
Distributed Algorithms for SCC De
omposition?Ji�r�� Barnat1, Jakub Chaloupka1, and Ja
o van de Pol21 Masaryk University Brno, Cze
h Republi
2 University of Twente, Formal Methods and ToolsDepartment of EEMCS, The NetherlandsAbstra
t. We study existing parallel algorithms for the de
ompositionof a partitioned graph into its strongly
onne
ted
omponents. In par-ti
ular, we identify several individual pro
edures that the algorithms areassembled from and show how to assemble a new and more eÆ
ient al-gorithm,
alled Re
ursive OBF, to solve the de
omposition problem. Wealso report on a thorough experimental study to evaluate the new al-gorithm. It shows that it is possile to perform SCC de
omposition inparallel eÆ
iently and that Re
ursive OBF, if properly implemented, isthe best
hoi
e in most
ases.1 Introdu
tionThe problem of �nding strongly
onne
ted
omponents (SCCs), known also asSCC de
omposition, is one of the basi
 graph problems that �nds its appli
ationsin many resear
h �elds, even beyond the s
ope of
omputer s
ien
e. An eÆ
ientalgorithmi
 solution to this problem is due to Tarjan [25℄, who showed that,given a graph with n verti
es and m edges, it is possible to identify and list allstrongly
onne
ted
omponents of the graph in O(n+m) time and O(n) spa
e.? This work has been partially supported by the Cze
h S
ien
e Foundation grant No.201/06/1338, by the A
ademy of S
ien
es grant No. 1ET408050503 and by the EUFP6 NEST path�nder proje
t EC-MOAN (043235).

Among many appli
ations, the algorithm may be used also for the analysisof
omputer systems. In parti
ular, algorithms for SCC de
omposition �nd theirappli
ation in distributed formal veri�
ation tools su
h as CADP [18℄, DiVinE [2℄,DUPPAAL [5℄, LiQuor [12℄, �CRL [6℄, et
. Namely, they allow the tools to verifyquantitative properties of probabilisti
 systems,
ompute � -
on
uen
e [8℄, forma prepro
essing step for bran
hing bisimulation redu
tion, or verify systems withfairness
onstraints or properties given by extensions of B�u
hi automata.Unfortunately, graphs modelling
omplex
omputer systems tend to be verylarge, whi
h makes it hard to handle them on a single ma
hine. One way tota
kle this problem is to distribute the graph a
ross a
luster of workstations andemploy a distributed algorithm to de
ompose the partitioned graph. However,Tarjan's algorithm (and all other linear algorithms for SCC de
omposition, e.g.,Kosaraju's algorithm also known as Double DFS [15℄) strongly rely on the depth-�rst sear
h post-ordering of verti
es, whose
omputation is known to be P -
omplete [23℄, and thus, diÆ
ult to be
omputed in parallel. Therefore, di�erentapproa
hes have been used to design parallel algorithms for solving the problem.A parallel algorithm based on matrix multipli
ation was des
ribed in [19℄and further improved in [14, 1℄. The algorithm works in O(log2 n) time in theworst
ase. However, to a
hieve this low time
omplexity it requires O(n2:376)parallel pro
essors. As typi
al graphs that we are interested in
ontain millionsof verti
es the algorithm is pra
ti
ally unusable and is only interesting from atheoreti
al point of view. Another parallel algorithm for �nding SCCs was givenin [17℄. It exploits the fa
t that it is possible to eÆ
iently
ompute the set ofverti
es rea
hable from a
ertain vertex or set of verti
es in parallel. The generalidea of the algorithm is to repeatedly pi
k a vertex of the graph and identifythe
omponent to whi
h it belongs, by using a forward and a ba
kward parallelrea
hability pro
edure. The algorithm proved to be eÆ
ient enough in pra
ti
e,whi
h resulted in several theoreti
al improvements of it [22, 20℄. The worst time2

omplexity of the algorithm is O(n�(n+m)). Nevertheless, the algorithm exhibitsO(m � log n) expe
ted time [17℄. Another algorithm was introdu
ed in [22℄. Thatalgorithm is more involved, but still, its basi
 building blo
k is a simple parallelvalue iteration te
hnique.In this paper, whi
h
an be viewed as a full version of [4, 3℄, we summarisea number of known pro
edures used for distributed SCC de
omposition. More-over, we present a new algorithm based on rearranging these pro
edures, andextensively
ompare its implementation with existing algorithms. The rest of thepaper is organised as follows. We re
apitulate basi
 terms and de�nitions in Se
-tion 2, des
ribe known te
hniques and algorithms for solving SCC de
ompositionin Se
tion 3. The new algorithm based on re
ursive appli
ation of OBF [4, 3℄ isdes
ribed in Se
tion 4. Compared to [3℄ we added full proofs for the
orre
tnessand the
omplexity
laims. Results of experiments are in Se
tion 5. In parti
ular,we
ompare our new algorithm with the algorithms from [22, 17℄, and we measurethe e�e
t of de
omposing sub-graphs one by one, or in parallel. Contributionsof the paper are summarised and future work is outlined in Se
tion 6.A
knowledgement. We like to thank Simona Orzan for dis
ussions on the CH-algorithm and sharing her implementation. We are grateful to the Centrum voorWiskunde en Informati
a (Amsterdam) for hosting a
onsiderable part of theresear
h reported here.2 Preliminaries2.1 Dire
ted GraphsA (dire
ted) graph G is a pair (V, E), where V is a set of verti
es, and E � V �Vis a set of (dire
ted) edges. If (u; v) 2 E, then v is
alled (immediate) su

essorof u and u is
alled (immediate) prede
essor of v. The indegree of a vertex v is3

the number of immediate prede
essors of v. GT = (V;ET), the transposed graphof G = (V;E), is the graph G with all edges reversed, i.e., ET = f(u; v) j (v; u) 2Eg.Let G = (V;E) be a dire
ted graph. Let E� be a transitive and re
exive
losure of E and s; t 2 V two verti
es. We say that vertex t is rea
hable fromvertex s if (s; t) 2 E�. If sk is rea
hable from s0, then there is a sequen
e ofverti
es s0; : : : ; sk, s.t. (si; si+1) 2 E for all 0 � i < k. We
all this sequen
ea path. A path is simple if it
ontains no dupli
ated verti
es. The length of thepath is k, i.e. the number of edges. A graph is rooted if there is an initial vertexs0 2 V su
h that all verti
es in V are rea
hable from s0. Given a graph G, weuse n, m and l, to denote the number of verti
es and edges, and the length ofthe longest simple path between any two verti
es in G, respe
tively.A set of verti
es C � V is strongly
onne
ted, if for any verti
es u; v 2 C,we have that v is rea
hable from u. A strongly
onne
ted
omponent (SCC) is amaximal strongly
onne
ted C � V , i.e. su
h that no C 0 with C (C 0 � V isstrongly
onne
ted. A maximal strongly
onne
ted
omponent C is trivial if Cis made of a single vertex
 and (
;
) =2 E, and is non-trivial otherwise.LetWG be the set of all strongly
onne
ted
omponents of graph G = (V;E).The quotient graph of graph G is a dire
ted graph SCC(G) = (WG; HG), whereHG = f(w1; w2) j (9u1; u2 2 V)(u1 2 w1 ^ u2 2 w2 ^ (u1; u2) 2 E)g, i.e., thereis an edge between SCCs if and only if there is an edge between some membersof the SCCs in the original graph. Note that the quotient graph of any dire
tedgraph is a
y
li
. Given a graph G, we denote by N , M and L, the number ofverti
es and edges, and the length of the longest (simple) path in the quotientgraph of G, respe
tively. A strongly
onne
ted
omponent is leading if it has noprede
essors in the quotient graph. A set S � V is SCC-
losed if ea
h SCC inthe graph is either
ompletely inside the set or
ompletely outside the set; su
hS is also referred to as an independent sub-graph.4

For v 2 W � V , the forward
losure of v in W is the set of rea
hable statesfrom v in the graph (V;EW), where EW = f(x; y) j (x; y) 2 E ^ x; y 2 Wg. IfW is not spe
i�ed, the whole graph is meant. The forward
losure of S � Win W is the union of forward
losures of all verti
es from S in W . Finally, theba
kward
losure of v (or S) in W is the forward
losure of v (or S) in W in thegraph GT .2.2 Graph RepresentationA dire
ted graph
an be given in many ways. We restri
t ourselves to expli
itvertex representations, ex
luding symboli
 representations, e.g., based on binaryde
ision diagrams.Beside the standard representations by adja
en
y lists or an adja
en
y matrixwe also mention graphs that are given impli
itly (do not
onfuse with symboli
representation, this is still an expli
it vertex representation). A rooted graph isgiven impli
itly if it is de�ned by its initial vertex and a fun
tion returning im-mediate su

essors of an arbitrary vertex. Within the
ontext of impli
itly givengraphs there are some restri
tions that algorithms have to follow. If an algorithmrequires any pie
e of information that
annot be
on
luded from the impli
it def-inition of the graph, it has to
ompute the information �rst. For example, thereis no way to dire
tly identify immediate prede
essors of a given vertex from theimpli
it de�nition of the graph. If the algorithm needs to enumerate immedi-ate prede
essors, then the prede
essors must be stored, while enumerating thewhole graph �rst. Similarly, in order to number the verti
es of an impli
itly givengraph, one must enumerate all its verti
es �rst. For numbering the verti
es ofimpli
itly given graphs a parallel pro
edure was introdu
ed in [18℄. Note thatall verti
es of an impli
itly given graph are rea
hable from the initial vertex byde�nition. 5

The reason for dealing with impli
itly given graphs
omes from pra
ti
e.In many
ases, the des
ription of rules a

ording to whi
h the graph
an begenerated is more spa
e eÆ
ient than the enumeration of all verti
es and edges.The di�eren
e might be quite signi�
ant. For example, in the
ontext of model
he
king [13℄, the impli
it de�nition of the graph is up to exponentially moresu

in
t
ompared to the expli
it one. This is
ommonly referred to as the stateexplosion problem [13℄. However, it turns out that, in the situation where thegraph has to be traversed more than on
e, whi
h is the
ase for all parallel SCCde
omposition algorithms, it is advantageous to �rst generate the whole graphand store it in an expli
it form. All subsequent
omputations are then performedusing the expli
it representation. We save the time for repeated generation ofsu

essors and sin
e the graphs we are interested in are mainly sparse, the neededmemory is proportional to the number of verti
es only.3 Known AlgorithmsBefore des
ribing individual parallel algorithms, we des
ribe the basi
 te
hniquesthat the later algorithms will use. This allows us to des
ribe the algorithms andanalyse their behaviour in a more
ompa
t and
learer way.All parallel algorithms presented in this paper build on the same basi
 prin-
iple. The graph to be de
omposed is divided into independent (SCC-
losed)subgraphs. These are further divided into smaller independent subgraphs untilthey be
ome SCCs. All the algorithms take advantage of the fa
t that
ompu-tation on separate independent subgraphs
an be done in parallel.3.1 Rea
hability relationComputation of the rea
hability relation is the
ore pro
edure used in all thealgorithms. The task of the pro
edure is to identify all verti
es that are rea
hable6

from a given vertex, i.e. to
ompute its forward
losure. The standard breadth-�rst or depth-�rst traversals of the graph
an be employed to do so using O(n)spa
e and O(n +m) time.The rea
hability pro
edure is the �rst pla
e where parallelism
omes intoplay in the algorithms. The parallelisation of a rea
hability pro
edure has by nowbe
ome a standard te
hnique [10, 11, 24, 21℄. A so
alled partition fun
tion is usedto assign verti
es to pro
essors. Ea
h pro
essor is responsible for the explorationof the verti
es assigned to it by the partition fun
tion. Ea
h pro
essor maintainsits own set of already visited verti
es and its own list of verti
es to be explored.If a vertex has been visited previously (it is in the set of visited verti
es), thenits re-exploration is omitted. Otherwise, its immediate su

essors are generatedand distributed into lists of verti
es, to be explored a

ording to the partitionfun
tion.The algorithms des
ribed in the next se
tion use the notion of ba
kwardrea
hability, in addition to the notion of forward rea
hability. The task of aba
kward rea
hability pro
edure is to identify all verti
es that a given vertex
an be rea
hed from. The pro
edure for ba
kward rea
hability mimi
s the be-haviour of the pro
edure for the forward rea
hability ex
ept it uses immediateprede
essors instead of immediate su

essors during graph traversal.Note that in many
ases, the forward and ba
kward rea
hability pro
edureare restri
ted to a parti
ular independent subgraph of the original graph. This
an be a
hieved by an additional marking of that subgraph, or simply by deletingedges that leave that subgraph.3.2 Pivot sele
tionIn several algorithms, there is a point at whi
h a
ertain vertex (
alled pivot)must be sele
ted from the
urrent independent subgraph to start the de
ompo-sition of that subgraph. Pivot sele
tion plays a signi�
ant role in the
omplexity7

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

TT

LT

LT

T

TT

T

��
��
��

��
��
��

��
��
��

��
��
��

Leading Trivial component.

Terminal Trivial component.

T

TT

LT

Trivial component.

Pivot.

Forward reachability.

Backward reachability.

Fig. 1. Component dete
tion, identi�ed subgraphs, and trivial
omponents.of the algorithms. Imagine we always pi
k a pivot belonging to a
omponent thathas no des
endant
omponents in the
omponent graph of the subgraph beingde
omposed. Due to the a
y
li
ity of the
omponent graph su
h a
omponentalways exists. Having su
h a pivot all verti
es belonging to the
orresponding
omponent
an be identi�ed using only a single forward rea
hability initiatedat the pivot. De
omposing the graph to SCCs in this manner results in a lin-ear time pro
edure. Unfortunately, to pi
k pivots so that the
ondition above issatis�ed means to pi
k pivots in the depth-�rst sear
h post-ordering, whi
h is,as stated in the introdu
tion, diÆ
ult to be done in parallel. Sin
e the optimalpivot sele
tion is diÆ
ult, pivots are typi
ally sele
ted randomly.3.3 Trivial strongly
onne
ted
omponentsThis subse
tion presents an eÆ
ient te
hnique for the elimination of leadingand terminal trivial
omponents from any independent subgraph. Use of thiste
hnique
an signi�
antly speed up all the SCC de
omposition algorithms, sin
ethey are not that eÆ
ient on dete
ting trivial
omponents.Every vertex that has zero prede
essors must be a trivial
omponent and assu
h it
an be immediately removed (along with all in
ident edges) from thegraph. Removing su
h a vertex may, however, produ
e new verti
es without pre-8

de
essors that
an be removed in the same way. We refer to this re
ursive elim-ination te
hnique as One-Way-Cat
h-Them-Young elimination (OWCTY) [16℄.The te
hnique
an be applied in an analogous way to verti
es without su

essors(Reversed OWCTY) as well. An improved version of the basi
 parallel algorithmthat performs OWCTY elimination before sele
tion of the pivot was des
ribedin [20℄. We stress that only leading and terminal trivial
omponents may beidenti�ed in this way. Trivial
omponents in between non-trivial SCCs will notbe identi�ed. These
omponents, however, may be
ome leading or terminal whenthe graph is further divided. The graph depi
ted in Figure 1
ontains all threetypes of trivial
omponents: leading trivial
omponents (LT), terminal trivial
omponents (TT), and trivial
omponents that are neither leading nor terminal(T).Having des
ribed the basi
 te
hniques, we
an now present individual algo-rithms. All pseudo
odes listed below des
ribe the
ore parts of the algorithms.We neither list the initial rea
hability pro
edure that must be performed in or-der to
ompute the expli
it representation from the impli
it one, nor the manyte
hni
al details related to implementation, parallelisation, distribution, et
.3.4 FBThe FB algorithm [17℄ is the basi
 algorithm, outlined in Se
tion 1. We illustratethe basi
 prin
iple of this algorithm. Figure 1 shows the basi
 step of the algo-rithm. First, a vertex (
alled pivot) is sele
ted at random from an independentsubgraph (the whole graph in this situation) that is not known to be a singleSCC yet. Se
ond, the forward and the ba
kward
losure of the pivot are
om-puted; these are depi
ted by shaded regions. This pro
edure divides the graphinto four independent subgraphs. The verti
es that are both in the forward andthe ba
kward
losure form the SCC of pivot and need not be further pro
essed.The other three subgraphs are: verti
es in the forward
losure but not in the9

ba
kward
losure, verti
es in the ba
kward
losure but not in the forward
lo-sure, and verti
es that are neither in the forward nor in the ba
kward
losure.These three subgraphs have to be further de
omposed. They
an be de
omposedindependently and hen
e in parallel. Re
ursive appli
ation of the basi
 step isused to do it.The pseudo
ode of the algorithm is in Figure 2. A pivot is sele
ted usingpro
edure PIVOT and its forward and ba
kward
losures are
omputed usingparallel rea
hability pro
edures FWD and BWD. Both rea
hability pro
edureshave two parameters. Besides the vertex or verti
es to start from, ea
h rea
ha-bility pro
edure is also given a set of verti
es that its exploration is limited to.This ensures that given a subgraph, the pro
edure will explore only immediatesu

essors or prede
essor of verti
es within the subgraph. The sets of verti
es as
omputed by forward and ba
kward rea
hability pro
edures are referred to as Fand B, respe
tively. Having
omputed both sets F and B, a new
omponent isidenti�ed as the interse
tion of F and B, and re
ursive
alls for three new sub-graphs are made. As stated in Se
tion 1, the time
omplexity of the algorithmis O(n � (n+m)).1 pro
 FB(V)2 if (V 6= ;)3 then p := PIVOT(V)4 F := FWD(p;V)5 B := BWD(p;V)6 F \B is SCC7 in parallel do8 FB(F r B)9 FB(B r F)10 FB(V r (F [B))11 od12 �13 end Fig. 2. FB Algorithm10

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

MP

4

2

7

8

����
����
����
����
����

����
����
����
����
���� ���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

02 7 8

5 6 34

1

Fig. 3. Subgraphs identi�ed with maximal prede
essors.3.5 Colouring/Heads-o� (CH)The
olouring algorithm was introdu
ed in [22℄. It uses a totally ordered set of
olours. Initially, ea
h vertex has its own
olour. The
olours are repeatedly prop-agated to su

essors with a smaller
olour, until all edges are non-de
reasing. Aforward rea
hability pro
edure augmented to propagate maximal visited
olours
an be used for this task. Note that a vertex
an be re-
oloured several times,whi
h results in time
omplexity of O(n � m) [9℄. The �nal
olour of a vertexis the
olour of its maximal prede
essor, i.e., prede
essor with maximal
olour.Here a prede
essor doesn't ne
essarily mean an immediate prede
essor (as in therest of this paper), but here it means any vertex in the ba
kward
losure. After
olouring, all verti
es in a single SCC have the same
olour. This is be
ause allverti
es in a single strongly
onne
ted
omponent share the same set of prede-
essors. So all edges between verti
es of di�erent
olours
an be removed. Thiste
hnique is able to divide the graph into more than four parts, as opposed tothe te
hnique presented in Subse
tion 3.4. Unfortunately, we don't know how todo this in linear time. A graph division obtained after
olouring is depi
ted inFigure 3.In the se
ond step, one takes as roots those verti
es that kept their ini-tial
olour. The SCC of ea
h root
onsists of those verti
es that are ba
kwardrea
hable (within the same
olour) from it. These SCCs are removed (heads-o�)and the algorithm pro
eeds with the remaining sub-graph and with the original
olour assignment. 11

The pseudo
ode of the algorithm is in Figure 4. Computation of maximalprede
essors is done by the pro
edure FWD-MAXPRED, whi
h returns thelist of roots as PredList. It also
omputes for ea
h k 2 PredList the set Vkof verti
es with maximal prede
essor k. The SCCs of the roots are identi�edby the standard pro
edure BWD, whi
h performs ba
kward rea
hability. Theremoval of these SCCs on line 8 was referred to as heads-o� in the previousparagraph. Edges are not removed there. Instead, separate re
ursive
alls of themain pro
edure restri
ted to the appropriate subgraphs are used.The time
omplexity of the algorithm is O((L + 1) � n � m)), where O(n �m)
omes from the
omplexity of the FWD-MAXPRED pro
edure. The total
omplexity follows from the fa
t that every time a re
ursive
all is invoked, it ison a graph with stri
tly shorter longest path in the quotient graph.1 pro
 CH(V)2 if (V 6= ;)3 then PredList; (Vk)k2PredList := FWD-MAXPRED(V)4 forea
h k 2 PredList do5 in parallel do6 Bk := BWD(k; Vk)7 Bk is SCC8 CH(Vk rBk)9 od10 od11 �12 end Fig. 4. CH Algorithm3.6 OBFThis algorithm is based on a re
ent te
hnique OWCTY-BWD-FWD (OBF) [4, 3℄whi
h gave name to the whole algorithm. It identi�es a number of independentsubgraphs (
alled OBF sli
es) in O(n+m) time. The sli
es are then de
omposedusing the FB algorithm. This algorithm assumes the input graph to be rooted,i.e., we have an initial vertex from whi
h all other verti
es are rea
hable.12

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
������������������������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

��
��
��

��
��
��

��
��
��
��

��
��
��
��

where OWCTY is stopped

where FWD is stopped

OWCTY−eliminated vertices

Identified subgraphs

T T

T

T TTT

T

T T

T

T TTT

T

Fig. 5. Two steps of OWCTY-BWD-FWD independent subgraph identi�
ation.The OBF te
hnique repeatedly employs OWCTY elimination, su

eeded withba
kward and forward rea
hability. Ea
h iteration identi�es one OBF sli
e. Thepseudo
ode of the algorithm is in Figure 6. A graph and two steps of the te
h-nique performed on the graph are depi
ted in Figure 5. We simultaneously de-s
ribe the �gure and the pseudo
ode. We start with the initial vertex (the vertexwith no prede
essors in the �gure, the vertex v in the pseudo
ode). The OWCTYelimination pro
edure (line 5 in pseudo
ode) eliminates all leading trivial
om-ponents (the set Eliminated in the pseudo
ode) and visits some verti
es of all
omponents immediately rea
hable from the eliminated trivial ones. Visited butnot eliminated verti
es are shown as verti
es with a little
ross (the set Rea
hed).A ba
kward rea
hability (BWD()) performed from verti
es with the little
rossidenti�es the �rst OBF sli
e (the set B). Note that the sli
e
ontains exa
tlyall strongly
onne
ted
omponents immediately rea
hable from the eliminatedtrivial
omponents. The de
omposition of the sli
e is initiated as an independentparallel pro
edure (line 10). Then a forward rea
hability pro
edure that stops13

on immediate su

essors of verti
es in the sli
e is exe
uted (FWD-SEEDS()).These su

essors (verti
es with the little
ir
le in the �gure, Seeds on line 12 inthe pseudo
ode) are used to start the next iteration of OBF. The time
omplexityof the algorithm is O(n � (n+m)), the same as for the FB algorithm.1 pro
 OBF(V; v)2 Seeds := fvg3 [v is initial vertex℄4 while V 6= ; do5 Eliminated;Rea
hed := OWCTY(Seeds; V)6 V := V n Eliminated7 [All elements of Eliminated are trivial SCCs℄8 B := BWD(Rea
hed; V)9 in parallel do10 FB(B)11 od12 Seeds := FWD-SEEDS(B; V)13 V := V n B14 od15 end Fig. 6. OBF Algorithm4 Re
ursive OBFAs shown in [4℄, OBF performs better than FB in a number of experiments. Notethat in OBF the graph is split into sli
es in linear time. On ea
h sli
e, algorithmFB is applied. But, as OBF is better than FB, we now propose to re
ursivelyapply OBF to the sli
es.However, the sli
e may not be rooted, so we must:{ Repeatedly pi
k a vertex from the sli
e and
ompute its forward
losurewithin the sli
e; we
all this a \rooted
hunk". Subsequently run OBF onea
h rooted
hunk within the sli
e;{ Add a termination
riterion in
ase the whole sli
e is one SCCAdding a termination
riterion is easy. No spe
ial work has to be done. Wesimply
ount the verti
es visited during the �rst ba
kward sear
h in the �rst14

rooted
hunk (The \B" part of OBF). If the sli
e
onsists of exa
tly one SCCthere will be only one rooted
hunk in it; O will not eliminate any vertex, andso B will be started from the root and explores the whole sli
e. Conversely, if Bstarting from the root of the �rst
hunk explores the whole sli
e, the sli
e is oneSCC, for it is both the forward and the ba
kward
losure of the root. We nowdes
ribe re
ursive OBF in more detail.The pseudo
ode of Re
ursive OBF is in Figure 7. The suÆx \-P" in thename of the pro
edure means that it runs in parallel on independent subgraphs.The term OBFR without any suÆxes is used to refer to Re
ursive OBF as su
h,without spe
ifying the degree of parallelism (see Subse
tion 4.1).We start with the whole graph. Verti
es in re
ognised SCCs are removedfrom the \working" set V until we end up with an empty set at whi
h point allSCCs have been identi�ed.Initially we assume that we don't have a vertex from whi
h all other verti
esare rea
hable (initial vertex). To start OBF we need su
h a vertex, so we pi
kone vertex (line 3) and
ompute its forward
losure Range in V using pro
edureFWD() (line 4). OBF is then applied on Range. Verti
es from V n Range willbe pro
essed in the next iterations of the main while-loop (lines 2{24).Before OBF is started on Range, Range is saved into OriginalRange, thiswill enable us to determine if a sli
e found by OBF is an SCC. Of
ourse, in thea
tual implementation we only store the size of OriginalRange. On line 9 thereis an invariant \(The forward
losure of Seeds in Range) = Range". In the �rstiteration of the while-loop on lines 8{23 the invariant holds trivially, be
auseSeeds
ontains just one vertex and Range was
omputed as a forward
losure ofthat vertex. Pro
edure OWCTY() eliminates leading trivial
omponents by re-peatedly removing indegree 0 verti
es rea
hable from Seeds. Eliminated verti
esare returned as the set Eliminated, and subsequently removed from Range. Ver-ti
es at whi
hOWCTY() stops (they have positive indegree) are returned as the15

1 pro
 OBFR-P(V)2 while (V 6= ;) do3 v := PIVOT(V)4 Range := FWD(v; V)5 Seeds := fvg6 V := V n Range7 OriginalRange := Range8 while Range 6= ; do9 [Invariant: The forward
losure of Seeds in Range = Range℄10 Eliminated;Rea
hed := OWCTY(Seeds;Range)11 Range := Range nEliminated12 [All elements of Eliminated are trivial SCCs℄13 B := BWD(Rea
hed;Range)14 if (B = OriginalRange) then15 B is SCC16 else17 in parallel do18 OBFR-P(B)19 od20 Seeds := FWD-SEEDS(B;Range)21 �22 Range := Range nB23 od24 od25 end Fig. 7. Re
ursive OBF
set Rea
hed. The forward
losure of Rea
hed in Range equals Range, sin
e anypath that leads from Seeds to a non-eliminated vertex has to
ontain some vertexfrom Rea
hed. All elements from Eliminated are trivial SCCs. Now a ba
kwardsear
h is started from verti
es in Rea
hed. This sear
h is implemented by pro-
edure BWD(). Ba
kward
losure of Rea
hed in Range is returned as the setB. This is the �rst SCC-
losed sli
e found by OBF. If the set B equals the setOriginalRange, it means that all verti
es in the SCC-
losed set OriginalRangeare rea
hable from the same single vertex (Note that B = OriginalRange isonly possible in the �rst iteration of the while-loop 8{23) and so B is indeed anSCC. Consequently, Range nB is the empty set and the while-loop �nishes.16

If B 6= OriginalRange we run OBFR-P() on B re
ursively. Moreover, notethat the nested pro
edure
an be run in parallel, whi
h in
reases parallelism.Seeds for the next iteration of the while-loop 8{23 are
omputed by the pro-
edure FWD-SEEDS, whi
h simply returns all verti
es from Range that areimmediate su

essors of verti
es in B but not in B. Sin
e all paths that rea
hverti
es in Range n B from B must
ontain some vertex from Seeds, after wesubtra
t B from Range, the invariant of line 9 is satis�ed. When Range = ;,the while-loop 8{23 �nishes and we handle the remaining verti
es in V .We now formally prove the
orre
tness of the algorithm. The key point isthe invariant on line 9. It ensures that the whole graph is eventually pro
essed.As argued earlier, it trivially holds in the �rst iteration of the while loop onlines 8{23. Thus, it remains to show that, if the invariant holds in iteration i,then it holds also in iteration i + 1. Together with the fa
t than Range getssmaller in every iteration, it implies that the whole rooted
hunk
omputed online 4 is pro
essed on lines 8{23. Another important point is that the set B
om-puted on line 13 is an independent (SCC-
losed) subgraph. This implies partial
orre
tness. Sin
e line 18 is exe
uted only if B is smaller than OriginalRange,�nite depth of re
ursion and thus termination of the algorithm is ensured. Allthe statements in this paragraph are proved below.We sometimes use a set of verti
es to refer to the graph indu
ed by that set.To prove the invariant, we need to strengthen it a bit. In addition to the fa
tthat the forward
losure of Seeds in Range is equal to Range, we argue thatRange is an independent subgraph of OriginalRange. Sin
e initially Range =OriginalRange, the strengthened invariant holds in the �rst iteration of thewhile loop.The following lemmata analyse one iteration of the while loop on lines 8{23.In the whole iteration Range is used to refer to the set Range on line 9, i.e.,at the very beginning of the iteration. The same goes for Seeds. The set Range17

omputed on line 11 is referred to as Range0. The set Range
omputed on line 22is referred to as Range00. The set Seeds
omputed on line 20 is referred to asSeeds0.Lemma 1. Verti
es eliminated by OWCTY() (the set Eliminated on line 10)are trivial SCCs of OriginalRange.Proof. Let's suppose, for the sake of
ontradi
tion, that OWCTY() elimi-nates a vertex v su
h that there is a vertex v0 su
h that there is a path inOriginalRange from v to v0 and vi
e versa. Range is an independent subgraphof OriginalRange. It follows, that Range
ontains a
y
le
 = (v0; v1; : : : ; vk)with v0 = vk = v. At the moment when v was eliminated it must have had in-degree 0, whi
h means that vertex vk�1 must have been eliminated earlier, sin
ethere is an edge from vk�1 to v. By repeating this argument, we get that allverti
es vk�2; vk�3; : : : ; v0 were eliminated before v and sin
e v0 = v, it meansthat v was eliminated before v. An obvious
ontradi
tion. �Lemma 2. Let Rea
hed be the set of verti
es at whi
h OWCTY() stops (
f.line 10; these are the non-eliminated verti
es from Seeds and the non-eliminatedsu

essors of the eliminated verti
es). Then the forward
losure of Rea
hed inRange0 is equal to Range0.Proof. Sin
e the forward
losure of Seeds in Range is equal to Range, for ea
hv 2 Range0 there is w 2 Seeds su
h that there is a path p = (v0; v1; : : : ; vk),where v0 = w, vk = v, and k � 0. Sin
e OWCTY() eliminates only indegree0 verti
es, there is j � 0 su
h that verti
es v0; : : : ; vj�1 were eliminated andverti
es vj ; : : : ; vk were not, and vertex vj is in the set Rea
hed. It follows thatv is rea
hable from vj in Range0. Therefore, the forward
losure of Rea
hed inRange0 is Range0. �18

Lemma 3. The set B
omputed on line 13 (The ba
kward
losure of Rea
hedin Range0) is an independent subgraph of Range0. (No SCC has verti
es both inB and Range0 nB).Proof. It is suÆ
ient to show that there is no edge from Range0 n B to B.However, that's obvious for the existen
e of su
h edge (w; v) would imply thatw 2 B, whi
h is impossible sin
e, a

ording to the assumption, w 2 Range0 nB.�Lemma 4. Let Seeds0 be the su

essors of the verti
es in B whi
h are in Range00= Range0 nB. Then the forward
losure of Seeds0 in Range00 is Range00.Proof. Sin
e Rea
hed � B, the forward
losure of B in Range0 is Range0 byLemma 2. Therefore, for ea
h vertex v 2 Range00 there is w 2 B su
h thatthere is a path p = (v0; v1; : : : ; vk), where v0 = w, vk = v, and k � 1. Let jbe the greatest index with the property that vj 2 B, then vj+1 2 Seeds0 andthe path p0 = (vj+1; : : : ; vk) is a path in Range00. Thus v is rea
hable fromvj+1 in Range00. It follows that the forward
losure of Seeds0 in Range00 isequal to Range00. Together with the fa
t that Range00 is Range without someindependent subgraphs (Lemma 1 and Lemma 3) it implies that if Range00 6= ;,then the strengthened invariant is satis�ed in the next iteration. �So far, we proved the strengthened invariant of line 9 by analysing one itera-tion of the while loop on lines 8{23. It follows that the whole set OriginalRange
omputed on line 4 is eventually pro
essed and divided into independent sub-graphs by the while loop. To prove the
orre
tness of the algorithm, we stillneed to show that it
orre
tly identi�es an SCC when it sees it and that it never
reates a subgraph that is not independent, part of whi
h was already shown.Lemma 5. If the set OriginalRange on line 7 is an independent subgraph ofthe whole input graph then OriginalRange is an SCC of the whole input graph if19

and only if, for an arbitrary vertex v 2 OriginalRange, the forward
losure of vin OriginalRange is equal to OriginalRange, OWCTY(fvg; OriginalRange)does not eliminate any vertex, and the ba
kward
losure of v in OriginalRangeis equal to OriginalRange.Proof. Forward impli
ation. If OriginalRange is an SCC, then for ea
h pair ofverti
es z; w 2 OriginalRange there is a path from z to w in OriginalRange.The statements for the forward and the ba
kward
losures follow dire
tly. Thereis a vertex w 2 OriginalRange su
h that there is a path from w to v inOriginalRange, so indegree(v) > 0, and so OWCTY() started from v
an-not eliminate any vertex.Ba
kward impli
ation. For ea
h pair of verti
es z; w 2 OriginalRange thereis a path from z to w in OriginalRange, whi
h follows from the assumptionabout the forward and the ba
kward
losures. (There is a path from z to v anda path from v to w). Sin
e OriginalRange is an independent subgraph of thewhole input graph (Lemma 3), OriginalRange is an SCC of the whole inputgraph. �Lemma 6. Let G = (V;E) be an arbitrary graph. For arbitrary vertex v 2 V ,the forward
losure of v in V , denoted by A, is an independent subgraph of G.Proof. Similar to the proof of Lemma 3. (There is no edge from A to V nA.)�Theorem 1. The algorithm in Figure 7
orre
tly identi�es all SCCs in the inputgraph.Proof. In the while loop on lines 2{24 the graph is
orre
tly divided into in-dependent subgraphs by repeated appli
ation of lines 3 and 4 (Lemma 6). Thesubgraphs that are SCCs are
orre
tly identi�ed by Lemma 5. The subgraphs20

that are not SCCs are divided into smaller independent subgraphs by Lem-mas 1{ 4. To these smaller subgraphs, the pro
edure is applied re
ursively.The only
ase when the re
ursive appli
ation is not exe
uted is the
ase whenB = OriginalRange, whi
h
an happen only in the �rst iteration of the whileloop on lines 8{23. This is exa
tly the
ase when OriginalRange is one SCC,again by Lemma 5. The rest follows from the fa
t that the relation \being anindependent subgraph of" is transitive. �Lemma 7. The overall time
omplexity of Re
ursive OBF is O((r + 1) � (m +n)), where r is the maximal depth of re
ursion (r = 0 if no re
ursive
alls areexe
uted).Proof. Two distin
t Re
ursive OBF pro
edures on the same depth of re
ursionoperate on disjoint parts of the graph, so at most O(m + n) work is done forea
h re
ursion depth. Thus the overall
omplexity is O((r +1) � (m+ n)). �Theorem 2. The depth of re
ursion of Re
ursive OBF is at most L (the lengthof the longest path in the quotient graph of the whole graph).Proof. The proof pro
eeds by indu
tion on L.Indu
tion basis. If L = 0, then the whole graph is one SCC. This is dete
tedon the re
ursion level zero, so the maximal depth of re
ursion is 0.Indu
tion step. It is suÆ
ient to show that appli
ation of the pro
edure inFigure 7 (not
ounting re
ursive
alls) to a graph with L = k > 0 divides it intosubgraphs with L at most k � 1. There are two possible
ases.Case 1. The SCC of the vertex v sele
ted on line 3 is not the �rst vertexof any of the longest paths in the quotient graph. Then, obviously, the forward
losure of v is an independent subgraph the quotient graph of whi
h does not
ontain paths longer than k � 1. The same goes for all independent subgraphsinto whi
h it might be further divided in the while loop on lines 8{23.21

Case 2. The SCC of the vertex v sele
ted on line 3 is the �rst vertex of one ofthe longest paths in the quotient graph. Then at least one of the longest paths isin the quotient graph of the forward
losure of v. The important point is that alllongest paths in the quotient graph of the forward
losure must have the SCC ofv as their �rst vertex. (The path not
ontaining the SCC of v
an be extended,be
ause the SCC of v is a leading SCC). If the SCC of v is trivial, it is eliminatedby OWCTY. If it is non-trivial, it is equal to the �rst OBF sli
e. In both
ases,the SCC of v is removed in the �rst iteration of the while loop on lines 8{23.Whi
h leaves us with a graph with L less than k. The rest follows easily. �Corollary 1. The overall time
omplexity of Re
ursive OBF is O((L+1) � (m+n)).The upper bound
annot be tightened as shown by the following example.De�ne Gk = (Vk ; Ek) as follows. LetV 00 = f0gV 0i+1 = V 0i [f2i+ 1; 2i+ 2gE00 = f(0; 0)gE0i+1 = E0i [f (2i+ 1; 2i+ 1); (2i+ 2; 2i+ 2);(max(2i� 1; 0); 2i+ 1); (2i+ 2; 2i); (2i+ 2; 2i+ 1)gfor i 2 f0; : : : ; kg. NowVk = V 0k [f2k + 1gEk = E0k [f(2k + 1; 2k + 1); (max(2k � 1; 0); 2k + 1)gFigure 8 shows G2. Note that Gk has 2k + 2 verti
es and 5k + 3 edges. Onepossible behaviour of Re
ursive OBF (OBFR for short) on Gk is as follows.Suppose OBFR pi
ks the vertex 2k �rst. All verti
es of Gk are rea
hable from2k so the �rst rooted
hunk is the whole graph. OBF is then run on this rooted22

0 3124 5

Fig. 8. Example for lower bound of Re
ursive OBF
hunk. No vertex is eliminated by OWCTY(), for 2k has a prede
essor (itself).The �rst OBF sli
e is then f2kg whi
h is identi�ed as an SCC by subsequentre
ursive
all to OBFR. The �rst OBF then
ontinues on su

essors of f2kg,these are 2k � 2 and 2k � 1. Again, OWCTY() does not eliminate anything.Then a ba
kward rea
hability is started from f2k � 2; 2k � 1g and explores thewhole remaining graph ex
ept for the vertex 2k+1. So, the se
ond OBF sli
e isequal to the graph Gk�1 and OBFR is
alled re
ursively to pro
ess it.We have shown that maximal re
ursion depth of OBFR on Gk is k + 1. Atre
ursion depth i, a graph with at least 2(k�i)+2 verti
es and at least 5(k�i)+3edges is explored at least on
e. So by Corollary 1 the overall time
omplexity ofOBFR on Gk is
(n � (n+m)).4.1 In
reasing the degree of parallelismIn [4℄ it was noti
ed that OBF has a better worst-
ase running time than CH,mainly due to possible re-
olouring. Still, our initial experiments (
f. Figure 11)showed that CH performs better on graphs with many small SCCs. We attributethis to the higher degree of parallelism in CH, whi
h outweighs the extra
ostsdue to re-
olouring in this
ase.There is room to in
rease parallelism in OBFR-P() too. The pseudo
ode ofthis \more parallel" version is in Figure 10. It exploits the fa
t that, after wepi
k a vertex in V and identify its forward
losure Range in V , we
an run OBF23

on Range in parallel and without waiting for its
ompletion we
an pi
k anothervertex from V and start
omputing its
losure.So we essentially have three versions of Re
ursive OBF varying in the \degreeof parallelism". This is illustrated in Figure 9. Ea
h diagram starts with a boldverti
al axis, where the downward dire
tion represents the progression of time.The numbered
olumns represent independent parallel pro
edures. An arrowfrom
olumn i to
olumn j indi
ates that pro
edure i starts pro
edure j. Forsimpli
ity, the �gure does not show re
ursive
alls of OBF.Assume we have a graph whose verti
es are partitioned into the followingdisjoint sets a

ording to how Re
ursive OBF works on the graph: V = B11 [B12 [B13 [B21 [B31 [B32. B1(1�3) = B11 [B12 [B13 is the
losure (Range)of the �rst pi
ked vertex (�rst rooted
hunk) and the individual sets are thesli
es identi�ed by OBF in the
losure. Similarly B2(1) = B21 is the
losure ofthe se
ond pi
ked vertex (se
ond rooted
hunk) and B3(1�2) = B31 [B32 is the
losure of the third pi
ked vertex (third rooted
hunk). For simpli
ity, we assumethere are no trivial
omponents eliminated by OWCTY.The leftmost diagram in Figure 9 illustrates the operation of the basi
 Re-
ursive OBF when no parallel pro
edures are exe
uted. SCCs are pro
essed oneby one (delete lines 17 and 19 from Figure 7).The middle diagram in Figure 9 illustrates the operation of Re
ursive OBFin Figure 7. Ea
h time a new sli
e is identi�ed by OBF, a new parallel pro
edureis started to pro
ess the sli
e. The algorithm �rst pi
ks a vertex, identi�es theset B1(1�3), then the sli
es B11, B12 and B13. Only then it
an pi
k anothervertex from the unexplored part of the graph, identify B2(1), ...The rightmost diagram in Figure 9 illustrates the operation of the \moreparallel" Re
ursive OBF in Figure 10. It does sli
ing of B1(1�3), B2(1), andB3(1�2) in separate parallel pro
edures. This allows it to get to B2(1) and B3(1�2)mu
h faster. 24

1 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10
B12B13
B11
B21
B31B32

B11 B12 B13 B11 B12 B13
B31 B32B21 B21 B32B31

B2(1)
B3(1�2)

B1(1�3) B1(1�3)
B2(1)B3(1�2)

B1(1�3)B2(1)B3(1�2)

Fig. 9. Three versions of Re
ursive OBF di�erent in degree of parallelism5 Experimental EvaluationThe experiments were
arried out on a
luster of 8 workstations inter
onne
tedwith 1 Gbps Ethernet. Ea
h workstation was equipped with AMD AthlonTM 643500+ Pro
essor and 1 GB RAM. We used the LAM/MPI library for messagepassing. Our implementation is a distributed memory one. The graph is parti-tioned into a number (in our
ase 8) of disjoint parts. Ea
h workstation ownsone part. Ea
h workstation runs the same
ode and
ommuni
ates with otherworkstations via the message passing library only. The
omputation at ea
hworkstation pro
eeds sequentially (the exe
ution of independent parallel pro-
edures is serialised) meaning that no additional threads are exe
uted. This isa
hieved by maintaining an appropriate pie
e of information about ea
h pro
e-dure in an \array of pro
edures" and iterating over its elements repeatedly to letea
h pro
edure perform some work. Note that a single pro
edure runs in parallelover di�erent partitions of the graph.We observed that Re
ursive OBF su�ers from the amount of syn
hronisationpoints among individual pro
edures. However, the amount of syn
hronisationpoints may be signi�
antly redu
ed if independent pro
edures are started as25

pro
 OBFR-MP(V)while (V 6= ;) doPi
k a vertex v 2 VRange := FWD(v; V)Seeds := fvgV := V n Rangein parallel doOBFR-MPX(Seeds;Range)ododendpro
 OBFR-MPX(Seeds;Range)OriginalRange := Rangewhile Range 6= ; doEliminated;Rea
hed;Range := OWCTY(Seeds;Range)All elements of Eliminated are trivial SCCsB := BWD(Rea
hed;Range)if (B = OriginalRange) thenB is SCCelsein parallel doOBFR-MP(B)odSeeds := FWD-SEEDS(B;Range)�Range := Range nBodend Fig. 10. Re
ursive OBF with in
reased parallelism
soon as all data they depend on are ready. Starting independent pro
edures
anbe viewed as an implementation detail, however, it has proven to have signi�
antimpa
t on the performan
e. The three di�erent versions presented in the previousse
tion are re
apitulated in the following.OBFR-S No pro
edures are exe
uted in parallel. When OBF identi�es asli
e it waits for the
omplete
omputation on the sli
e to �nishbefore
ontinuing. 26

OBFR-P OBF identi�es the sli
es, and starts a parallel pro
edure on ea
hsli
e as soon as the sli
e is identi�ed.OBFR-MP Does the same as the previous one, but additionally, within asli
e, it starts a parallel pro
edure as soon as a new forward
hunk(forward
losure of a pi
ked vertex in a possibly not-rooted sli
e)within a sli
e is found.Our experiments show that indeed the total running time of the algorithmde
reases by adding more parallelism, despite the extra overhead (e.g., runningvarious termination dete
tion pro
edures in parallel), and despite the fa
t thata single rea
hability
omputation is already parallel.We
ompare Re
ursive OBF with three other algorithms. Namely FB [17℄,OBF + FB [4℄ and CH (Colouring [22℄). Like Re
ursive OBF, FB and OBF + FB
an be implemented with di�erent degrees of parallelism. For the
omparisonswe implemented only the most parallel versions of these algorithms, whi
h givethe best results. These implementations are denoted by FB-P and OBF-FB-P.CH pro
esses SCCs inherently in parallel; we reused the
ode from [22℄ and allexperiments are
arried out in the same software/hardware environment.5.1 MeasurementsFor the evaluation we used syntheti
 graphs with a regular stru
ture and �xedsize SCCs. The aim was to �nd out how the algorithms work as the SCC size
hanges. We used two types of graphs. The �rst type of graph,
alled LmLmTnwas of the form Loop(m) jj Loop(m) jj Tree(n), where Loop(m) is a
y
le withm states, Tree(n) is the binary tree of depth n, and jj denotes the Cartesianprodu
t of graphs. This graph has 2n+1 � 1
omponents of size (m + 1)2. Itsquotient graph is a binary tree. 27

The se
ond type of graph,
alled LimLon, uses Line(m), being a sequen
eof m states. It is of the form Line(m) jj Line(m) jj Loop(n) jj Loop(n) and
onsequently has m2
omponents of size n2. The quotient graph of the se
ondtype is a square mesh with edges oriented right and down. In the se
ond typethere are many paths of the same length to the same vertex.We also experimented with graphs that arise as state spa
es in real model
he
king appli
ations. The names of these graphs are pre�xed with \
wi", \vasy"and \swp". The former two are taken from the VLTS Ben
hmark Suite [7℄3The swp-graph,
alled swp dmwnqp, models the behaviour of a sliding windowproto
ol with m distin
t data elements, window size 2n, and queue size p. The
omplete list is in Tables 1 and 2.The size of the graphs is relatively small and in prin
iple they
ould bede
omposed on a single ma
hine, but they are large enough for experimentswith distributed algorithms to provide insight.The results for syntheti
 graphs are in Table 3. The results for real graphs arein Table 4. All runtimes are in se
onds, "n/a" means that the runtime ex
eeded36000 se
onds (10 hours). Graphs of dependen
y of runtime on SCC size are inFigure 12 and in Figure 13. We measured this dependen
y for syntheti
 graphsonly. Figure 12 does not
ontain results for all graphs of type 1 sin
e numbers ofverti
es of some of these graphs di�er too mu
h. Only graphs with approximately3 000 000 verti
es were
hosen. The graphs of type 2 have all approximately4 000 000 verti
es, so Figure 13
ontains results for all of them.5.2 EvaluationThere is one important issue
on
erning spa
e
omplexity. To implement a rea
h-ability analysis in linear time we need a way to determine whether a vertex has3 Note that we
onsider the graph of all transitions, while [22℄
onsidered only (invis-ible) � -transitions. 28

10100100010000

10 100 1000 10000 100000 1e+06 1e+07
runtime

SCC size

hobfr-s

Fig. 11. Dependen
y of runtime on SCC size,
omparison of OBFR-S and CH, type 1syntheti
 graphs (log. s
ale)

10100100010000

10 100 1000 10000 100000 1e+06 1e+07
runtime

SCC size

fb-pobfr-mpobf-fb-p
h

Fig. 12. Dependen
y of runtime on SCC size, type 1 syntheti
 graphs (log. s
ale)29

State spa
e N. of SCCs Size of one SCC States TransitionsL10L10T10 2 047 121 247 687 742 940L100L100T4 31 10 201 316 231 938 492L15L15T10 2 047 256 524 032 1 571 840L4L4T16 131 071 25 3 276 775 9 830 300L20L20T12 8 191 441 3 612 231 10 836 252L80L80T8 511 6 561 3 352 671 10 051 452L350L350T4 31 123 201 3 819 231 11 334 492L1750L1750T0 1 3 066 001 3 066 001 6 132 002L1750L1750T1 3 3 066 001 9 198 003 24 528 008Li200Lo10 40 000 100 4 000 000 15 960 000Li125Lo16 15 625 256 4 000 000 15 936 000Li100Lo20 10 000 400 4 000 000 15 920 000Li80Lo25 6 400 625 4 000 000 15 900 000Li67Lo30 4 489 900 4 040 100 16 039 800Li50Lo40 2 500 1 600 4 000 000 15 840 000Li40Lo50 1 600 2 500 4 000 000 15 800 000Li30Lo67 900 4 489 4 040 100 15 891 060Li25Lo80 625 6 400 4 000 000 15 680 000Li20Lo100 400 10 000 4 000 000 15 600 000Li16Lo125 256 15 625 4 000 000 15 500 000Li10Lo200 100 40 000 4 000 000 15 200 000Table 1. Syntheti
 graphs used in experiments
been already visited or not in
onstant time. This is usually a

omplished byallo
ating an array of booleans with n elements, one for ea
h vertex. Algorithmsthat perform many rea
habilities in parallel must have su
h an array for ea
hof them. Our implementations that fall into this
ategory are FB-P, OBF-FB-P,OBFR-P, OBFR-MP. There is no problem with rea
habilities in the same depthof re
ursion. Sin
e they operate on disjoint parts of the graph, one array of sizen is enough. But for pro
edures in di�erent depths we need separate arrays. Andso the spa
e
omplexity is O(m + n � (maximum depth of re
ursion)).Although the maximum depth of re
ursion
an be as high as n, in our ex-periments the algorithm we are mainly interested in, Re
ursive OBF, rea
hedmaximum depth of 15. This makes us believe that spa
e
omplexity is not aproblem of Re
ursive OBF. However, the FB algorithm ex
eeded depth 200 in30

State spa
e N. of SCCs Max. SCC size States Transitions
wi 2165 8723 47 926 423 505 2 165 446 8 723 465
wi 2416 17605 2 150 392 6 2 416 632 17 605 592
wi 7838 59101 1 7 838 608 7 838 608 59 101 007vasy 11026 24660 10 074 720 910 11 026 932 24 660 513vasy 1112 5290 160 061 71 968 1 112 490 5 290 860vasy 12323 27667 11 214 774 910 12 323 703 27 667 803vasy 2581 11442 274 690 26 796 2 581 374 11 442 382vasy 4220 13944 2 398 982 49 151 4 220 790 13 944 372vasy 4338 15666 828 412 26 796 4 338 672 15 666 588vasy 6020 19353 2 041 6 013 920 6 020 550 19 353 474vasy 6120 11031 4 638 059 1 902 6 120 718 11 031 292vasy 8082 42933 323 629 7 054 752 8 082 905 42 933 110swp d2w2q2.s 1 1 429 676 1 429 676 6 704 544swp d2w2q3.s 1 5 323 836 5 323 836 25 236 056swp d3w2q2.s 1 5 168 596 5 168 596 24 615 576Table 2. Real graphs used in experimentsState spa
e FB-P OBFR-S OBFR-P OBFR-MP OBF-FB-P CHL10L10T10 10 128 25 8 8 75L100L100T4 13 19 13 11 5 145L15L15T10 16 118 56 16 17 142L4L4T16 2743 6603 671 309 297 325L20L20T12 224 575 287 74 71 456L80L80T8 94 107 110 34 45 795L350L350T4 83 91 88 38 45 1583L1750L1750T0 34 31 43 17 16 1021L1750L1750T1 148 138 166 87 82 6533Li200Lo10 1982 1964 1131 76 58 9317Li125Lo16 1105 975 740 61 52 5827Li100Lo20 754 588 520 65 51 4513Li80Lo25 548 465 454 57 77 3560Li67Lo30 510 356 484 58 44 3080Li50Lo40 357 236 163 48 48 3350Li40Lo50 286 175 126 50 43 2628Li30Lo67 174 127 110 43 44 2364Li25Lo80 140 102 103 46 46 2972Li20Lo100 176 88 80 43 40 2782Li16Lo125 106 77 115 71 38 2148Li10Lo200 81 58 90 62 45 1895Table 3. Runtimes for syntheti
 graphs (in se
onds)
31

State spa
e FB-P OBFR-S OBFR-P OBFR-MP OBF-FB-P CH
wi 2165 8723 21 43 30 29 22 49
wi 2416 17605 76 8791 942 51 56 126
wi 7838 59101 65 58 107 102 72 227vasy 11026 24660 3387 n/a 3391 416 827 471vasy 1112 5290 168 5611 399 73 73 365vasy 12323 27667 4483 n/a 3942 500 1016 509vasy 2581 11442 169 6182 2084 64 109 276vasy 4220 13944 531 8348 976 347 1987 151vasy 4338 15666 209 14352 4445 107 110 310vasy 6020 19353 60 147 93 51 34 130vasy 6120 11031 888 26611 1483 282 299 592vasy 8082 42933 162 440 640 455 407 280swp d2w2q2.s 12 9 12 16 6 44swp d2w2q3.s 55 13 28 55 18 102swp d3w2q2.s 38 16 42 35 15 70Total runtime 10324 >142621 18572 2583 5051 3702Table 4. Runtimes for real graphs (in se
onds)

10100100010000

100 1000 10000 100000
runtime

SCC size

fb-pobfr-mpobf-fb-p
h

Fig. 13. Dependen
y of runtime on SCC size, type 2 syntheti
 graphs (log. s
ale)32

our experiments. It did not prevent the algorithm from su

essful
omputationof SCCs, be
ause our graphs are relatively small. Nevertheless, this high re-
ursion depth kills the bene�t of having a

umulated memory of a
luster ofworkstations. If we add that FB is mu
h slower if independent subgraphs arenot pro
essed in parallel, we
an
on
lude that FB is not a very good distributedalgorithm. On the other hand, OBF + FB rea
hed maximum re
ursion depth of17. It seems that the uppermost OBF is so su

essful in sli
ing the whole graph,that the amount of work left for FB that pro
esses the sli
es is relatively small.And now for some
omments on the measured runtimes. First for the syn-theti
 graphs. As one
an see from Table 3, OBFR-MP and OBF-FB-P togetherare
lear winners. Their runtimes are pra
ti
ally the same be
ause most of thede
omposition was done by the �rst OBF whi
h is the same for both algorithms.The sli
es identi�ed by the OBF were then pro
essed in parallel. It did notmatter if OBF or FB was used for them be
ause of the stru
ture of the sli
es.FB, OBFR-S and OBFR-P worked quite well on graphs with large SCCs, butthey require a long time to de
ompose a graph with many small
omponents.OBFR-P was the best of them, but its performan
e on graphs with many small
omponents is still poor. The reason for the big di�eren
e between OBFR-P andOBFR-MP is that some sli
es identi�ed by the �rst OBF
ontained many partswith no edges between them and waiting for OBF to �nish on one part beforemoving to next part a�e
ts the performan
e
onsiderably.Interestingly enough, for the syntheti
 graphs of type 1, unlike most of theother algorithms, espe
ially OBFR-S, the CH algorithm worked better on graphswith many small
omponents (Figure 11). We were unable to explain this be-haviour. Moreover, it was not
on�rmed on type 2 graphs (Figure 13). Anotherinteresting point is the extremely poor behaviour of CH on type 2 graphs. Thisis explained by many paths of the same length leading to the same vertex, whi
h
auses frequent re-
olouring. 33

The experiments on real graphs (Table 4) have only one winner, OBFR-MP.Yet, its vi
tory was not as
lear as the vi
tory for syntheti
 graphs. In parti
ular,CH turned out to be su

essful. We in
luded total runtimes for all real graphsto allow for better
omparison.The stru
ture of the graphs was not regular, so re
ursive OBF had to godeeper to de
ompose the graph. Sin
e the de
omposition was not done by the�rst OBF, the FB algorithm had mu
h more work in OBF + FB than forsyntheti
 graphs, whi
h resulted in poor behaviour for some graphs, espe
iallyvasy 12323 27667 and vasy 4220 13944.6 Con
lusionIn this paper we listed and
ompared known distributed algorithms for the de-
omposition of dire
ted graphs into their strongly
onne
ted
omponents. Wealso proposed a new algorithm,
alled Re
ursive OBF, based on re
ursive ap-pli
ation of the OBF te
hnique introdu
ed in [4℄. The
orre
tness of the newalgorithm was proven formally. We also report on an extensive experimentalstudy we did to evaluate the new algorithm. Re
ursive OBF outperformed allthe other algorithms in most
ases.Our experiments show that the way the algorithm is implemented in
uen
esits performan
e a great deal. In parti
ular, the best implementation turned outto be the one with the highest degree of parallelism, that is the one whi
h startsanother parallel pro
edure every time a part of the graph that
an be pro
essedindependently has been identi�ed.There is one type of graphs where the CH algorithm [22℄ may be the best
hoi
e. These are graphs
onsisting of many un
onne
ted islands. Su
h graphsarise for instan
e when
onsidering only (invisible) � -transitions as a prepro
ess-ing step to bran
hing bisimulation redu
tion. CH starts working on all islands34

simultaneously, but all the other algorithms pro
ess them one by one unless they
ontain indegree 0 verti
es. If these islands are small enough, re-
olouring is nota problem and CH is very fast. This suggests an aim for future work: to improveRe
ursive OBF to work better on graphs with many un
onne
ted islands.Re
ursive OBF is also suitable for multi-
ore shared-memory ar
hite
turesthat are going to be the standard in the near future. Implementing and evaluatingRe
ursive OBF on su
h ar
hite
tures is another aim for future work.Referen
es1. N. Amato. Improved pro
essor bounds for parallel algorithms for weighted dire
tedgraphs. Inf. Pro
ess. Lett., 45(3):147{152, 1993.2. J. Barnat, L. Brim, I. �Cern�a, P. Morave
, P. Ro�
kai, and P. �Sime�
ek. Divine { atool for distributed veri�
ation. To appear in pro
eedings of CAV 2006.3. J. Barnat, J. Chaloupka, and J. C. van de Pol. Improved Distributed Algorithms forSCC De
omposition. In Parti
ipant pro
eedings of the Sixth International Work-shop on Parallel and Distributed Methods in veri�Cation (PDMC 2007), pages65{80. CTIT, University of Twente, 2007.4. J. Barnat and P. Morave
. Parallel algorithms for �nding SCCs in impli
itlygiven graphs. In Pro
eedings of the 5th International Workshop on Parallel andDistributed Methods in Veri�
ation (PDMC 2006), LNCS. Springer-Verlag, 2007.5. G. Behrmann. A performan
e study of distributed timed automata rea
habilityanalysis. In Pro
. Workshop on Parallel and Distributed Model Che
king, volume 68of Ele
troni
 Notes in Theoreti
al Computer S
ien
e. Elsevier S
ien
e Publishers,2002.6. S. C. C. Blom, J. R. Calam�e, B. Lisser, S. Orzan, J. Pang, J. C. van de Pol,M. Torabi Dashti, and A. J. Wijs. Distributed analysis with �
rl: a
ompendiumof
ase studies. In O. Grumberg and M. Huth, editors, Tools and Algorithms forthe Constru
tion and Analysis of Systems, Braga, Portugal, volume 4424 of Le
tureNotes in Computer S
ien
e, pages 683{689, Berlin, July 2007. Springer Verlag.35

7. S. C. C. Blom and H. Garavel. The VLTS ben
hmark suite. Available athttp://www.inrialpes.fr/vasy/
adp/resour
es/ben
hmark b
g.html, 2003.8. S. C. C. Blom and J. C. van de Pol. State spa
e redu
tion by proving
on
uen
e.In E. Brinksma and K. G. Larsen, editors, CAV, volume 2404 of Le
ture Notes inComputer S
ien
e, pages 596{609. Springer, 2002.9. L. Brim, I. �Cern�a, P. Morave
, and J. �Sim�sa. A

epting Prede
essors are Betterthan Ba
k Edges in Distributed LTL Model-Che
king. In 5th International Con-feren
e on Formal Methods in Computer-Aided Design (FMCAD'04), volume 3312of LNCS, pages 352{366. Springer-Verlag, 2004.10. S. Caselli, G. Conte, and P. Marenzoni. Parallel state spa
e exploration for GSPNmodels. In G. De Mi
helis and M. Diaz, editors, Appli
ations and Theory of PetriNets 1995, volume 935 of LNCS, pages 181{200. Springer-Verlag, 1995.11. G. Ciardo, J. Glu
kman, and D.M. Ni
ol. Distributed State Spa
e Generation ofDis
rete-State Sto
hasti
 Models. INFORMS Journal of Computing, 1997.12. F. Ciesinski and C. Baier. LiQuor: A tool for Qualitative and Quantitative LinearTime analysis of Rea
tive Systems, 2006.13. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Che
king. The MIT Press,Cambridge, Massa
husetts, 1999.14. R. Cole and U. Vishkin. Faster optimal parallel pre�x sums and list ranking. Inf.Comput., 81(3):334{352, 1989.15. T. H. Cormen, Ch. E. Leiserson, and R. L. Rivest. Introdu
tion to Algorithms.MIT, 1990.16. K. Fisler, R. Fraer, G. Kamhi, M. Y. Vardi, and Z. Yang. Is there a best symboli

y
le-dete
tion algorithm? In Pro
. Tools and Algorithms for Constru
tion andAnalysis of Systems, volume 2031 of LNCS, pages 420{434. Springer, 2001.17. L. K. Fleis
her, B. Hendri
kson, and A. Pinar. On identifying strongly
onne
ted
omponents in parallel. Le
ture Notes in Computer S
ien
e, 1800:505{511, 2000.18. H. Garavel, R. Matees
u, and I. M. Smaranda
he. Parallel State Spa
e Constru
-tion for Model-Che
king. In Pro
eedings of the 8th International SPIN Workshopon Model Che
king of Software (SPIN'01), volume 2057 of LNCS, pages 200{216.Springer-Verlag, 2001. 36

19. H. Gazit and G. L. Miller. An improved parallel algorithm that
omputes the BFSnumbering of a dire
ted graph. Inf. Pro
ess. Lett., 28(2):61{65, 1988.20. W. M
Lendon III, B. Hendri
kson, S. J. Plimpton, and L. Rau
hwerger. Findingstrongly
onne
ted
omponents in distributed graphs. J. Parallel Distrib. Comput.,65(8):901{910, 2005.21. F. Lerda and R. Sisto. Distributed-memory model
he
king with SPIN. In Pro-
eedings of the 6th International SPIN Workshop on Model Che
king of Software(SPIN'99), volume 1680 of LNCS. Springer-Verlag, 1999.22. S. Orzan. On Distributed Veri�
ation and Veri�ed Distribution. PhD thesis, FreeUniversity of Amsterdam, 2004.23. J. H. Reif. Depth-�rst sear
h is inherently sequential. Information Pro
essingLetters, 20(5):229{234, June 1985.24. U. Stern and D. L. Dill. Parallelizing the Mur' veri�er. In O. Grumberg, editor,Pro
eedings of Computer Aided Veri�
ation (CAV '97), volume 1254 of LNCS,pages 256{267. Springer-Verlag, 1997.25. R. Tarjan. Depth �rst sear
h and linear graph algorithms. SIAM Journal on
omputing, pages 146{160, 1972.

37

