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Abstrucb A measurement method is discussed to determine 
the magnetic anisotropy energy in a sample without assuming 
an a priori model for the origins of the anisotropy. The 
measurement procedure involves torque measurements in five 
different planes. Since it is especially useful for films with an 
oblique anisotropy axis, the method is illustrated on an 
obliquely evaporated Co,oNi,o film. 

I. INIRODUCTION 

For certain magnetic recording applications metal- 
evaporated (ME) tape can be used. In this type of media the 
film is deposited obliquely on a moving substrate. As a result 
the anisotropy axis is inclined with respect to the film 
normal. Analysing torque measurements on such films with 
an oblique anistropy axis is complex because measurements 
in several planes are necessary [l]. The common approach 
in analysis of the anistropy in these iilms is to assume a 
physical model based on a priori assumptions like the type 
uf crystal structure and the direction of columns. Including 
second order crystal anistropy is not simple and the need for 
a more general model arises. Using spherical harmonics, it 
is possible to describe the anisotropy without a priori 
assumptions on the origins of anisotropy. Taking torque 
measurements in five different planes, we can describe the 
magnetic anisotropy in second and fourth order far any 
arbitrary sample. 

11. THEORY 

The energy in the sample has to be described as function 
of the direction of the magnetization M. This direction can 
be represented by the coordinates of the vector m=M/lMI or 
by the polar angles (e,@, see figure 1. It is assumed that the 
sample has only anisotropy axes and no preferred directions: 

Fig. 1 Definition of coordinate sys& and representation of magnetization 
direction. The xz plane corresponds with the film plane, the xy plane with the 

vapourincidence plane 
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E(m)=E(-m). Then the general description of the anistropy 
energy in terms of coordinates of m=[ml,m,,m3] 

? ?  - -  
E(m) = a, + x x a : m i m j  

In this representation it takes 90 constants to describe the 
anisotropy energy in second and fourth order. Of course 
many of these constants are interdependent because of 
symmetry and Iml=l. The analysis of torque curves using 
this representation is complicated because the basis functions 
(qmj, qmpkmLr  ...) are not orthogonal. 

These dIfficulhes can be eliminated when one uses a 
description in terms of polar angles. In this representation 
the basis functions are the spherical harmonics Y-., which 
are 3D equivalents of sin(&) and cos(n0) used 111 one- 
dimensional fourier analysis: - 2n 

E C ~  ,<p = Zk2n,mY2n,m ~e 7 9  ) [Jl (2) 
n=l m=-2n 

Now only five constants are necessary to describe the 
anisotropy energy in second order, and nine additional 
constants for the fourth order. 

For comparison with experimental data, we used the basis 
set of real spherical harmonics listed by Birrs [2]. Ylslml and 
Yq-M are proportional to cos(lmlq) and sm(lml9) 
respectively. The coeficients in equations (2) and (4) and 
table 11 refer to this basis. For rotations of the coordinate 
system we transform this basis to a set of normalized 
complex spherical harmonics and used standard Wigner 
matrices [3]. 

In order to determine the anisotropy energy in the sample 
up to the fourth order, we have to determine fourteen 
anisotropy coeficients b. For this we need to take torque 
measurements in five different planes, as shown in table I. 

TABLE I 
M&WJRRMENT PLANES 

Lb -90 to 90 0 
L -9oto9o 90 
Ld -90to90 45 
Le -9oto9o -45 

Each plane is defined by the path the applied field 
describes in the measurement coordinate system with angles 
as shown in figure 1. 

We describe the torque measurements using sine and 
cosine terms (Pn,Qn) or amplitude and phase shift &,,,a,,). 
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L x  (7) = 
2 

XP2n.x  a s ( 2 n ~ )  + Q2n.x sin(2n~) = 
n=l 

2 

C L 2 n . x  s i n [ ~ ~ + ~ ~ n , x ) ~  
n=l 

["I (3) 

With index x refering to table I and y the measurement 
angle (either 0 or 9). These five measurements result in 20 
fourier coeficients of which some are mutually dependent. 
The relation between the 20 fourier coefficients and the 14 
anisotropy coeficients was solved analytically using 
Mathematica software. 

111. EXPERIMENT 

To illustrate this method we measured an obliquely 
evaporated 1.1 pm thick c08oNi20 film. The vapour 
incidence angle was 60° from the substrate normal, the 
substrate (5x10 mm) was glass and no oxygen was added 
during the process. For the measurements in the L d  and Le 
plane (Table I) we used a holder cut under an angle of 45O. 
For practical reasons the coordinate system was chosen so 
that xz is the film plane and xy lies close to the incidence 
plane. In each measurent plane five field values between 
lo00 and 1600 lcAm-' were taken. To correct for the f h t e  
field error the modulus Lu (3) was plotted against 1/H2 or 
1/H for n=2 and n=4 respectively. Figure 2 gives an 
example. This gives a better estimation of the torque at 
infinite field, than extrapolating Pnx and Qnr coeficients 

TABLE I1 
h%%ASURED ANISTROPY COEFICIENTS OF AN OBLIQUELY EVAPORATED 

ComNiB FILM F J ~ - ~ ]  

'Imsn n=2 n=4 
m=-4 -0.10 
m=-3 -0.09 
m=-2 29.6 -0.33 
m=-1 16.2 -0.54 
m=O -71.1 6.00 
m=l -12.5 -0.22 
m=2 -62.0 0.21 
m=3 0.02 
m=4 0.08 

t 

independently since the argument 04u( is field-independent. 
Table I1 gives the resulting anisoaopy coefficients. 

Figure 3 shows the energy surface reconstructed from (2) 
for the sum of second and fourth order. The minimum of the 
energy surface was shifted to zero in order to obtain a 
reasonable image. This minimum is reached when the 
magnetisation lies close to the x axis, which can be seen 
more clearly in the cross section in the xy plane (inset). 

Figure 4 shows the energy surface of the fourth order 

Fig. 3 Energy surface reconstructed from the toque measurements. ?he 
minimum energy is obtained when the magnetisation lies close to the x-axis, so 

this is a mainly in-plane sample. (Energy is shown in pJ) 

H-zw-' r' 
Fig. 2 &ample of correction for finite field emr (measurement Lc) 

Fig. 4 Energy sudace of fourth order components as calculated from toque 
measurement. "his surface is correlated to the crystal structure in the sample. 
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component only and therefore represents the preferred 
crystal orientation. 

IV. ANALYSIS 

In sufficiently high fields the only reason for the 
appearance of fourth order anisotropy coefficients (k4+) is 
the presence of crystal anisotropy. Dipolar effects (like shape 
anisotropy e.g.) only contribute to the second order 
anisotropy coefficients (k2+). Since different types of crystal 
structures and crystal orientations will cause different sets of 
fourth order coefficients it is in principle possible to obtain 
iriformation on the crystal structure from the five torque 
measurements. The interpretation of the second and fourth 
order anisotropy coefficients will be treated separately. 

Using m=[cos(cp)sin@), sin(cp)sin(e),  COS(^)] we can 
rewrite the second order part of (2) in a form analogous to 
(1). the aij corresponding to the matrix elements: 

E(m) = mTK2m 

(4) 

Diagonalisation of matrix K2 yields the directions of the 
main second order anisotropy axes. Assume three second 
order anisotropy axis along the co-ordinate axis like in 
figure 5, then K,=-(KJij. Energy is a relative quantity so that 
any arbitrary value Eo can be added to it. Since Iml=l this is 
equivalent to adding a Eo to the diagonal elements of K. 
This allows us to choose one of the K, zero, e.g. K2 

Applying this method to the Co8fli20 sample it is found 
that the incidence plane lies at an angle of 13.3O from the x 
axis (toward the z axis). Along the z-axis lies a K3 
anisotropy axis with a value of 309 kJm-3. In the incidence 
plane Lies a K, anisotropy axis with a value 419 kJm-3 and 
inclined 12.6O out of the film plane (from the x-axis towards 
the y-axis). 

The analysis of the fourth order part is far more complex 
since it is not obvious to find a diagonalisation procedure 
analogous to that used in the second order analysis. We can 

however assume that the incidence plane found in that 
analysis is a mirror plane. If we now rotate the coordinate 
system so that the z axis is perpendicular to the film plane 
and the y axis lies within the incidence plane, we observe 
indeed that k4,-m nearly vanish. If we then rotate the 
coordinate system so that the z-axis is perpendicular to the 
incidence plane we find that s y m m e ~  axis in the incidence 
plane is inclined 13O from the film normal. We then identify 
our z-axis with this symmetry axis and find a strong k4.0 
value of 22 kJm-3 next to a much smaller k4s and k4,4. 

The strong k4,o value can be identified wth a hexagonal 
crystal structure with the main orientation of the c-axis 
inclined 13O from the film normal (whereas the second order 
anisotropy axis was inclined 12.6O out of the film plane). 
The value of the second order crystal anistropy constant K2 
is "/35k4,0 = 1 1 3  kJm-3 (neglecting K3). The other 
anisotropy coefficients could be caused by uncertainties in 
the extrapolation method used to determine the torque 
fourier coefficients or by the presence of more c-axis 
orientations. It is unlikely that the k4,4 value is caused by a 
cubic crystal structure since in that case it would have its 
<loo> axis along the z-axis. 

V. CONCLUSIONS 

By taking torque measurements in five different planes the 
magnetic anisotropy energy in an arbitrary sample can be 
determined up to the fourth order without assuming an a 
priori model for the origin of the anisotropy. An obliquely 
evaporated Co8$Ji2, was used to illustrate the method. 

The second order part of the energy can be easily analysed 
as a system of two mutually perpendicular second order 
anisotropy axes. In the cO8pN!20 we found one axis in-plane 
and perpendicular to the mcidence plane and one in the 
incidence plane slightly inclined out of the film plane. The 
fourth order part is more difficult to analyse because of the 
lack of a diagonalisation procedure. In the Co8pNi,o film 
mainly the influence of a hexagonal texture with inclined c- 

. axis was found. 
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Fig. 5 After proper transformations the second order anisotropy can be 
described by three anisotropy axis along the coordinate system axis. One of the 

axis can be chosen zero. 
- 


