a cos t, - a  sin t) 

is a 2~r-periodic solution of (1) for all e > 0. Consequently, for an optimal 
2~r-periodic solution of (1), the maximum initial value of r(0) satisfies 
r(0) -> a, for all e > 0. Obviously, a -< m. If  e = 0, then 

r( t)  =- r, dp( t) =-- d) 

is the solution of (4) on [0, 2zr] for any control u ~ £~ and initial values 

r ( 0 ) = r > 0 ,  ~b(O) = ~b ~E. 

From standard proofs of  uniform convergence of  solutions of  (4) with 
respect to the parameter e, it then follows that, for all tx > O, there exists 
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an % such that,  for all 

O <_ e <_ e~,, u ~ ~ ,  a <- r <- m, 0-< 05-< 2~r, 

the solut ion r(t) ,  05(t) of  (4), with initial values 

r ( 0 )  = r, 05(0) = 05, 

exists on [0, 2~r] and satisfies 

I r ( t ) - r l < t z ,  [05( t ) -  051 < tz, on [0, 2~r]. 

Taking  /x <27r,  it fol lows that,  for  sufficiently small e > 0 ,  the opt imal  
2~r-periodic solut ion o f  (1) with m a x i m u m  initial value satisfies 

05(0) = 05(2~). 

Hence,  we have  showed that  we may  concent ra te  on 27r-periodic solut ions 
of  (4), for  sufficiently small  e > 0. Taking  /x = a /2 ,  it follows tha t  there  
exists an E~ > 0 such that,  for  all 

O-<e-<e~, u~D,,  a<-r<_m, 0<--05-<2~ -, 

the solut ion r(t) ,  05(t) of  (4), with initial values 

r(0) = r, 05(0) = 05, 

exists on [0, 2~-] and satisfies 

r ( t )>_a /2>O,  on [0, 27r]. 

Hence,  for  all u e gt and  

(r, 05, e ) ~  D~ := {(r, ¢, e)c~31a<--r~m,O<-05<--27r, O<--e<-e~}, 

o z~ [ f ( r ( t )  cos( t  + 05(t)), - r(t)  sin( t  + 05(t))) 

- u ( t ) ]  s i n ( t +  05(t)) 
H=(r, 6, e):= 

o z'~ r ( t ) - l [ f ( r ( t )  cos(t  + 05(t)), - r(t)  sin(t  + ¢ ( t ) ) )  

- u ( t ) ]  COS(t+ 05(t)) 

is well defined. Here,  r(t),  05(t) is the solut ion of  (4) with control  u, 
pa rame te r  value e, and initial values 

r(0) = r, 05(0) = 05. 

We in t roduce the funct ion H ,  for the fol lowing reason.  I f  the initial values 

the funct ion 
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a -< r-< m and 0-< ¢ _< 2~r correspond to a 2¢r-periodic solution of (4), then 

(f7 ) (0, O) = ( r (2~r ) -  r, ¢ (2~ - ) -  ¢)  = i(t) dt, ¢(t) dt 

= eg.(r, 0, e), 

and vice versa. So, the system (4), with control u ~ ~) and parameter value 
0 < e -< ca, admits a 2~--periodic solution with initial values 

a<-r(O)=r<-m, 0_< ¢(0) = ¢_<2~, 

itt 

H~(r,¢,~)=O. 

We note that 

H.(r, q~, 0) = 2¢rF. (r, ¢)  = 2~-(c~ (r) - a . ( ¢ ) ,  r-l([3(r) - /3 . (&)) ;  

cf. (5), (6), (7). The function H.  is continuously ditterentiable on D~, and 
there exists a p > 0 such that 

]H,,x(r,¢,e)l<-p, uegl, (r ,¢,e)eDa. 

Since Da is compact and convex, this implies that, for all (~, ¢, g) c D~ and 
(r, ¢, e) c Da, there holds 

Ill,(7, ¢, g)-H,(r ,  ¢, e)l_<.pl(~ , ¢, g)-(r ,  0, e)l. (28) 

We are now ready to prove the following theorem. 

Theorem 7.3. Under the conditions of  Theorem 4.I, the maximum 
initial value of  2rr-periodic solutions of  (1) tends to f as e $ 0, where ~ is 
defined by (11). 

Proof. Since (g 0) is a synchronization point of the bang-banger 
defined by (13), there are 2rr-periodic solutions of  (1) with initial values 
x(0) arbitrary close to f for small e > 0. Especially, for every 6 > 0, there 
are 2rr-periodic solutions of (1) for the control ~i and sufficiently small 
e > 0 with initial values x(0) > ~ -  & It also follows that m -> E Without loss 
of  generality, we assume 

m > f ,  m > l .  

It remains to be proved that, for every a >  0 and ue~Z, there are no 
2or-periodic solutions of  (I)  with an initial value x(0) -> f + 6, for sufficiently 
small e > 0 .  In view of  (11) and (12), there exists a 3 > 0  such that 

Jsc(r)l > lsc(~+ 6)], forall~+6<r<rn,  



574 JOTA: VOL. 45, NO. 4, APRIL 1985 

and 6 can be chosen arbitrarily small. We now prove that, for sufficiently 
small e > 0 and all u ~ II, there are no 2~r-periodic solutions of  (4) with an 
initial value r -  f +  3, by showing that, for all u e f~, 

H=(r, 05, e) ¢ O, 

on certain subregion of Da. For all 

uc~2, r+8<__r<_m, 0_<- 05_< 27r, 

we have 

IH,( r, 6, 0)1 

= l (a ( r ) -  a=(05), r- '( f l(r)-~.(05))l  

- m- ' l (~(r) ,  13(r)) -(a,.(05),/3. (05))i = m- ' l s c ( r ) -  A(05)(~.,/L)] 

= m - ' l A - ' ( 0 5 ) s c ( r )  - (~u ,  [3.)1 >- m-'(Isc(¢ + 3)1- Isc(~)l)=: ~,(6) > 0. 

where A(05) is the matrix in (8), corresponding to a clockwise rotation over 
an angle 05 around the origin. Let 

e~ := min(e., e,.. p-~o-(6)), 

where p is the upper bound for the functional matrix, as defined before. 
Now, if 

0 < a < e ~ ,  u~f~, F+6<_r<_m, 0-< 05 <- 27r, 

then, from (28), 

IH.(r, 05, E) - H.(r, 05, O)l <- pl(r, 05, e) = (r, 6, 0)1 = pc < o-(6), 

tH. (r, 05, 0)[ ~ o-(6); 

consequently, 

IH.(r, 05, E)I> 0. 

In view of the definition of m and e,. and the 2~--periodicity of the 
right-hand side of (4) with respect to 05, we may conclude that, if 0 < e < e~, 
then, for all u c ~,  there are no 2or-periodic solutions of(4) with initial values 

r(0)--- ~+,~, 05(o)~R, 

and hence no 2¢r-periodic solutions of (1) with initial values 

x(O) >- ~+ & [] 

For the optimal controls, we have the following result. 
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Theorem 7.4. Under the condition of Theorem 4.1, the optimal controls 
a, ~ f~, for which there exists a 2z--periodic solution with the maximum 
amplitude A, attained at t = 0, satisfy 

oZ~'lf~,(t)-ft(t)I dt-)O, e + O, (29) 

where ~7 is defined by (13). 

Proof. For 0 < e -< ea, we have 

H ~ . ( A . ,  O, e) = O. 

From this and (28), it follows that, for e ~, 0, 

H~,(~, 0, 0 ) ~  0; 

hence, 

~ - ~ o  =t3(~)-/3~ +0. 

Let s ~ [0, 2~-), such that 

a( t )  = s ign(s in( t -  s)); 

then, using the fact that a and a, are bang-bang controls, it follows that 

o :~ Isin( t - s ) l  la,(  t ) - a (  t )[ dt  

f/ = s i n ( t - s )  s i g n ( s i n ( t - s ) ) l ~ , ( t ) ~ ( t  ) - 11 dt 

= s i n ( t - s ) ~ ( t ) ( 1 - a , ( t ) a ( t ) )  dt  

fo = s i n ( t - s ) ( a ( t ) -  a,(t)) dt 

= cos s sin t ( fs( t )  - a , ( t ) )  dt 

fo - sin s cos t ( a ( t )  - ~ , ( t ) )  dt  

= ( a ~ - a a , ) c o s s - ( f l a - f l ~ , ) s i n s - + O ,  e $ O .  

Now, (29) follows from the fact that 

] tL ( t ) -  a(t)l->0, t c[0,  2~-]. [] 
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