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Abstract. We discuss new and improved algorithms for the bifurcation analysis of fixed points
and periodic orbits (cycles) of maps and their implementation in matcont, a MATLAB toolbox for
continuation and bifurcation analysis of dynamical systems. This includes the numerical continua-
tion of fixed points of iterates of the map with one control parameter, detecting and locating their
bifurcation points (i.e., limit point, period-doubling, and Neimark–Sacker) and their continuation in
two control parameters, as well as detection and location of all codimension 2 bifurcation points on
the corresponding curves. For all bifurcations of codim 1 and 2, the critical normal form coefficients
are computed, both numerically with finite directional differences and using symbolic derivatives of
the original map. Using a parameter-dependent center manifold reduction, explicit asymptotics are
derived for bifurcation curves of double and quadruple period cycles rooted at codim 2 points of
cycles with arbitrary period. These asymptotics are implemented into the software and allow one
to switch at codim 2 points to the continuation of the double and quadruple period bifurcations.
We provide two examples illustrating the developed techniques: a generalized Hénon map and a
juvenile/adult competition model from mathematical biology.
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1. Introduction. Discrete-time dynamical systems generated by iterated maps
appear in many scientific areas, such as economics, engineering, and ecology. The
usual method for getting an insight into their behavior is to compute many orbits,
starting from various initial points (i.e., simulation). Another tool for gaining a bet-
ter understanding of these systems is bifurcation analysis. It provides theoretic re-
sults on the classification of possible modes of behavior, which may explain results
of the simulations at different values of control parameters. The application of such
theoretical results requires robust numerical computational tools, as a purely sym-
bolic approach is often futile. In the present paper we describe how cl matcont,
which supports only ODEs [7, 8], has been complemented by the addition of the
new package cl matcontm, which supports local bifurcation analysis of generic
finite-dimensional smooth maps. The software and a manual are freely available at
http://www.matcont.ugent.be/. Before discussing and comparing existing computer
tools for maps, we fix some notation and discuss some events which any standard
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software should be able to handle.
Consider a map

(1.1) x �→ f(x, α),

where x ∈ R
n is a state variable vector and α ∈ R

p is a parameter vector. We assume
that f is sufficiently smooth so that all partial derivatives below are well defined.
Write the Kth iterate of (1.1) at some parameter value as

(1.2) x �→ f (K)(x, α), f (K) : R
n × R

p → R
n,

where

(1.3) g(x, α) := f (K)(x, α) = f(f(f(· · · f︸ ︷︷ ︸
K times

(x, α), α), α), α).

The bifurcation analysis of (1.1) usually starts with fixed points. Numerically we
continue fixed points of this map, i.e., solutions to the equation

(1.4) F (x, α) ≡ f(x, α) − x = 0,

with one control parameter.
While varying one parameter, one may encounter codim 1 bifurcations of fixed

points, i.e., critical parameter values where the stability of the fixed point changes.
The eigenvalues of the Jacobian matrix of f are called multipliers. The fixed point
is asymptotically stable if |λ| < 1 for every multiplier λ. If there exists a multiplier
λ with |λ| > 1, then the fixed point is unstable. While following a curve of fixed
points, three codim 1 singularities related to stability changes can generically occur,
namely a limit point (fold, LP), a period-doubling (flip, PD), and a Neimark–Sacker
(NS) point; see section 2 for details. Encountering such a bifurcation, one may use the
formulas for the normal form coefficients derived via the center manifold reduction
(see, e.g., [18, section 5.4]) to analyze the bifurcation. A nongeneric situation occurs
at a branch point (BP) where the Jacobian matrix [Fx(x, α), Fα(x, α)] of (1.4) is rank
deficient. Here the implicit function theorem cannot be applied to ensure the existence
of a unique smooth branch of solutions. However, it is encountered often in practical
problems that exhibit some form of symmetry (equivariance).

When two control parameters are allowed to vary, eleven codim 2 bifurcations
can be met in generic families of maps (1.1), where curves of codim 1 bifurcations
intersect or meet tangentially. The critical normal form coefficients for all generic
codim 2 bifurcation points have been derived earlier in [19, 20] using a combined
reduction-normalization technique. Note that the full verification of the genericity of
a codim 2 bifurcation requires not only establishing its nondegeneracy at the critical
parameter values but also a careful analysis of how the system depends on parameters.
This “transversality” issue, which includes the expression of the canonical unfolding
parameters of the normal form in terms of the original map parameters, has received
little attention in the literature to date. When available, this information could be
used to approximate codim 1 bifurcation curves that emanate from the codim 2 points.

There are several standard software packages supporting bifurcation analysis of
iterated maps. Orbits of maps and one-dimensional invariant manifolds of saddle
fixed points can be computed and visualized using dynamics [24] and DsTool [3].
Location and continuation of fixed-point bifurcations is implemented in auto [9]
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and the LBFP-version of locbif [15]. The latter program computes the critical
normal form coefficient at LP points and locates some codim 2 bifurcations along
branches of codim 1 fixed points and cycles. content [17] was the first software that
computed the critical normal form coefficients for all three codim 1 bifurcations of fixed
points and cycles and allowed one to continue these bifurcations in two parameters
and to detect all eleven codim 2 singularities along them. Branch switching at PD
and BP points is also implemented in auto, locbif, and content. However, only
trivial branch switching is possible at codim 2 points and only for two (cusp and
1:1 resonance) of eleven codim 2 bifurcations are the critical normal form coefficients
computed by the current version of content. No software supports switching at
codim 2 points to the continuation of the double- and quadruple-period bifurcation
curves. In the present paper we describe how cl matcontm continues fixed points
of an iterate of a map and handles the above-mentioned bifurcations.

The paper is organized as follows. In section 2, we first discuss continuation of
fixed points of the iterated map (1.2) and detection of fold, flip, and NS bifurcations
and branch points. After a short discussion of all generic codim 1 bifurcations of
period-K orbits, we present the continuation of fold, flip, and NS curves of a cycle
and detection of codim 2 points along these curves. The algorithms used here are
similar to those implemented in content [12]. In section 3, we provide a (parameter-
dependent) normal form for each codim 2 bifurcation point of period-K orbits in the
minimal possible phase dimension. Then we consider the branch switching at codim 2
points, where we use parameter-dependent center-manifold reduction. In section 4 we
present some algorithmic and numerical details, including the computation of partial
derivatives of (1.2) up to and including order 5, using both symbolic partial derivatives
of (1.1) and finite differences. In section 5 we demonstrate the use of the algorithms
and implementation. Finally, in section 6 we draw some conclusions and mention a
few problems for future work.

2. Continuation and detection for codim 1 bifurcations of fixed points
and cycles.

2.1. Defining the system and singularities for cycles. Assume that for
some α = α0 and K ≥ 1 the map g has a fixed point x = x0, which is not a fixed
point of f (J)(·, α0) for 1 ≤ J < K when K > 1. In other words, x0 is a fixed point or
a cycle with minimal period K of f(·, α0).

Each point x of the cycle of period K then satisfies the fixed point equation for
the Kth iterate

(2.1) g(x, α) − x = 0.

As in content, branches of period-K cycles are computed in cl matcontm by a
variant of the Gauss–Newton continuation algorithm [1] applied to (2.1); see [7, 8].

If the Jacobian matrix A = gx(x0, α0) has no eigenvalue λ with |λ| = 1, i.e., for a
hyperbolic fixed point, the dynamics near the origin is topologically equivalent to that
of the linear map x �→ Ax by the Grobman–Hartman theorem. If eigenvalues with
|λ| = 1 are present, the center manifold theorem guarantees the existence of local
stable, unstable, and center invariant manifolds near the fixed point for parameter
values close to α0. Exact formulations of these theorems, together with references to
the original papers, can be found in any standard book on dynamical systems, e.g., [2].
On the stable and unstable manifolds, the local dynamics is still determined by the
linear part of the map. In contrast, the dynamics in the center manifolds depends on
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both linear and nonlinear terms. Not all nonlinear terms are equally important, since
some of them can be eliminated by an appropriate smooth coordinate transformation
that depends smoothly on parameters and that puts the map restricted to the center
manifold into a normal form, at least up to some order. Nonhyperbolic fixed points
bifurcate; i.e., the dynamics near such points changes topologically under parameter
variations. The birth of extra invariant objects, such as cycles or tori, is described
by a parameter-dependent normal form of the restriction of g to a center manifold.
Even though neither the center manifold nor the normal form on it is unique, the
qualitative conclusions do not depend on the choices that are made [2, p. 266].

For the computations of the center manifold we write the Taylor expansion of g
about (x0, α0):

g(x0 + x, α0 + α) = x0 + Ax +
1

2
B(x, x) +

1

6
C(x, x, x)

+
1

24
D(x, x, x, x) +

1

120
E(x, x, x, x, x)

+ J1α +
1

2
J2(α, α)

+A1(x, α) +
1

2
B1(x, x, α) +

1

6
C1(x, x, x, α) +

1

24
D1(x, x, x, x, α)(2.2)

+
1

2
A2(x, α, α) +

1

4
B2(x, x, α, α) +

1

12
C2(x, x, x, α, α)

+ · · · ,

where all functions are multilinear forms of their arguments and the dots denote
higher order terms in x and α. In particular, A = gx(x0, α), and the components of
the multilinear functions B and C are given by

(2.3) Bi(u, v) =

n∑
j,k=1

∂2gi(x0, α0)

∂xj∂xk
ujvk, Ci(u, v, w) =

n∑
j,k,l=1

∂3gi(x0, α0)

∂xj∂xk∂xl
ujvkwl,

for i = 1, 2, . . . , n. From now on, In is the unit n × n matrix and ‖x‖ =
√

〈x, x〉,
where 〈u, v〉 = ūT v is the standard scalar product in C

n (or R
n).

Generically, the following events happen in the state space near a bifurcation
(see, for example, [18]). When the control parameter crosses the critical value cor-
responding to a fold (LP) bifurcation, two fixed points of g collide and disappear,
provided that a1 �= 0. This implies the collision of two period-K cycles of the original
map f . When the control parameter crosses the critical value corresponding to a flip
(PD) bifurcation and b1 �= 0, a cycle of period 2 for g bifurcates from the fixed point,
which is a cycle of period 2K for map f . Finally, provided that c1 = �(d1) �= 0,
a unique closed invariant curve for g around the fixed point appears on the center
manifold, when the control parameter crosses the critical value corresponding to the
Neimark–Sacker (NS) bifurcation. For the original map, this means the appearance
of K disjoint curves, cyclically shifted by f .

To detect the aforementioned bifurcations, as well as branch points of (2.1), we
use in cl matcontm the standard test functions listed in Table 2.1, where t is the
tangent vector to the curve (2.1) in the X-space for X = (x, α)T , F (X) = g(x, α)−x,
A = gx is the Jacobian matrix of g = f (K), and 
 is the bialternate matrix product;
see, e.g., [13, section 4.4.4]. We notice that det(A
 A− Im), where m = 1

2 n(n− 1),
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Table 2.1

Detection of codim 1 bifurcations of cycles.

Bifurcation Test function(s)

LP tn+1 = 0,
(
FX

tT

)
�= 0

PD det(A + In) = 0
NS det(A�A− Im) = 0

BP det
(
FX

tT

)
= 0

also vanishes at neutral saddles. We distinguish true NS bifurcations from neutral
saddles when processing the NS points.

2.2. Defining systems and singularities for codim 1 bifurcations of cy-
cles. In cl matcontm, LP, PD, and NS curves for period-K cycles are computed
by the mentioned Gauss–Newton continuation algorithm applied to minimally ex-
tended defining systems; cf. [13]. These systems were first implemented, together
with the standard extended defining systems, in content [12]. We have adopted in
cl matcontm the most robust and efficient methods tested there. For completeness
we include a brief description of the defining systems, as we will refer to them in
section 4 and use some of the auxiliary variables for the detection of singularities.

The limit point curve and period-doubling curve are both defined by the following
system:

(2.4)

{
g(x, α) − x = 0,
s(x, α) = 0,

where (x, α) ∈ R
n+2, g is given by (1.3), while s is obtained by solving one of the

algebraic systems

(2.5)

(
gx(x, α) ∓ In wbor

vTbor 0

)(
v
s

)
=

(
0n
1

)
,

where wbor, vbor ∈ R
n are chosen such that the matrix in (2.5) is nonsingular. One

should take the “−” sign in (2.5) for the LP-curve and the “+” sign for the PD-curve.
The derivatives of s can be obtained easily from the derivatives of gx(x, α):

(2.6) sz = −wT (gx)zv,

where z is a state variable or an active parameter and w is obtained by solving

(2.7)

(
gTx (x, α) ∓ In vbor

wT
bor 0

)(
w
s

)
=

(
0n
1

)
.

We note that the quantities called s in (2.5) and (2.7) are the same since they are
both equal to the bottom-right element of the inverse of the square matrix in (2.5).

The NS and neutral-saddle curves are defined by the following system:

(2.8)

⎧⎪⎪⎨⎪⎪⎩
g(x, α) − x = 0,

si1j1(x, α, κ) = 0,

si2j2(x, α, κ) = 0,
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Table 2.2

Detection of codim 2 bifurcations of cycles.

LP PD NS

CP a1 = 0
GPD b1 = 0

CH c1 = �(d1) = 0
R1 〈w, v〉 = 0 det(A− In) = κ− 1 = 0
R2 〈w, v〉 = 0 det(A + In) = κ + 1 = 0

R3 κ + 1
2

= 0

R4 κ = 0
LPPD det(A + In) = 0 det(A− In) = 0
LPNS det(A�A− Im) = 0 det(A− In) = 0, κ− 1 �= 0
PDNS det(A�A− Im) = 0 det(A + In) = 0, κ + 1 �= 0
NSNS det(A1 �A1 − Im1 ) = 0

Table 2.3

Smooth normal forms for generic codim 1 bifurcations of fixed points on center manifolds.

Eigenvectors Normal form Critical coefficients

LP
Aq = q

AT p = p
w �→ β + w + a1w2

+O(w3), w ∈ R
a1 = 1

2
〈p,B(q, q)〉

PD
Aq = −q

AT p = −p
w �→ −(1 + β)w + b1w3

+O(w4), w ∈ R

b1 = 1
6
〈p, C(q, q, q) + 3B(q, h200)〉

h200 = (In −A)−1B(q, q)

NS

Aq = eiθ0q
AT p = e−iθ0p

eiνθ0 �= 1
ν = 1, 2, 3, 4.

w �→ weiθ
(
1 + β + d1|w|2

)
+ O(|w|4), w ∈ C

d1 = 1
2
e−iθ0 〈p, C(q, q, q̄)

+ 2B(q, h1100)
+ B(q̄, h2000)〉

h1100 = (In −A)−1B(q, q̄)
h2000 = (e2iθ0In −A)−1B(q, q)

i.e. by n + 2 equations for the (n + 3) unknowns x ∈ R
n, α ∈ R

2, κ ∈ R. Here
(i1, j1, i2, j2) ∈ {1, 2} and si,j are the components of S,

S =

(
s11 s12

s21 s22

)
,

which is obtained by solving

(2.9)

(
(gx)2(x, α) − 2κgx + In Wbor

V T
bor O

)(
V
S

)
=

(
0n,2
I2

)
,

where Vbor,Wbor ∈ R
n×2 are chosen (and can be adapted) so that the matrix in (2.9)

is nonsingular. Along the NS curve, κ is the real part of the critical multipliers e±iθ.
The derivatives of sij can be obtained easily from the derivatives of gx(x, α) as before.

Table 2.2 specifies test functions used in cl matcontm to detect and locate
relevant codim 2 singularities along the codim 1 bifurcation curves. Here a1 and b1
are the critical normal form coefficients given in Table 2.3, where q and p should be
replaced by the vectors v and w, respectively, computed in (2.5) and (2.7). The test
function c1 is given by the Lyapunov coefficient c1 = �(d1), where d1 is also specified
in Table 2.3. Matrix A1 is defined as A1 = A|N⊥ , where A = gx and N⊥ is the
orthogonal complement in R

n of the two-dimensional eigenspace associated with the
pair of multipliers with unit product of AT ; m1 = 1

2 (n− 2)(n− 3).
It is possible and sometimes necessary to adapt the defining system while contin-

uing a bifurcation curve, i.e., to update the auxiliary variables used in the defining
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system of the computed branch. The bordering vectors vbor and wbor may require
updating since they must ensure that the matrices in (2.5) and (2.7) are nonsingular.
Updating is done in cl matcontm by replacing vbor and wbor with the normalized
vectors v, w computed in (2.5), (2.7), respectively. Updating of V and W in (2.9)
is done similarly, while (i1, j1, i2, j2) are updated in such a way that the linearized
system of (2.8) is as well-conditioned as possible.

3. Numerical analysis of codim 2 bifurcations.

3.1. Codim 2 cases. While, as mentioned in the introduction, methods to
study codim 1 bifurcations are implemented in several packages [12], the numeri-
cal analysis of codim 2 bifurcations has remained a laborious task. We implemented
in cl matcontm the formulas for the critical center manifold reduction from [19, 20]
for all eleven codim 2 bifurcations. Below we give normal forms to which the re-
striction of a generic map g(x, α) = f (K)(x, α) to the parameter-dependent center
manifold can be transformed near the corresponding bifurcation by smooth invertible
coordinate and parameter transformations. When cl matcontm detects a codim 2
bifurcation, the critical coefficients of these normal forms are automatically computed
and reported to the user, so that nondegeneracy is now easily checked. We stress that
they can also be used to predict certain behavior of the system. In 6 out of 11 cases,
branches of local codim 1 bifurcations are rooted at codim 2 bifurcations, and for
these cases we also incorporate the parameter-dependent part of the normal form and
provide asymptotic expressions for the new curves. In section 3.2 we specify how we
switch the continuation to those branches.

The O-symbol denotes higher order terms in phase-variables, the coefficients of
which may also depend on parameters. But the qualitative picture is determined by
the lowest order terms listed below. We refer to [18, Chapter 9] and [19, 20] for more
details, including explicit expressions for all critical normal form coefficients which
are not repeated in the present paper. If a complex critical eigenvalue λ is involved,
it is always assumed that λν �= 1 for ν = 1, 2, 3, 4. In some cases, we combine two real
unfolding parameters (β1, β2) into one complex parameter β = β1 + iβ2 ∈ C.

3.1.1. CP. The critical smooth normal form on the center manifold at a cusp
bifurcation is

(3.1) w �→ w + a2w
3 + O(|w|4), w ∈ R,

where, generically, a2 �= 0. Under this condition, a generic two-parameter unfolding
of this singularity has two fold curves in the parameter plane which form a cuspidal
wedge. For nearby parameter values, the map g has up to three fixed points that
pairwise collide along the fold curves. In the direct product of the state and the
parameter spaces, there is one smooth fold curve, so no branch switching is needed.
cl matcontm reports the value of a2 at the bifurcation.

3.1.2. GPD. Near a generalized flip bifurcation the restriction of the map g to
the parameter-dependent center manifold is smoothly equivalent to the normal form

(3.2) w �→ −(1 + β1)w + β2w
3 + b2(β)w5 + O(|w|6), w ∈ R,

where, generically, the coefficient b2(0) �= 0, while the components of β = (β1, β2) are
smooth functions of α, which can serve as new unfolding parameters. The value of
b2(0) is reported by the software. The fixed point w = 0 of the map (3.2) exhibits a
flip bifurcation for β1 = 0. It is well known that from the point β = 0, corresponding
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to the degenerate flip bifurcation, a fold curve of double-period cycles emanates. The
asymptotic expression for this curve in (3.2) is given by

(3.3) (w, β1, β2) = (ε,−b2ε
4 + O(ε5),−2b2ε

2 + O(ε3)).

3.1.3. CH. If eiνθ0 �= 1 for ν = 1, 2, . . . , 6, the critical smooth normal form on
the center manifold at the Chenciner bifurcation can be written as

(3.4) z �→ zeiθ0(1 + d1|z|2 + d2|z|4 + O(|z|6)), z ∈ C,

where c1 = �(d1) = 0 but, generically, c2 = �(d2) + 1
2�(d1)

2 �= 0 and is reported
to the user. A generic two-parameter unfolding of this singularity has a complicated
bifurcation set due to the “collision” and destruction of two closed invariant curves
of different stability born via the sub- and supercritical NS bifurcations, respectively.
There are no cycle bifurcation curves rooted at this bifurcation.

3.1.4. R1. The restriction of the map at a 1:1 resonance to the corresponding
center manifold can be written in the form

(3.5)

(
w1

w2

)
�→

(
w1 + w2

w2 + a1w
2
1 + b1w1w2

)
+ O(‖w‖3), w ∈ R

2.

Generically, an NS bifurcation curve of the fixed point meets the fold bifurcation
curve tangentially. cl matcontm reports the sign of a1(b1 − 2a1), giving the first
Lyapunov coefficient along the NS curve near the bifurcation. The local branch switch-
ing problem is trivial here, since both curves correspond to fixed points of g. The
full bifurcation diagram near the codim 2 point is complicated and involves global bi-
furcations, e.g., tangencies of stable and unstable invariant manifolds of saddle fixed
points of g and destruction of a closed invariant curve born via the NS bifurcation.

3.1.5. R2. Near a 1:2 resonance the restriction of the map g to the parameter-
dependent center manifold is smoothly equivalent to the normal form(

w1

w2

)
�→

(
−w1 + w2

β1w1 + (−1 + β2)w2 + C1(β)w3
1 + D1(β)w2

1w2

)
+ O(‖w‖4), w ∈ R

2,(3.6)

which depends on two unfolding parameters (β1, β2). If C1(0) < 0, then there is an NS
curve of fixed points of g with double period that emanates from the flip bifurcation
curve β2 = 0 of fixed points. It has the following asymptotic expression:

(3.7) (w2
1, w2, β1, β2) =

(
− 1

C1
, 0, 1,

(
2 +

D1

C1

))
ε + O(ε2).

There are also global bifurcations associated with the destruction of closed invariant
curves. cl matcontm reports the values of 4C1(0) and −2D1(0) − 6C1(0) (relevant
for the flow approximation) to the user.

3.1.6. R3. At a 1:3 resonance the restriction of the map g to the parameter-
dependent center manifold is smoothly equivalent to the normal form

(3.8) z �→ (e2iπ/3 + β)z + B1(β)z̄2 + C1(β)z|z|2 + O(|z|4), z ∈ C,
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where β = β1 + iβ2 ∈ C. A generic unfolding of this singularity has a period-3 saddle
cycle that does not bifurcate for nearby parameter values, although it merges with the
primary fixed point as the parameters approach R3. Only global bifurcations related
to the destruction of a closed invariant curve born via the primary NS bifurcation
occur in a neighborhood of this codim 2 point.

Note that the period-3 cycle becomes neutral near this bifurcation. Recall that a
saddle cycle is called neutral if the corresponding fixed point has a pair of real eigen-
values with product 1. This singularity is important in analyzing global bifurcations
of invariant manifolds of cycles. Moreover, the curve of neutral period-3 saddle cy-
cles may turn into a true NS bifurcation at R1 or R2. Therefore, we give here an
asymptotic of this curve.

First we need a vector field for which the time-1 flow approximates the third
iterate of the map, i.e.,

(3.9) g̃(η, β̃) = β̃η + η̄2 + C0(β)η2η̄ + O(|η|4),

where

β̃ = 3e−2iπ/3β, z =
1

|B1(β)|e
i arg(B1(β))/3η, C0(β) =

1

3

(
C1(β)

|B1(β)|2 e−2iπ/3 − 1

)
.

We write C0 = a + ib, where a is reported upon detection, so that for η = ρeiφ the
neutral saddle curve has the following asymptotic expression:

(3.10) (ρ, φ, β1, β2) =
(
ε, s(π/6 − aε/3),−2aε2, sε− bε2

)
+ O(ε3),

where s = ±1.

3.1.7. R4. Near a 1:4 resonance the restriction of the map g to the parameter-
dependent center manifold is smoothly equivalent to the normal form

(3.11) z �→ (i + β)z + C1(β)z2z̄ + D1(β)z̄3 + O(|z|4), z ∈ C,

where β = β1 + iβ2 ∈ C. For this bifurcation we need not only this parameter-
dependent normal form, but also an approximation of its fourth iterate by a unit-time
shift along orbits of a vector field

(3.12) g̃(η, β̃) = β̃η + A0(β)η2η̄ + η̄3 + O(|η|4),

where η ∈ C and β̃ = β̃1 + iβ̃2, β̃i ∈ R. Here we use

z =
1√

|D1(β)|
ei arg(D1(β))/4η, A0(β) = −i

C1(β)

|D1(β)| .

Moreover, we have

(3.13)

(
β̃1

β̃2

)
=

(
0 4
−4 0

)(
β1

β2

)
.

There are three possible branch switches for this bifurcation. Denote the reported
values by a = �(A0(0)) and b = �(A0(0)). If Δ ≡ a2 + b2 − 1 > 0, then there are two
half-lines l1,2 of a limit-point curve of cycles with four times the original period. If

|b| > (1 + a2)√
1 − a2

,
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then there is a curve n1 along which a cycle of four times the primary period exhibits
an NS bifurcation. Using η = reiφ, we have the following approximations:

l1,2 : (r2, φ, β̃1, β̃2) =

(
ε,

1

4
arctan

(
ab±

√
Δ

b2 − 1

)
+ O(ε),

−aΔ ∓ b
√

Δ

a2 + b2
ε,

−bΔ ± a
√

Δ

a2 + b2
ε

)
+ O(ε2),(3.14)

n1 : (r2, φ, β̃1, β̃2) =

(
ε + O(ε2), sign(b) arccos(a)/4 + O(ε),

−2aε + O(ε2),−(b− sign(b)
√

1 − a2)ε + O(ε2)

)
.

Taking into account (3.13), we obtain expressions for the unfolding parameters β1

and β2. If, in the formula for n1, we replace sign(b) by −sign(b), then this gives the
asymptotic for a neutral saddle singularity of the period-4 cycle.

Generically, there are also global bifurcations near R4.

3.1.8. LPPD. Near a fold-flip bifurcation, the restriction of the map g to the
parameter-dependent center manifold is smoothly equivalent to the normal form
(3.15)(

w1

w2

)
�→

(
β1 + (1 + β2)w1 + a(β)w2

1 + b(β)w2
2 + c1(β)w3

1 + c2(β)w1w
2
2

−w2 + e(β)w1w2 + c3(β)w2
1w2 + c4(β)w3

2

)
+ O(‖w‖4), w ∈ R

2.

A new branch predicted by (3.15) for a generic map g is an NS bifurcation of double
period that exists if be > 0 and has the asymptotic expression

(3.16) (x, y2, β1, β2) =

(
−c4

e
, 1,−b,−2b + ec2 − 2(a + e)c4

e

)
ε + O(ε2).

cl matcontm reports the coefficients a
e and be and the sign of the Lyapunov coeffi-

cient if applicable. As for the majority of the considered cases, there are also global
bifurcations near this codim 2 point.

3.1.9. LPNS. For a fold-NS bifurcation, the critical normal form on the center
manifold is given by

(3.17)

(
w
z

)
�→

(
w + szz̄ + w2 + cx3

eiθ0z + awz + bzw2

)
+ O(‖(w, z)‖4), (w, z) ∈ R × C.

The critical coefficients s, a, b, c are reported. Depending on their values, several
bifurcation scenarios are possible in parameter-dependent unfoldings, which all involve
global phenomena.

3.1.10. PDNS. Near a flip-NS bifurcation, the restriction of the map g to
the parameter-dependent center manifold is smoothly equivalent to the parameter-
dependent normal form

(3.18)

(
w
z

)
�→

(
−w(1 + β1 + c1(β)w2 + c2(β)|z|2)

zeiθ(β)(1 + β2 + c3(β)w2 + c4(β)|z|2)

)
+ O(‖(w, z)‖4),

(w, z) ∈ R × C,
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where �(ci(0)) are reported and θ(0) = θ0. Besides global bifurcations, an NS bi-
furcation curve of double period for g is rooted at β = 0; it is always present. The
asymptotic expression of this curve is given by

(3.19) (w2, z, β1, β2) = (1, 0,−c1,−sign(c1)�(c3)) ε + O(ε2).

3.1.11. NSNS. For a double NS bifurcation, provided that lθ0 �= jθ1 for integer
l and j with l + j ≤ 4, the critical normal form on the center manifold is(

z1

z2

)
�→

(
z1(e

iθ0 + c1|z1|2 + c2|z2|2)
z2(e

iθ1 + c3|z1|2 + c4|z2|2)

)
+ O(‖z‖4), z ∈ C

2.(3.20)

Depending on the values of �(ci), which are reported, several bifurcation scenarios
are possible in parameter-dependent unfoldings, which all involve global phenomena.
To analyze some of them, one has to take into account fourth- and fifth-order terms.

3.2. Branch switching from codim 2 bifurcations. Here we address the
problem of branch switching at codim 2 bifurcation points of maps, when the ema-
nating curve corresponds to a local bifurcation. This involves the degenerate flip, 1:2
resonance, 1:4 resonance, fold-flip, and flip-NS bifurcations only. To obtain appropri-
ate initial continuation data for the original map, we combine parameter-dependent
center-manifold reduction with asymptotic expressions for the new curves given in
section 3.1.

Although we know that in several cases global bifurcations are also involved, we
will not try to switch to those branches, as the continuation of these global bifurcations
is not supported by the current version of cl matcontm.

3.2.1. Parameter-dependent center-manifold reduction. In all our cases,
the map g(x, α) : R

n ×R
2 → R

n, where g is defined by (1.3), satisfies g(x0, α0) = x0,
and its Jacobian matrix A = gx(x0, α0) has at most three multipliers on the unit
circle. Furthermore we know a parameter-dependent smooth normal form G(w, β) for
the corresponding bifurcation; see section 3.1. Then we assume a relation

(3.21) α− α0 = V (β) = v10β1 + v01β2 + O(‖β‖2)

between the original and the unfolding parameters. Note that V incorporates linear
scalings. Occasionally, we interpret β1 = β̄2 as one parameter β ∈ C; in such cases,
v01 = v̄10 ∈ C

2.
To find a parameter-dependent center manifold as the graph of x = x0 +H(w, β)

we make a Taylor expansion of the homological equation

(3.22) g(x0 + H(w, β), α0 + V (β)) = H(G(w, β), β)

in w and β at (w, β) = (0, 0), where we expand g as in (2.2) and write

(3.23) H(w, β) =
∑

|μ|+|ν|≥1

hμ,νw
μβν ,

and μ, ν are multi-indices. All coefficients must vanish, and this leads to a solution
for H and V . Below we will focus only on the parameter-dependent computations
and assume full knowledge of the critical center manifold and the critical normal form
coefficients; see [18, 19, 20]. The solvability conditions imposed coincide with the
transversality of the original family to the bifurcation manifold. A similar technique
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was introduced in [5, section 11] to switch at codim 2 bifurcations of equilibria in
ODEs.

Initial data for the new curve is now provided by substituting for w and β the
asymptotic expression in ε of section 3.1 into H and V up to a certain order in ε,
usually 2. In cl matcontm the user can specify ε to obtain a starting point near
the emanating curve for which the continuation code converges to a point on the new
curve.

It will be convenient to introduce some notation. Let p denote an eigenvector of
AT corresponding to the eigenvalue −1 of A. We will then write Γ : R

n+2 → R
n for

Γ(q, v) = 〈p,A1(q, v) +B(q, (In −A)−1J1v)〉 and γi = Γ(q, ei) for the evaluation of Γ
on the standard basis vectors in R

2. If γi �= 0 for i = 1, 2, then s1 = 1
(γ2

1+γ2
2)

(γ1, γ2)
T

and s2 = (−γ2, γ1)
T compose a new orthogonal basis in R

2.

3.2.2. Degenerate flip. The homological equation (3.22) provides the following
systems to be solved:

(A− In)[h010, h001] = −J1[v10, v01],(3.24)

(A + In)[h110, h101] = −[q, 0] −A1(q, [v10, v01]) −B(q, [h010, h001]),(3.25)

where [a, b] is an n× 2-matrix with columns a, b ∈ R
n. The higher orders give

(A− In)h210 = 2h200 − [B1(q, q, v10) + B(h200, h010) + A1(h200, v10)(3.26)

+ 2B(q, h110) + C(q, q, h010)] ,

(A− In)h201 = − [B1(q, q, v01) + B(h200, h001) + A1(h200, v01)(3.27)

+ 2B(q, h101) + C(q, q, h001)] ,

(A + In)h310 = −3h300 − [D(q, q, q, h010) + 3C(q, q, h110) + C1(q, q, q, v10)

+ 3B(h110, h200) + B(h300, h010) + 3B1(h200, q, v10)(3.28)

+A1(h300, v10) + 3C(h200, q, h010) + 3B(h210, q)] ,

(A + In)h301 = 6q − [D(q, q, q, h001) + 3C(q, q, h101) + C1(q, q, q, v01)

+ 3B(h101, h200) + B(h300, h001) + 3B1(h200, q, v01)(3.29)

+A1(h300, v01) + 3C(h200, q, h001) + 3B(h201, q)] .

The linear part of V involves four unknowns to be found from equations with
singular left-hand sides, i.e., (3.25), (3.28), (3.29). For the solution we start with
substitution of [h010, h001] = (In − A)−1J1[v10, v01] from (3.24) into (3.25). As the
left-hand side of (3.25) is singular, the right-hand side must be orthogonal to the
adjoint eigenvector p. Application of the Fredholm alternative leads to

〈p, (A + In)[h110, h101]〉

= −〈p, [q, 0] + A1(q, [v10, v01]) + B(q, (In −A)−1J1[v10, v01])〉.

We see that the operator Γ(q, v) appears naturally and rewrite it as

[γ1, γ2][v10, v01] = [−1, 0].
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The general solution is given by

v10 = −s1 + δ1s2, v01 = δ2s2, δ1, δ2 ∈ R.

Since v10, v01 appear linearly in these equations (via the multilinear functions), appli-
cation of the Fredholm alternative to (3.28), (3.29) results in a linear system for the
constants δ1, δ2.

3.2.3. 1:2 resonance. As before, we first list the necessary equations obtained
from the homological equation

(A− In)[h0010, h0001] = −J1[v10, v01],(3.30)

(A + In)[h1010, h1001] = [q1, 0] −A1(q0, [v10, v01]) −B(q0, [h0010, h0001]),(3.31)

(A + In)[h0110, h0101] = [h1010, q1 + h1001] −A1(q1, [v10, v01])(3.32)

− B(q1, [h0010, h0001]).

As for the degenerate flip, we substitute [h0010, h0001] = (In − A)−1J1[v10, v01] into
(3.31). As (3.31) is similar to (3.25), the solution for v10 and v01 is now

v10 = s1 + δ1s2, v01 = δ2s2, δ1, δ2 ∈ R.

We substitute the si into (3.32) and write

Q1 = 〈p1, A1(q0, s1) + B(q0, (A− In)−1J1s1)〉, Q2 = Γ(q1, s1),

Q3 = 〈p1, A1(q0, s2) + B(q0, (A− In)−1J1s2)〉, Q4 = Γ(q1, s2).

A little algebra shows that

δ1 = −
(
Q1 + Q2

Q3 + Q4

)
, δ2 =

1

Q3 + Q4
.

3.2.4. 1:3 resonance. We follow a slightly different procedure here. We want
to find V (β) = vβ + v̄β̄, where β = β1 + iβ2. Then we treat β and β̄ as independent
variables, which makes it slightly easier to find the solutions. As the final V (β) should
be real, it follows that v = v10 = v̄01.

Let λ = e2iπ/3, and introduce Aq = λq, AT p = λ̄p, 〈p, q〉 = 1. As before, the
first linear systems resulting from (3.22) are given by

(A− In)[h0010, h0001] = −J1[v10, v01],

(A− λIn)[h1010, h1001] = [q, 0] −A1(q, [v10, v01]) −B(q, [h0010, h0001]),

and two complex conjugated systems for h0101 and h0110. With the same approach
we will now find complex γi, and rewriting the system for v = v10 = v̄01, we have
(γ1, γ2)v = 1, (γ1, γ2)v̄ = 0, with v = (γ̄2,−γ̄1)/(γ1γ̄2 − γ2γ̄1) as solution.

3.2.5. 1:4 resonance. Replacing λ = i, we can repeat the procedure for the
case of 1:3 resonance.
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3.2.6. Fold-flip. Let Aq1,2 = ±q1,2, AT p1,2 = ±p1,2, 〈p1, q1〉 = 〈p2, q2〉 = 1.
The necessary systems to solve from the homological equation (3.22) are

(A− In)[h0010, h0001] = [q1, 0] − J1[v10, v01],(3.33)

(A− In)[h1010, h1001] = [h2000, q1] −A1(q1, [v10, v01])(3.34)

−B(q1, [h0010, h0001]),

(A + In)[h0110, h0101] = [h1100, 0] −A1(q2, [v10, v01])(3.35)

−B(q2, [h0010, h0001]).

First note that all matrices in the left-hand sides are singular. If we take (γ1, γ2) =
pT1 J1, we can define the orthogonal vectors s1 and s2 as before, and then v10 = s1+δ1s2

and v01 = δ2s2 solve system (3.33) for arbitrary δ1, δ2. Bordering the singular matrix
(A − In), one can solve for h0010 and h0001. Any multiple of q1 can be added to
h0010 and h0001, so we use h0010 = (A − In)INV (q1 − J1v10) + δ3q1 and h0010 =
−(A − In)INV (J1v01) + δ4q1. We will use this freedom to solve (3.34) and (3.35)
simultaneously for all δ’s. Note that h2000 and h1100 are also found using bordered
systems chosen, but such that 〈p1, h2000〉 = 〈p2, h1100〉 = 0.

Then we obtain the following four-dimensional system:
(3.36)

(
L 02×2

02×2 L

)⎛⎜⎜⎝
δ1
δ3
δ2
δ4

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎝
−〈p1, A1(q1, s1) + B(q1, (A− In)INV (q1 − J1s1))〉

−〈p2, A1(q2, s1) + B(q2, (A− In)INV (q1 − J1s1))〉
1
0

⎞⎟⎟⎟⎠ ,

where L is defined by

(3.37) L =

(
〈p1, A1(q1, s2) + B(q1, (In −A)INV J1s2)〉 〈p1, B(q1, q1)〉

〈p2, A1(q2, s2) + B(q2, (In −A)INV J1s2)〉 〈p2, B(q1, q2)〉

)
.

Notice that 2a(0) = 〈p1, B(q1, q1)〉 and that q1 can be chosen such that e(0) =
〈p2, B(q1, q2)〉 = 1. The condition γ1γ2 det(L) �= 0 is equivalent with the transversality
to the bifurcation manifold of the family g(x, α).

3.2.7. Flip-NS. Introduce Aq1 = q1, AT p1 = p1, 〈p1, q1〉 = 1 and Aq2 =
eiθ0q2, AT p2 = e−iθ0p2, 〈p2, q2〉 = 1. The linear systems obtained from the homolog-
ical equation (3.22) are

(A− In)[h00010, h00001] = −J1[v10, v01],

(A + In)[h10010, h10001] = [−q1, 0] −A1(q1, [v10, v01]) −B(q1, [h00010, h00001]),

(A− eiθ0In)[h01010, h01001] = [0, q2e
iθ0 ] −A1(q2, [v10, v01]) −B(q2, [h00010, h00001]).

The same approach as for the degenerate flip and 1:2-resonance cases is to substitute
the formal solution of the first equation into the second, and we write

v10 = −s1 + δ1s2, v01 = δ2s2,

where the constants δi are to be found from the last equation. We compute

Qi = 〈p2, A1(q2, si) + B(q2, (In −A)−1J1si)〉
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for i = 1, 2. To obtain the derivative of the modulus and not the argument of the
complex multiplier, we proceed as in [26, Appendix] but adapt to the case of maps.
Then we find the following real solutions:

(3.38) δ1 =
�(e−iθ0Q1)

�(e−iθ0Q2)
, δ2 = − 1

�(e−iθ0Q2)
.

4. Algorithmic and numerical details. In this section we consider the com-
putation of the derivatives and tensor-vector products, which are necessary not only
for the continuation, but also for the computation of the critical normal form coeffi-
cients at codim 1 and 2 bifurcation points.

4.1. Recursive formulas for derivatives of iterates of maps.

4.1.1. Derivatives with respect to phase variables. The iteration of (1.1)
gives rise to a sequence of points

{x1, x2, x3, . . . , xK+1},

where xJ+1 = f (J)(x1, α) for J = 1, 2, . . . ,K. Suppose that symbolic derivatives of f
up to order 5 can be computed at each point. We write

A(xJ)i,j =
∂fi
∂xj

(xJ), B(xJ)i,j,k =
∂2fi

∂xj∂xk
(xJ), C(xJ)i,j,k,l =

∂3fi
∂xj∂xk∂xl

(xJ),

and similarly for D(xJ) and E(xJ).
We want to find recursive formulas for the derivatives of the composition (1.2), i.e.,

the coefficients of the multilinear functions in (2.2) that we now denote by A(J), B(J),
and C(J) to indicate the iterate explicitly:

(A(J))i,j =
∂(f (J)(x1))i

∂xj
, (B(J))i,j,k =

∂2(f (J)(x1))i
∂xj∂xk

, (C(J))i,j,k,l =
∂3(f (J)(x1))i
∂xj∂xk∂xl

,

and D(J) and E(J) are analogously defined. What follows is a straightforward appli-
cation of the chain rule.

For J = 1 we have A(1) = A(x1), B(1) = B(x1), and C(1) = C(x1), and these are
known. Now, as

(4.1) A
(J)
i,j =

∑
k

∂fi
∂xk

(f (J−1)(x1))
∂(f (J−1)(x1))k

∂xj
=

∑
l

A(xJ)i,kA
(J−1)
k,j ,

we see that

(4.2) (F (x, α))x = A(xK)A(xK−1) · · ·A(x1) − In,

where F (x, α) = f (K)(x, α) − x.
For the second-order derivatives we first write B(J) once in coordinates

B
(J)
i,j,k =

∂

∂xj

∂

∂xk
fi(f

(J−1)(x))

=
∑
l,m

∂2fi
∂xl∂xm

(xJ)
∂(f (J−1))m

∂xj

∂(f (J−1))l
∂xk

+
∑
l

∂fi
∂xl

(xJ)
∂2(f (J−1))l
∂xj∂xk

.
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For any two vectors q1 and q2, we can multiply the previous expression by (q1)j(q2)k
and sum over (j, k) to obtain

(4.3) B(J)(q1, q2) = B(xJ)(A(J−1)q1, A
(J−1)q2) + A(xJ)B(J−1)(q1, q2).

As A(xJ) and B(xJ) are known, (4.3) allows us to compute the multilinear form
B(J)(q1, q2) recursively.

Let qi, i = 1, 2, 3, 4, 5, be given vectors. Multilinear forms with higher order
derivatives can be computed with

C(J)(q1, q2, q3) = C(xJ)(A(J−1)q1, A
(J−1)q2, A

(J−1)q3)

+ B(xJ)(B(J−1)(q1, q2), A
(J−1)q3)

∗(4.4)

+ A(xJ)(C(J−1)(q1, q2, q3)),

where ∗ means that all combinatorially different terms have to be included, i.e.,

B(xJ)(B(J−1)(q1, q2), A
(J−1)q3)

∗ = B(xJ)(B(J−1)(q1, q2), A
(J−1)q3)

+ B(xJ)(B(J−1)(q1, q3), A
(J−1)q2)

+ B(xJ)(B(J−1)(q2, q3), A
(J−1)q1).

For D(J) we get

D(J)(q1, q2, q3, q4) = D(xJ)(A(J−1)q1, A
(J−1)q2, A

(J−1)q3, A
(J−1)q4)

+ C(xJ)(B(J−1)(q1, q2), A
(J−1)q3, A

(J−1)q4)
∗

+ B(xJ)(B(J−1)(q1, q2), B
(J−1)(q3, q4))

∗(4.5)

+ B(xJ)(C(J−1)(q1, q2, q3), A
(J−1)q4)

∗

+ A(xJ)D(J−1)(q1, q2, q3, q4).

Finally, for E(J) the following holds:

E(J)(q1, q2, q3, q4, q5) = E(xJ)(A(J−1)q1, A
(J−1)q2, A

(J−1)q3, A
(J−1)q4, A

(J−1)q5)

+ D(xJ)(B(J−1)(q1, q2), A
(J−1)q3, A

(J−1)q4, A
(J−1)q5)

∗

+ C(xJ)(B(J−1)(q1, q2), B
(J−1)(q3, q4), A

(J−1)q5)
∗

+ C(xJ)(C(J−1)(q1, q2, q3), A
(J−1)q4, A

(J−1)q5)
∗(4.6)

+ B(xJ)(C(J−1)(q1, q2, q3), B
(J−1)(q4, q5))

∗

+ B(xJ)(D(J−1)(q1, q2, q3, q4))(A
(J−1)q5)

∗

+ A(xJ)(E(J−1)(q1, q2, q3, q4, q5)).

The multilinear forms A(K)(q1), B
(K)(q1, q2), C

(K)(q1, q2, q3), D
(K)(q1, q2, q3, q4),

and E(K)(q1, q2, q3, q4, q5) are then used in the computations of the normal form co-
efficients for codim 1 and codim 2 bifurcations of period-K cycles and also in branch
switching.
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4.1.2. Derivatives with respect to parameters. If enough symbolic deriva-
tives of f are available, then matcont computes the expressions involving J1 and
A1 in (2.2) symbolically. The idea is as follows. Taking the derivative of (1.3) with
respect to αk gives

(4.7)
∂(f (J)(x1, α))

∂αk
=

∂f

∂αk
(xJ , α) +

∂f

∂x
(xJ , α)

∂(f (J−1)(x1, α))

∂αk
,

which is recursively computable. Also mixed derivatives, which are necessary for
continuation and branch switching, can be found recursively:

(4.8)
∂2(f (J)(x1, α))

∂αk∂x
=

∂2f

∂αk∂x
(xJ , α) +

∂2f

∂x2
(xJ , α)

∂(f (J−1)(x1, α))

∂αk
.

In fact, the recursion is not applied to (4.8) itself, but to its product with a fixed
vector.

This is sufficient for all continuations of fixed points and their codim 1 bifur-
cations. It is also sufficient for all cases of branch switching from codim 2 points,
except for the case of degenerate flip. For this case, we fall back to a finite difference
approximation. Since it is used only in the prediction step for which high accuracy is
not needed, this seems acceptable.

4.2. Recursive formulas for derivatives of the defining systems for con-
tinuation. For the continuation of fixed points and cycles we need the derivatives of
(1.3), which can be computed from (4.2) and (4.7).

Now, we consider the derivatives of s (as defined in (2.4)) with respect to z, a
state variable or parameter. The flip and NS cases can be handled in a similar way.
Let M be the matrix in (2.5). By taking derivatives of (2.5) with respect to z, we
obtain

(4.9) M

[
vz
sz

]
+

[
A

(K)
z 0
0 0

] [
v
s

]
= 0.

Using (2.7), we obtain

(4.10) sz = −wT (A(K))zv.

If z represents one of the state variables, then sxi = −〈w,B(K)(ei, v)〉, as computed
in section 4.1. When z is a parameter αk we can write

(4.11) sαk
=

K∑
J=1

CJ ,

where

(4.12) CJ = −wT fx(xK) · · · (fx(xJ))αk
fx(xJ−1) · · · fx(x1)v,

where J = 1, . . . ,K. In this expression

(4.13) (fx(xJ))αk
= [fx(f (J)(x1, α))]αk

= fxα(xJ , α) + B(xJ)TJ ,

where TJ is a vector that can be recursively defined by

(4.14) TJ = fαk
(xJ−1, α) + A(xJ−1)TJ−1, T1 = 0.

Summarizing, for the computation of sα we need to compute fx, fαk
, fxx, fxαk

in all
iteration points x1, . . . , xK , and given these, compute TJ and CJ for J = 1, . . . ,K.
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4.3. Numerical computation of the directional derivatives. If symbolic
derivatives of the original map are not available, then finite differences have to be
used. However, the full tensors are not needed, but rather the multilinear forms
evaluated on vectors, which can be computed with directional derivatives and central
finite differences. This is an option of last resort and is not reliable for very high
iterates. For a general discussion of directional derivatives, we refer to [18]. Similar
to the analysis in [14, Appendix D], it can be shown that to compute a derivative
of order k the choice hk = (εm)1/(k+2) for the stepsize minimizes the truncation and
roundoff error under modest assumptions. Here εm denotes machine precision. In
cl matcontm, the Increment (= h1) can be adjusted by the user. The increments
of the higher order derivatives are then adapted according to hk = (h1)

3/(k+2).

5. Examples. Here we give two examples illustrating the developed techniques
and their implementation in cl matcontm.

5.1. Generalized Hénon map. Consider the map

(5.1) F :

(
x1

x2

)
�→

(
x2

α− βx1 − x2
2 + rx1x2

)
,

where r is in principle not too large. This map appears in numerous theoretical
studies of degenerate homoclinic bifurcations. A bifurcation analysis of this map can
be found in [23] for r = 0 and in [11] for general r. This map exhibits all planar
codim 2 bifurcations with branch switching as in section 3.2. Let us start with the 1:2
resonance and the fold-flip. For these cases we can apply the algorithms analytically,
i.e., with r as a parameter. We note that q = (1,−1)T in both cases is an eigenvector
of the Jacobian matrix corresponding to eigenvalue −1.

For the 1:2 resonance we have the critical values x1 = x2 = β−1
r and (α0, β0) =

( 4(3−r)
(2−r)2 ,

2+r
2−r ). For the coefficients of (3.6) the critical center manifold reduction yields

(see [11])

(5.2) C1 = −1 + r

2
, D1 =

1

4
(6 + 5r + r2).

Applying the algorithm from section 3.2.3, we find the prediction for the NS bifurca-
tion curve of the period-2 cycle:

(x, y) =

(
2

2 − r
,

2

2 − r

)
+

√
2ε

1 + r
q,

(α, β) =

(
4(3 − r)

(2 − r)2
,
2 + r

2 − r

)
+

(
2(4 + 3r2 − r3)

(1 + r)(2 − r)2
,

2r2

(1 + r)(2 − r)

)
ε.

The fold-flip bifurcation occurs for (x1, x2) = (0, 0) at (α0, β0) = (0,−1). The
critical center manifold reduction yields

(5.3) a =
1

2
(1 − r), b =

1

2
(1 + r), c2 = −1

4
(1 − r), c4 =

1

4
(1 + r)2.

Then applying the algorithm from section 3.2.6, we find the prediction for the NS
bifurcation curve of the period-2 cycle emanating here:

(x, y) = (0, 0) +

√
2ε

1 + r
q, (α, β) = (0,−1) +

(
2,

−2r2

(1 + r)(2 − r)

)
ε.
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Let us compare the predictions with the exact expressions for these curves. Con-
sider the following set:

α =
(1 + β)(β − 1 − r + r2)

r2
,(5.4)

x1,2 =
r(β + 1) ±

√
(r − 2)(β + 1)(2 + r − β(2 − r))

2r
,(5.5)

when

1

4
(3 − r)(β + 1)2 ≤ α ≤ 5 + 4r + r2 + 2β(3 + r) + β2(5 + 2r − r2)

2(2 + 2r + r2)
.

It consists of two different pieces, where an NS bifurcation of a cycle of period 2
occurs. If we take 0 ≤ ε � 1 and consider the linear approximations of (5.4) near

β = −1 − r2

2−r ε̃ and β = ( 2+r
2−r ) + r2

2−r ε̃, we find for the 1:2 resonance

(α, β) =

(
4(3 − r)

(2 − r)2
,
2 + r

2 − r

)
+

(
4 + 3r2 − r3

(2 − r)2
,

r2

2 − r

)
ε̃ + O(ε̃2),

(x, y) =

(
2

2 − r
,

2

2 − r

)
+
√
ε̃q + O(ε̃),

and for the fold-flip bifurcation

(α, β) = (0,−1) +

(
1 + r,

−r2

2 − r

)
ε̃ + O(ε̃2),

(x, y) = (0, 0) −
√
ε̃q + O(ε̃).

So up to a positive factor our results coincide up to first order in ε.
For the other three cases a numerical approach is more illuminating. We now fix

r = −0.1 and show in Figure 5.1(a) a (partial) bifurcation diagram in the parameters
α, β computed with cl matcontm. We pay closer attention to three specific regions,
where we can switch branches: a spring area near (α, β) = (3,−1) with fold and PD
curves with degeneracies, and two domains close to strong resonances near β = 1.
In the parameter space our predictions are linear, and for small initial amplitude the
initialization routines worked well.

In Figure 5.1(b), there is a PD curve of period-4 cycles along which there are
two degenerate flips near (α, β) = (3,−1), where we found a fold curve and a PD
curve of cycles of period 4. Then we produced the approximations to the fold curves
of the eighth iterates in the degenerate flip points and from these easily continued
the fold curves of cycles of period 8. The bifurcation structure of Figure 5.1(b)
is rather universal; see [6]. In Figure 5.1(c) we show a neighborhood of the 1:3
resonance. For r = −0.1 the 1:4 resonance involves all of the mentioned local branches
(see Figure 5.1(d)). In all subfigures we show the continuation results and also the
approximate curves.

5.2. Leslie–Gower competition model. The origin of this example is in [21,
22, 10]. It has been found in biological experiments that two species of flour beetles
can coexist under strong competition for the same food. This was rather unexpected
at the time, and several models were built to explain this phenomenon. One of the



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PERIODIC ORBITS OF MAPS 2663

0.94 0.97 1
0.9

1

1.1

1.2

1.3

0.98 1 1.02
−0.04

0

0.06

−0.95 −0.92 −0.89
2.6

2.8

3

 

 

−1 0 1
−1

0

1

3

5

LPPD

R1  

LPPD

R2  

R1  

R4  

R3  

R4  
R3  

R4  

R3  

R2  

R2  

CP  

R1  
R2  

R1  

GPD

CP  

CP  

β

β

PD4

LP 8

GPD4

β

NS1

LP 4

NS4

LP 4

R31

NS1
R13

R43

R33

R23

α
α

β

α

LP 4

GPD4

R41

CP 4

α

LP 8

(b) (d)

(c)(a)

(d)

(c)

(b)

Fig. 5.1. Bifurcation diagram for the generalized Hénon map (a). The close-ups near a spring
area of period 4 (b), 1:3 resonance of period 1 (c), 1:4 resonance of period 1 (d). The solid lines are
computed with cl matcontm; the dashed lines are the predictions from the switching algorithms.

ideas proposed in [10] and [25] was to use an age-structured population model. We
consider the four-dimensional map model with 14 parameters in [25]:

(5.6) MLG :

⎛⎜⎜⎝
j
a
y
z

⎞⎟⎟⎠ �→

⎛⎜⎜⎝
j′

a′

y′

z′

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1a

(1 + cjjj + cjaa + cjyy + cjzz)

(1 − μj)j + (1 − μa)a

b2z

(1 + cyjj + cyaa + cyyy + cyzz)

(1 − μy)y + (1 − μz)z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This is the Leslie–Gower competition model for the interaction between the juveniles
(j) and adults (a) of one species of the flour beetle Tribolium and the juveniles (y)
and adults (z) of another species. Each species has its own juvenile recruitment rate
b1 > 0, b2 > 0, juvenile death rates μj and μy, and adult death rates μa and μz. For
biological reasons we have 0 < μj , μa, μy, μz < 1.

The other coefficients cjj , cja, cjy, cjz and cyj , cya, cyy, cyz describe the competi-
tion. They are all strictly positive. By assumption, the competition does not affect
the adults of either species. As in [25], we will study the influence of the coefficients
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Table 5.1

Parameter values for the Leslie–Gower model.

b1 = 20 cjj = 0.36 b2 = 18 cja = 0.55 cjz = 0.23 μj = 0.23
μa = 0.72 cya = 0.08 cyy = 0.18 cyz = 0.26 μy = 0.29 μz = 0.98

cyj and cjy on the behavior of MLG in a case where all other parameters are fixed.
In other words, we study the role of the competition between juveniles alone.

The origin (0, 0, 0, 0) is a fixed point of (5.6) but is of little interest. The model
also has “horizontal” fixed points of the form (j∗, a∗, 0, 0), where j∗, a∗ > 0 (i.e.,
biologically meaningful) when b1(1 − μj) > μa. Similarly, there are unique “vertical”
fixed points of the form (0, 0, y∗, z∗). These are biologically meaningful if y∗, z∗ > 0,
i.e., when b2(1 − μy) > μz.

Furthermore there exists a unique coexistence fixed point (j∗, a∗, y∗, z∗), provided

(5.7) H ≡ δγ − εη �= 0,

where

α =
1 − μj

μa
, β =

1 − μy

μz
,

ε = cjj + cjaα, γ = cjy + cjzβ, δ = cyj + cyaα, and η = cyy + cyzβ. The equation
H = 0 defines a hyperbola in (cyj , cjy) space. We will study the overall dynamics
of the model for the parameter values specified in Table 5.1. The parameters cjy
and cyj will vary. First we consider the horizontal and the vertical fixed points and
their stability. For the given model parameters, the horizontal fixed point is stable if
cyj > cyj0, where cyj0 = 0.474477674. It is biologically plausible that the horizontal
fixed point is stable only if the juveniles of the first species suppress the juveniles of
the second species to a sufficient degree. The vertical fixed point is stable if cjy > cjy0,
where cjy0 = 0.4571312026.

Now we consider the coexistence fixed point (j∗, a∗, y∗, z∗), starting the contin-
uation from the point where cyj = cjy = 0. This fixed point bifurcates into vertical
and horizontal fixed points, respectively, when one of cjy and cyj is varied and the
other variable is fixed at 0. In the model this means that one species drives another to
extinction. Continuation of the coexistence fixed point, where cjy is the free parame-
ter, leads to BP and PD bifurcations at cjy = cyj0 and cjy = 0.170849, respectively.
The coexistence fixed point is stable before the BP and unstable afterwards. If we
continue the coexistence fixed points with the free parameter cyj , the points bifurcate
into the horizontal fixed point at another BP. The coexistence fixed point is stable
before this BP and unstable afterwards.

The solutions to the equation H = 0, where H is given by (5.7), are the parameter
values for which the existence and uniqueness of the coexistence fixed point is not
guaranteed. In the present context, where only cyj and cjy vary, this leads to the
condition

(5.8) cyjcjy + acyj + bcjy − c = 0,

where a = 0.1666326531, b = 0.0855555552, and c = 0.3350275226, which indeed
defines a hyperbola in (cyj , cjy) space. It is not hard to prove that the point (cyj0, cjy0)
lies on the hyperbola.
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Fig. 5.2. The flip curve PD1, the fold curve of the second iterate LP 2, hyperbola H = 0, and
the rectangle S1 in the (cyj , cjy)-plane.

Now we return to the stability of the coexistence fixed points. The coexistence
fixed point is unstable outside the rectangle

S1 = {(cyj , cjy) : 0 ≤ cyj ≤ cyj0, 0 ≤ cjy ≤ cjy0} .

Figure 5.2 shows the hyperbola H = 0 and the rectangle S1.
By numerical continuation we find that there is an interior region inside of S1

in which the coexistence fixed points are unstable. This region is bounded by the
PD curve, where the stability changes. The projection of the PD curve on the
(cyj , cjy)-plane goes twice through the point (cyj0, cjy0). Indeed, the PD curve has
two fold-flip points, where (cyj , cjy) = (cyj0, cjy0). Moreover, there are two de-
generate PD points GPD on the PD curve: (cyj , cjy) = (0.210138, 0.383143) and
(cyj , cjy) = (0.454279, 0.297779). The branches of fold curves of the second iterate
can be computed by switching at the GPD points. These curves emanate tangentially
to the PD curve.

The region where there are stable fixed points of the second iterate is bounded
by the two fold curves of the second iterate and the lower left part of the PD curve.
From the applications point of view, this is the most interesting region because it
shows that indeed the two species can coexist even when the competition is strong.
If both cyj and cjy are larger than 0.5, then the horizontal fixed points, the vertical
fixed points, and the fixed points of the second iterate are all stable. The PD curve
and the fold curves of the second iterate are given in Figure 5.2.

6. Conclusions. We have described the implementation of continuation and
normal form analysis of fixed points and cycles in matcont. Codim 1 bifurcation
analysis is standard by now, while the analysis of codim 2 bifurcations, both quantita-
tive and qualitative, on which this paper focuses, is new. Our implementation uses all
aspects of the center-manifold reduction. First, the critical normal form coefficients
are calculated automatically, which determines the type of the unfolding. Second,
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when nondegeneracy and transversality are checked, predictions about new codim 1
branches are made.

We use the iterates of maps to continue cycles. When dealing with strongly
expanding/contracting systems and small basins of attraction, a BVP-like approach
using extended systems for the fixed point, i.e., f(x1) − x2 = 0, . . . , f(xn) − x1 = 0,
might be more efficient.

Version 2.1 of cl matcontm for maps uses automatic differentiation as an al-
ternative to symbolic derivatives. One reason is that symbolic derivatives may not
always be available. The second is that the computation of normal form coefficients
for high iterates is faster when automatic differentiation is used.

Finally, we mention that we did not discuss global bifurcations. As a first step, it is
well worth the effort to incorporate into our package some of the existing algorithms
to compute (un)stable manifolds, e.g., [16]. If a transverse intersection is present,
then using the defining systems as in [4], approximations of homoclinic orbits and
their tangencies may be computed.
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