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Abstract

Introduction: Arm support like gravity compensation may improve arm movements during stroke rehabilitation. It is unknown how
gravity compensation affects muscle activation patterns during reach and retrieval movements. Since muscle activity during reach is rep-
resented by a component varying with movement velocity and a component supposedly counteracting gravity, we hypothesized that
gravity compensation decreases the amplitude of muscle activity, but does not affect the pattern. To examine this, we compared muscle
activity during well defined movements with and without gravity compensation in healthy elderly.

Methods: Ten subjects performed reach and retrieval movements with and without gravity compensation. Muscle activity of biceps,
triceps, anterior, middle and posterior parts of deltoid and upper trapezius was compared between the two conditions.

Results: The level of muscle activity was lower with gravity compensation in all muscles, reaching significance in biceps, anterior del-
toid and trapezius (p 6 0.026). The muscle activation pattern did not differ between movements with and without gravity compensation
(p P 0.662).

Discussion: Gravity compensation only influenced the level of muscle activity but not the muscle activation pattern in terms of timing.
Future studies should examine if the influence of gravity compensation is comparable for stroke patients. This may stimulate early and
intensive training during rehabilitation.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Muscle activity; Upper extremity; Gravity compensation; Healthy persons; Elderly
1. Introduction

A stroke can result in disturbed sensory and motor func-
tions of contra-lateral body parts (i.e., hemiparesis), along
with communicative and cognitive disorders. With respect
to the upper extremity, impaired arm and hand function
causes limitations in activities of daily living for the major-
ity of stroke patients; only 5–20% of the patients experience
full recovery, measured at 6 months post-stroke (Kwakkel
et al., 2003). Recovery of arm function after stroke can be
stimulated by an intensive program of exercise therapy
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(i.e., frequent and/or extended sessions) that involves active
movement of the affected arm (Feys et al., 1998; Kwakkel
et al., 1999; Barreca et al., 2003).

In clinical practice, active arm movements are frequently
facilitated by supporting the weight of the arm, for example
by suspending the arm from a frame overhead. Recently,
technological innovations such as robotic devices are also
applied to stimulate recovery of arm function after stroke
(Prange et al., 2006). These devices often include arm sup-
port, to compensate for the effect of gravity on the arm
(Johnson, 2006). Research on arm support for stroke
patients, using a frictionless air slide above a table, showed
an increase in maximal voluntary torques of isometric
elbow extension when the hemiparetic arm was supported
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against gravity (Beer et al., 1999). A subsequent study
showed that the active range of elbow extension increased
with arm support during reaching movements (Beer
et al., 2004). This indicates that using arm support may
be beneficial to improve arm movements in post-stroke
rehabilitation, since patients do not have to use their
remaining muscle strength and coordination to lift and
hold their arm themselves.

Although for stroke patients some information about
the influence of gravity compensation on kinetic and kine-
matic characteristics of reaching movements (like muscle
torques, range of motion and movement velocity) is avail-
able, only little is known about the way gravity compensa-
tion influences muscle activity.

Research on the kinematics of goal-directed arm move-
ments in micro-gravity during parabolic flights has indi-
cated that gravity is implemented in internal models used
in planning of movements by the central nervous system
(Smetanin and Popov, 1997; Papaxanthis et al., 1998;
Pozzo et al., 1998). Therefore, compensation of the influ-
ence of gravity on the arm may affect the muscle activation
patterns of reaching movements. A study into differences
between arm movements in different gravitational loads
showed that different patterns of muscle activation
occurred during movements with gravity and against grav-
ity (Virji-Babul et al., 1994).

On the other hand, muscle activity signals during for-
ward-directed reach were found to be determined by two
principal components, of which the contribution to the
muscle activity signal depended on the weighting factor
of each component (Flanders and Herrmann, 1992). One
‘phasic’ component varied with movement velocity, the
other ‘tonic’ component was unrelated to movement veloc-
ity and was assumed to be involved in counteracting grav-
ity during reaching. The scaling of the phasic component
with movement velocity was in line with the recorded mus-
cle activity during reaching with different speeds. However,
Fig. 1. Apparatus for gravity compensation: (a) the Freebal device in full view
with the hand on the starting dot and the arm in the initial posture; the arrow i
visible are EMG electrodes and reflective markers (see Section 2.4 for details)
it was not verified whether the tonic component did relate
to counteracting gravity (Flanders and Herrmann, 1992).

To examine this, the present study aimed to investigate
the influence of gravity compensation on muscle activation
patterns during reach and retrieval movements performed
by healthy elderly. Based on the study by Flanders and
Herrmann (1992), we would expect that when the influence
of gravity on the arm is compensated during reaching, the
amplitude of muscle activity is affected, but the temporal
pattern remains unchanged.

2. Methods

2.1. Subjects

Ten healthy persons participated in this study, after providing
written informed consent. Inclusion criteria were that the subjects
were over 50 years of age and had no known history of neuro-
muscular, orthopedic or rheumatologic disorders of the upper
extremity. The study was approved by the local medical ethics
committee.

2.2. Apparatus

A mechanical, passive device was developed to counteract the
influence of gravity on the upper extremity (named Freebal,
derived from ‘balanced freedom’). The device consisted of two
independent springs, connected to pliable joint braces at the
elbow and wrist via ropes and pulleys overhead (Fig. 1). This
system provided a constant and individually adjustable amount of
gravity compensation throughout the entire workspace of
approximately 1 m3, enabling three dimensional movements. A
more detailed description of the Freebal is published elsewhere
(Stienen et al., 2006, 2007).

2.3. Procedure

The subjects performed two series of movements with the
dominant arm, once with and once without gravity compensation.
To reduce the potential effect of learning or adaptation, the
; (b) close-up of the arm attached to the wrist and elbow straps of Freebal,
ndicates the required movement from starting to target dot and back; also
.
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subjects were assigned randomly to one of two sequences, either
performing the movements first with and subsequently without
gravity compensation (group A), or in reversed order (group B).

The subjects were seated at an in height adjustable table and
secured to the chair with straps to limit compensational trunk
movements. Subjects sat with the upper arm parallel to the trunk,
the elbow flexed 90�, the forearm in pronation and the wrist fix-
ated in a neutral position midway between flexion/extension and
radial-/ulnar-abduction by a splint. In this position the hand was
placed on the starting dot (Fig. 1b). The target dot was placed
35 cm from the starting dot, so that the subjects reached forward
in the sagittal plane using both the shoulder and the elbow. Both
dots had a diameter of 10 cm.

The subjects performed repeated multi-joint reach and retrie-
val movements during 30 s, alternating between starting and
target dot. The subjects were instructed to move at their own
comfortable pace and touch the centre of the dots, placing more
focus on accuracy than on velocity.

2.4. Measurements and data recording

2.4.1. EMG recordings

Bi-polar surface electromyography (EMG) was recorded using
disc-shaped wet-gel Neuroline Ag/AgCl-electrodes (type 72000-S;
Medicotest A/S, Ølstykke, Denmark) with a recording area of
95 mm2 and an inter-electrode distance of 2 cm. Electrodes were
placed over six superficial muscles, according to guidelines of the
SENIAM project: long head of biceps (BIC); long head of triceps
(TRI); anterior (DA), middle (DM), posterior (DP) part of del-
toid; upper part of trapezius (TRA). (Hermens et al., 1999) After
differential amplification using a K-Lab amplifier (K-Lab, Haar-
lem, the Netherlands; input impedance 10 GX, common mode
rejection ratio >110 dB, input voltage noise <2 lV, gain 18750),
the EMG signals were high-pass filtered (third-order Butterworth
filter, cut-off frequency 20 Hz) and digitized by a 12-bit analog-to-
digital converter with a sample rate of 1000 Hz. These EMG
signals were then band-pass filtered (second-order zero phase shift
Butterworth, cut-off frequencies 20–400 Hz) and converted to
smooth rectified EMG (SRE) signals (using a low-pass second-
order zero phase shift Butterworth filter at 25 Hz for smoothing)
for each muscle per subject.

2.4.2. Kinematic data

Changes in positions of arm segments were recorded using an
infrared 3D-motion analysis system (VICON 370: six cameras,
sample rate 50 Hz; Oxford Metrics Ltd, Oxford, United King-
dom). Reflective markers were placed on 10 bony landmarks on
Fig. 2. Definition of shoulder angles: (a) S1: plane of elevation, angle of the hum
angle between humerus and trunk in the plane of elevation (consisting of the ve
sagittal view (S2S).
the arm and trunk and converted to joint angles according to
guidelines of the International Society of Biomechanics (ISB) (Wu
et al., 2005).

The elbow joint angle was specified as the angle between
humerus and forearm (maximal elbow flexion is 0�, maximal
elbow extension is 180�). The shoulder joint orientation was
described using two angles (see Fig. 2 for illustration). First, the
plane of elevation was defined as the angle of the humerus with a
virtual line through both shoulders, viewed in the transversal
plane (outward/lateral is 0�, arm extended forward is 90�). In
other words, it represented the angle of the projection of the
upper arm on the horizontal plane. Second, the angle of elevation
was the angle between humerus and trunk in the plane of eleva-
tion (consisting of the vertical plane through the upper arm),
irrespective of the orientation of the humerus in the transversal
plane (humerus parallel with trunk is 0�, humerus parallel with
horizontal is 90�). These angles were low-pass filtered at 20 Hz
with a second-order zero phase shift Butterworth filter and line-
arly interpolated from 50 to 1000 Hz to match the sample rate of
the EMG recordings.

2.4.3. Synchronous display of EMG and kinematics

Custom written software using the Labview environment
(National Instruments, Austin, TX, United States) was used to
analyse SRE signals in relation to joint angles. Reversals in
movement direction were defined at minimum and maximum
elbow joint angles (hand on starting and target dot, respectively),
determined by zero-crossings of the elbow angular velocity. A
reach (minimal to maximal elbow angle) and subsequent retrieval
(maximal to minimal elbow angle) movement constituted a
movement cycle (see Fig. 3).

2.5. Data analysis

The EMG and joint angle data were visually inspected for
missing data or recording errors. The SRE-values and joint angle
trajectories were averaged over all repeated movement cycles of
one 30 s series of movements to obtain an average muscle acti-
vation pattern (MAP), which was normalized to the average
duration of all repeated movement cycles. The reach and retrieval
trajectories were each divided in three movement parts: part (I)
initiation of movement, defined by 1–20% of a trajectory; part (II)
steady state movement during the middle part of a trajectory,
from 31% to 70%; part (III) termination of movement, consisting
of 81–100% (see Fig. 3). Per subject, the SRE-values of each MAP
were averaged within each movement part as a measure of level of
muscle activity.
erus with a virtual line through both shoulders; (b) S2: angle of elevation,
rtical plane through the upper arm), represented in frontal view (S2F) and



Fig. 3. Muscle activation pattern (MAP) of six muscles and corresponding
joint angles during movement without gravity compensation (time in % of
averaged cycle duration) of one subject, including definition of movement
parts by black bars. Abbreviations: part I = initiation, II = steady state,
III = termination of movement; BIC = long head of biceps; TRI = long
head of triceps; DA = anterior deltoid; DM = medial deltoid; DP = pos-
terior deltoid; TRA = upper trapezius; E = elbow flexion/extension angle;
S1 = shoulder plane of elevation; S2 = shoulder angle of elevation.

Table 1
Physical characteristics of 10 healthy elderly

Subjects (n = 10)

Sex (male/female)a 5/5
Arm dominance (right/left)a 10/0
Age (years)b 65.9 (±6.4)
Height (m)b 1.74 (±0.12)
Weight (kg)b 77.7 (±13.6)
Body mass index (kg/m2)b 25.7 (±2.9)

a Absolute numbers.
b Mean ± SD.
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To quantify movements, several parameters were derived from
kinematic data: movement time was defined as the movement
cycle duration averaged over all movement cycles per subject (in
ms); movement symmetry was defined as the relative duration of
reach with respect to the average movement cycle (in %); and joint
excursions of elbow and shoulder angles were defined as the dif-
ference between minimal and maximal joint angles (in �), averaged
over all movement cycles.

2.6. Statistical analysis

Initially, SRE-values were transformed to LN(SRE)-values to
ensure normal distribution of residuals. To detect potential effects
of learning or adaptation, muscle activity and movement perfor-
mance parameters of the two groups performing movements with
and without gravity compensation in reversed order (A and B)
were compared using a t-test for independent samples in the case
of normally distributed parameters and a non-parametric equiv-
alent, the Kolmogorov–Smirnov test, for parameters deviating
from the normal distribution. Furthermore, either paired-samples
t-tests or the non-parametric equivalent, Wilcoxon signed ranks
tests, were used to examine differences in movement execution
parameters (movement time, movement symmetry and joint
excursions) due to gravity compensation. For all these tests the
significance level was 0.05.
Linear mixed modeling techniques (i.e., multilevel linear
modeling, random coefficient analysis) were applied to test dif-
ferences in SRE-values due to gravity compensation (two-level
factor ‘fz-comp’) in each muscle (six-level factor ‘muscle’) per
movement part (three-level factor ‘part’), separately for reach
and retrieval. To account for the correlation of repeated mea-
surements within one subject, the factor ‘subject’ was included
as a random factor. The factors ‘fz-comp’, ‘muscle’ and ‘part’
were treated as fixed effects, because the effect of gravity com-
pensation on muscle activity was similar for all subjects. The
two-way interactions ‘muscle · part’, ‘fz-comp · muscle’ and ‘fz-
comp · part’ were included to examine the change of muscle
activity across movement parts per muscle, the difference of the
influence of gravity compensation on the level of muscle activity
between muscles and the influence of gravity compensation on
the change of muscle activity across movement parts, respec-
tively. For all significant effects and interactions post-hoc tests
(Sidak adjustment) were performed. The level of significance
was defined as 0.05.
3. Results

3.1. Subjects

Data of all 10 subjects were used for analysis, of which
average values of physical characteristics are presented in
Table 1. Regarding the order of conditions, seven subjects
moved first with and next without gravity compensation
(group A), while three subjects performed the test in the
reversed order (group B). There were no significant differ-
ences in physical characteristics, movement execution
parameters and SRE-values between the two groups, so
data of all subjects were pooled in subsequent analyses.

3.2. Movement execution

Movement execution parameters averaged over all sub-
jects are presented in Table 2. On average, 19 (±8) move-
ment cycles per subject were analyzed. Comparison of
movement execution with and without gravity compensa-
tion showed that movement time and movement symmetry
were not significantly different (p = 0.224, p = 0.160,
respectively). The joint excursions of elbow and shoulder
plane were also comparable for both conditions
(p = 0.376 and p = 0.102, respectively), but the excursion
of shoulder elevation was somewhat smaller with gravity



Table 2
Movement execution parameters (mean ± SD) and corresponding inter-
subject coefficients of variation (COV = SD/mean) for movements with-
out and with gravity compensation of 10 subjects

Without
compensation

With
compensation

Elbow excursion (�) 60.4 (±4.4) 61.2 (±6.6)
Inter-subject COV 0.07 0.11
Shoulder plane excursion (�) 81.6 (±11.7) 78.2 (±11.9)
Inter-subject COV 0.14 0.15
Shoulder elevation excursion

(�)*
23.2 (±9.5) 18.8 (±6.8)

Inter-subject COV 0.41 0.36
Movement time (ms) 1327 (±383) 1491 (±211)
Inter-subject COV 0.29 0.14
Movement symmetry (%) 56.8 (±3.7) 58.8 (±1.7)
Inter-subject COV 0.07 0.03

* Significant difference between movement with and without gravity
compensation (p < 0.05).
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compensation (p = 0.013). However, the difference in
shoulder elevation excursion was not even 5�, which was
not regarded as a substantial difference in movement
execution.

3.3. Generic aspects of muscle activation

In Fig. 3 a typical example of a MAP of movement with-
out gravity compensation is displayed, which revealed
some features in this subject. Most muscles were active
throughout the movement, without periods of relative rest.
Fig. 4. Median and interquartile ranges of SRE-values of 10 subjects per movem
for reach and retrieval separately. Muscle activity significantly increased during
in SRE-values from one part to next during reach are represented by aste
interquartile range) and diamonds (e) represent extremes (deviation of <3 tim
An exception is TRI, which had very low levels of activity
during reach and retrieval (except at the start of retrieval in
this particular subject).

When comparing MAPs of movements without gravity
compensation across subjects (Fig. 4), several generic
aspects could be identified. Most muscles had persistent
levels of muscle activity throughout the reach and retrieval
movements, except that almost all subjects showed rather
low levels of TRI activity. Furthermore, most muscles
showed increasing SRE-values from movement initiation
to termination during reach, as supported by a significant
main effect of ‘part’ (p = 0.000). This general increase in
SRE-values differed between muscles, as revealed by a sig-
nificant interaction of ‘muscle · part’ (p = 0.000). Post-hoc
analyses (represented by asterisks in Fig. 4) showed
increases in SRE-values from steady state to termination
in BIC (p = 0.008) and from initiation to steady state in
TRI (p = 0.000) and in DP (p = 0.001), while in TRA
SRE-values decreased from initiation to steady state
(p = 0.036) and subsequently increased (p = 0.033). During
retrieval, a general decrease in muscle activity was observed
towards movement termination (main effect of ‘part’;
p = 0.009), which was not significantly different between
muscles (‘muscle · part’ p = 0.106).

When integrating the qualitative and quantitative find-
ings, generic aspects of muscle activation patterns could
be identified for reach and retrieval without gravity com-
pensation. BIC was active to lift and hold the lower arm
above the table and aid in anteflexion of the shoulder.
ent part for each muscle during movement without gravity compensation,
reach and significantly decreased during retrieval; muscle-specific changes

risks (*p < 0.05). Circles (�) represent outliers (deviation of <1.5 times
es interquartile range).
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Muscle activity of TRI was very low, sometimes nearly
absent, contributing to extension of the elbow towards
the target. DA and DM were active to maintain a certain
degree of shoulder abduction, to anteflex the shoulder dur-
ing reach and to decelerate retroflexion during retrieval.
Activity of DP decelerated anteflexion during reach and
retroflexed the shoulder during retrieval. TRA was active
to elevate the arm at the start of reach and retrieval and
to position the scapula appropriately during the
movements.

3.4. Influence of gravity compensation on muscle activation

Comparison of MAPs with and without gravity com-
pensation (Fig. 5) showed a reduction in the level of activ-
ity of most muscles with gravity compensation, as
underlined by a significant overall effect of ‘fz-comp’
(p = 0.000) for both reach and retrieval. During retrieval,
the influence of gravity compensation differed between
muscles as indicated by a significant interaction ‘fz-comp-
muscle’ (p = 0.007). Post-hoc differences (in Fig. 5 accentu-
ated by asterisks) between movements with and without
gravity compensation were found in BIC (p = 0.000), DA
(p = 0.000) and TRA (p = 0.026). These same muscles also
showed significant post-hoc differences between the two
conditions during reach (p < 0.007), but these differences
were smaller than during retrieval, resulting in a non-signif-
icant interaction of ‘fz-comp · muscle’ (p = 0.252) during
reach.

Despite differences in the level of activity, the change of
muscle activity across movement parts (Fig. 6) was similar
for movements with and without gravity compensation for
most muscles, as supported by a non-significant interaction
‘fz-comp · part’ for both reach and retrieval (p = 0.662 and
Fig. 5. Comparison of mean (±SD) SRE-values, averaged over all three parts
gravity compensation, for reach and retrieval separately (n = 10); asterisks rep
p = 0.826, respectively). Although TRI and DP displayed a
deviating pattern with a slightly larger level of muscle activ-
ity at the end of reach and start of retrieval with gravity
compensation, these differences were too small to result
in a significant effect.

4. Discussion

The aim of the present study with healthy elderly was
to investigate the influence of gravity compensation on
muscle activation patterns during reach and retrieval
movements. A common aspect of muscle activity during
movements without gravity compensation across all sub-
jects was that most muscles show persistent activity dur-
ing the entire reach and retrieval trajectories. As an
exception, activity was very low in TRI. In general, the
persistent activity increases during reach and decreases
during retrieval. A plausible explanation is that larger tor-
ques act on the extended arm at the target dot then when
the arm is close to the trunk at the starting dot, requiring
a higher level of muscle activity at the end of reach and
start of retrieval.

The generic aspect of persistent activity during reach
and retrieval corresponds largely with the findings of
Sabatini et al., who investigated ‘natural’ unsupported
reaching movements with a similar arm orientation
(shoulder abduction of approximately 45�, hand at table
height) as the present study (Sabatini, 2002). They found
that all recorded muscles (BIC, TRI, DA, DP and TRA)
were active throughout the movement, with additional
activity on top of this persistent activity in BIC, DP
and TRA.

In contrast, several other studies described an alternat-
ing pattern of BIC/TRI and DA/DP activity during reach
per muscle, between movement without (light bars) and with (dark bars)
resent significant differences (p < 0.05).



Fig. 6. Changes in mean SRE-values across movement parts compared for movements without (solid lines) and with (dotted lines) gravity compensation
of 10 subjects per muscle and for reach and retrieval separately.
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and retrieval with arm support, interspersed with periods
of relative rest (Karst and Hasan, 1991; Dounskaia et al.,
2002; Gribble et al., 2003). This discrepancy is probably
related to the orientation of the arm during movements.
In the present study the targets were at table height,
requiring a certain amount of arm elevation against grav-
ity to reach the target, while in the reported literature
both the targets and the arm were in the horizontal plane
at shoulder height (approximately 90� shoulder elevation,
with arm support) and no movement against gravity was
necessary. A study examining timing of muscle activity for
movements in different directions reported that single-
joint elbow movements against gravity resulted in periods
of simultaneous activity of agonist and antagonist (i.e. co-
activation), while movements in the horizontal plane pro-
duced an alternating pattern of agonist–antagonist activ-
ity (Karst and Hasan, 1991). Thus, phasic activity may
have been largely masked by a higher level of persistent
activity during movements in the present study, requiring
movement against gravity.

Besides arm orientation, other differences between the
present study and the reported studies (Karst and Hasan,
1991; Dounskaia et al., 2002; Gribble et al., 2003) may also
play a role. For example, in the present study movement
velocity was lower, especially with respect to the study by
Gribble et al. where subjects were instructed to make move-
ments as fast as possible (Gribble et al., 2003). Several stud-
ies have indicated that a higher movement velocity is
related to a higher intensity of muscle activity (Buneo
et al., 1994; Gabriel, 1997) and to the presence of a typical
tri-phasic pattern of agonist/antagonist activity (Brown
and Gilleard, 1991; Berardelli et al., 1996). In addition,
the present study included older subjects than several other
studies (Dounskaia et al., 2002; Gribble et al., 2003), whom
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have been reported to have a lower depth of muscle activity
modulation, meaning that in elderly the range from mini-
mal to maximal values of generated muscle activity is smal-
ler (Ketcham et al., 2004).

Comparison of muscle activation patterns during reach
and retrieval movements with and without gravity compen-
sation showed that the level of muscle activity was lower
with gravity compensation, while no substantial differences
in movement execution between the two conditions were
found. This difference was observed specifically in the mus-
cles that counteract gravity during forward reach and
retrieval movements: BIC, DA and TRA. The change of
muscle activity across movement parts did not differ
between the two conditions.

The observed decrease in the level of muscle activity
without differences in the pattern of muscle activation
confirmed our hypothesis, based on a study by Flanders
and Herrmann (1992) suggesting that tonic muscle
activity was related to counteracting gravity while phasic
activity was not. These findings indicate that performing
movements without the effect of gravity on the arm only
reduced the level of muscle activity and did not affect the
pattern of muscle activation in terms of timing.

Another study investigating a basic application of
gravity compensation, manual support of gross arm
movements in healthy persons, compared an unspecified
parameter of muscle activity during supported arm eleva-
tions with unsupported movements. This study reported
less muscle activity of the serratus anterior and the
pectoralis major muscles during supported movements
(Hiengkaew et al., 2003). Despite the use of other move-
ments and muscles and a lack of specificity on analysis
of muscle activity, this outcome is along the same lines
of the influence of gravity compensation observed in the
present study.

Remarkably, the application of gravity compensation
did not lead to unmasking of phasic components, but a
certain degree of tonic activity remained during move-
ments with gravity compensation. This may be related
to the many degrees of freedom that characterize upper
extremity movements and the interaction torques acting
on a joint due to movements of an adjacent joint. Simul-
taneous application of both agonist and antagonist activ-
ity can stabilize the joints and control the interaction
torques during movements (Dounskaia et al., 2002; Grib-
ble et al., 2003). This co-activation presents as ‘tonic’
activity during arm movements, even when the arm is
supported.

The findings of the present study show that healthy
elderly performed similar movements with a lower level
of muscle activity, while the change of muscle activity
across movement parts did not differ during movements
with gravity compensation. This indicates that when per-
forming movements while the arm is supported against
gravity only the level of muscle activity is influenced, but
the pattern of muscle activation in terms of timing is not
affected, compared to movements without support.
Moreover, this implies that, if the influence of gravity
compensation on movements of stroke patients is compa-
rable to healthy elderly, gravity compensation may be
able to facilitate arm movements during post-stroke reha-
bilitation. The application of gravity compensation would
not be interfering with the temporal characteristics of
muscle activation, which are often impaired in stroke
patients (Chae et al., 2002). In this way, patients would
be able to repeat more movements and/or attend longer
or more frequent sessions (i.e., higher training intensity)
than in a situation without gravity compensation, which
is beneficial in post-stroke rehabilitation (Kwakkel
et al., 1999). Future studies should further examine this
potential of gravity compensation for stroke
rehabilitation.
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