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Among many appliations, the algorithm may be used also for the analysisof omputer systems. In partiular, algorithms for SCC deomposition �nd theirappliation in distributed formal veri�ation tools suh as CADP [18℄, DiVinE [2℄,DUPPAAL [5℄, LiQuor [12℄, �CRL [6℄, et. Namely, they allow the tools to verifyquantitative properties of probabilisti systems, ompute � -onuene [8℄, forma preproessing step for branhing bisimulation redution, or verify systems withfairness onstraints or properties given by extensions of B�uhi automata.Unfortunately, graphs modelling omplex omputer systems tend to be verylarge, whih makes it hard to handle them on a single mahine. One way totakle this problem is to distribute the graph aross a luster of workstations andemploy a distributed algorithm to deompose the partitioned graph. However,Tarjan's algorithm (and all other linear algorithms for SCC deomposition, e.g.,Kosaraju's algorithm also known as Double DFS [15℄) strongly rely on the depth-�rst searh post-ordering of verties, whose omputation is known to be P -omplete [23℄, and thus, diÆult to be omputed in parallel. Therefore, di�erentapproahes have been used to design parallel algorithms for solving the problem.A parallel algorithm based on matrix multipliation was desribed in [19℄and further improved in [14, 1℄. The algorithm works in O(log2 n) time in theworst ase. However, to ahieve this low time omplexity it requires O(n2:376)parallel proessors. As typial graphs that we are interested in ontain millionsof verties the algorithm is pratially unusable and is only interesting from atheoretial point of view. Another parallel algorithm for �nding SCCs was givenin [17℄. It exploits the fat that it is possible to eÆiently ompute the set ofverties reahable from a ertain vertex or set of verties in parallel. The generalidea of the algorithm is to repeatedly pik a vertex of the graph and identifythe omponent to whih it belongs, by using a forward and a bakward parallelreahability proedure. The algorithm proved to be eÆient enough in pratie,whih resulted in several theoretial improvements of it [22, 20℄. The worst time2



omplexity of the algorithm is O(n�(n+m)). Nevertheless, the algorithm exhibitsO(m � log n) expeted time [17℄. Another algorithm was introdued in [22℄. Thatalgorithm is more involved, but still, its basi building blok is a simple parallelvalue iteration tehnique.In this paper, whih an be viewed as a full version of [4, 3℄, we summarisea number of known proedures used for distributed SCC deomposition. More-over, we present a new algorithm based on rearranging these proedures, andextensively ompare its implementation with existing algorithms. The rest of thepaper is organised as follows. We reapitulate basi terms and de�nitions in Se-tion 2, desribe known tehniques and algorithms for solving SCC deompositionin Setion 3. The new algorithm based on reursive appliation of OBF [4, 3℄ isdesribed in Setion 4. Compared to [3℄ we added full proofs for the orretnessand the omplexity laims. Results of experiments are in Setion 5. In partiular,we ompare our new algorithm with the algorithms from [22, 17℄, and we measurethe e�et of deomposing sub-graphs one by one, or in parallel. Contributionsof the paper are summarised and future work is outlined in Setion 6.Aknowledgement. We like to thank Simona Orzan for disussions on the CH-algorithm and sharing her implementation. We are grateful to the Centrum voorWiskunde en Informatia (Amsterdam) for hosting a onsiderable part of theresearh reported here.2 Preliminaries2.1 Direted GraphsA (direted) graph G is a pair (V, E), where V is a set of verties, and E � V �Vis a set of (direted) edges. If (u; v) 2 E, then v is alled (immediate) suessorof u and u is alled (immediate) predeessor of v. The indegree of a vertex v is3



the number of immediate predeessors of v. GT = (V;ET ), the transposed graphof G = (V;E), is the graph G with all edges reversed, i.e., ET = f(u; v) j (v; u) 2Eg.Let G = (V;E) be a direted graph. Let E� be a transitive and reexivelosure of E and s; t 2 V two verties. We say that vertex t is reahable fromvertex s if (s; t) 2 E�. If sk is reahable from s0, then there is a sequene ofverties s0; : : : ; sk, s.t. (si; si+1) 2 E for all 0 � i < k. We all this sequenea path. A path is simple if it ontains no dupliated verties. The length of thepath is k, i.e. the number of edges. A graph is rooted if there is an initial vertexs0 2 V suh that all verties in V are reahable from s0. Given a graph G, weuse n, m and l, to denote the number of verties and edges, and the length ofthe longest simple path between any two verties in G, respetively.A set of verties C � V is strongly onneted, if for any verties u; v 2 C,we have that v is reahable from u. A strongly onneted omponent (SCC) is amaximal strongly onneted C � V , i.e. suh that no C 0 with C ( C 0 � V isstrongly onneted. A maximal strongly onneted omponent C is trivial if Cis made of a single vertex  and (; ) =2 E, and is non-trivial otherwise.LetWG be the set of all strongly onneted omponents of graph G = (V;E).The quotient graph of graph G is a direted graph SCC(G) = (WG; HG), whereHG = f(w1; w2) j (9u1; u2 2 V )(u1 2 w1 ^ u2 2 w2 ^ (u1; u2) 2 E)g, i.e., thereis an edge between SCCs if and only if there is an edge between some membersof the SCCs in the original graph. Note that the quotient graph of any diretedgraph is ayli. Given a graph G, we denote by N , M and L, the number ofverties and edges, and the length of the longest (simple) path in the quotientgraph of G, respetively. A strongly onneted omponent is leading if it has nopredeessors in the quotient graph. A set S � V is SCC-losed if eah SCC inthe graph is either ompletely inside the set or ompletely outside the set; suhS is also referred to as an independent sub-graph.4



For v 2 W � V , the forward losure of v in W is the set of reahable statesfrom v in the graph (V;EW ), where EW = f(x; y) j (x; y) 2 E ^ x; y 2 Wg. IfW is not spei�ed, the whole graph is meant. The forward losure of S � Win W is the union of forward losures of all verties from S in W . Finally, thebakward losure of v (or S) in W is the forward losure of v (or S) in W in thegraph GT .2.2 Graph RepresentationA direted graph an be given in many ways. We restrit ourselves to expliitvertex representations, exluding symboli representations, e.g., based on binarydeision diagrams.Beside the standard representations by adjaeny lists or an adjaeny matrixwe also mention graphs that are given impliitly (do not onfuse with symbolirepresentation, this is still an expliit vertex representation). A rooted graph isgiven impliitly if it is de�ned by its initial vertex and a funtion returning im-mediate suessors of an arbitrary vertex. Within the ontext of impliitly givengraphs there are some restritions that algorithms have to follow. If an algorithmrequires any piee of information that annot be onluded from the impliit def-inition of the graph, it has to ompute the information �rst. For example, thereis no way to diretly identify immediate predeessors of a given vertex from theimpliit de�nition of the graph. If the algorithm needs to enumerate immedi-ate predeessors, then the predeessors must be stored, while enumerating thewhole graph �rst. Similarly, in order to number the verties of an impliitly givengraph, one must enumerate all its verties �rst. For numbering the verties ofimpliitly given graphs a parallel proedure was introdued in [18℄. Note thatall verties of an impliitly given graph are reahable from the initial vertex byde�nition. 5



The reason for dealing with impliitly given graphs omes from pratie.In many ases, the desription of rules aording to whih the graph an begenerated is more spae eÆient than the enumeration of all verties and edges.The di�erene might be quite signi�ant. For example, in the ontext of modelheking [13℄, the impliit de�nition of the graph is up to exponentially moresuint ompared to the expliit one. This is ommonly referred to as the stateexplosion problem [13℄. However, it turns out that, in the situation where thegraph has to be traversed more than one, whih is the ase for all parallel SCCdeomposition algorithms, it is advantageous to �rst generate the whole graphand store it in an expliit form. All subsequent omputations are then performedusing the expliit representation. We save the time for repeated generation ofsuessors and sine the graphs we are interested in are mainly sparse, the neededmemory is proportional to the number of verties only.3 Known AlgorithmsBefore desribing individual parallel algorithms, we desribe the basi tehniquesthat the later algorithms will use. This allows us to desribe the algorithms andanalyse their behaviour in a more ompat and learer way.All parallel algorithms presented in this paper build on the same basi prin-iple. The graph to be deomposed is divided into independent (SCC-losed)subgraphs. These are further divided into smaller independent subgraphs untilthey beome SCCs. All the algorithms take advantage of the fat that ompu-tation on separate independent subgraphs an be done in parallel.3.1 Reahability relationComputation of the reahability relation is the ore proedure used in all thealgorithms. The task of the proedure is to identify all verties that are reahable6



from a given vertex, i.e. to ompute its forward losure. The standard breadth-�rst or depth-�rst traversals of the graph an be employed to do so using O(n)spae and O(n +m) time.The reahability proedure is the �rst plae where parallelism omes intoplay in the algorithms. The parallelisation of a reahability proedure has by nowbeome a standard tehnique [10, 11, 24, 21℄. A so alled partition funtion is usedto assign verties to proessors. Eah proessor is responsible for the explorationof the verties assigned to it by the partition funtion. Eah proessor maintainsits own set of already visited verties and its own list of verties to be explored.If a vertex has been visited previously (it is in the set of visited verties), thenits re-exploration is omitted. Otherwise, its immediate suessors are generatedand distributed into lists of verties, to be explored aording to the partitionfuntion.The algorithms desribed in the next setion use the notion of bakwardreahability, in addition to the notion of forward reahability. The task of abakward reahability proedure is to identify all verties that a given vertexan be reahed from. The proedure for bakward reahability mimis the be-haviour of the proedure for the forward reahability exept it uses immediatepredeessors instead of immediate suessors during graph traversal.Note that in many ases, the forward and bakward reahability proedureare restrited to a partiular independent subgraph of the original graph. Thisan be ahieved by an additional marking of that subgraph, or simply by deletingedges that leave that subgraph.3.2 Pivot seletionIn several algorithms, there is a point at whih a ertain vertex (alled pivot)must be seleted from the urrent independent subgraph to start the deompo-sition of that subgraph. Pivot seletion plays a signi�ant role in the omplexity7
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Fig. 1. Component detetion, identi�ed subgraphs, and trivial omponents.of the algorithms. Imagine we always pik a pivot belonging to a omponent thathas no desendant omponents in the omponent graph of the subgraph beingdeomposed. Due to the ayliity of the omponent graph suh a omponentalways exists. Having suh a pivot all verties belonging to the orrespondingomponent an be identi�ed using only a single forward reahability initiatedat the pivot. Deomposing the graph to SCCs in this manner results in a lin-ear time proedure. Unfortunately, to pik pivots so that the ondition above issatis�ed means to pik pivots in the depth-�rst searh post-ordering, whih is,as stated in the introdution, diÆult to be done in parallel. Sine the optimalpivot seletion is diÆult, pivots are typially seleted randomly.3.3 Trivial strongly onneted omponentsThis subsetion presents an eÆient tehnique for the elimination of leadingand terminal trivial omponents from any independent subgraph. Use of thistehnique an signi�antly speed up all the SCC deomposition algorithms, sinethey are not that eÆient on deteting trivial omponents.Every vertex that has zero predeessors must be a trivial omponent and assuh it an be immediately removed (along with all inident edges) from thegraph. Removing suh a vertex may, however, produe new verties without pre-8



deessors that an be removed in the same way. We refer to this reursive elim-ination tehnique as One-Way-Cath-Them-Young elimination (OWCTY) [16℄.The tehnique an be applied in an analogous way to verties without suessors(Reversed OWCTY) as well. An improved version of the basi parallel algorithmthat performs OWCTY elimination before seletion of the pivot was desribedin [20℄. We stress that only leading and terminal trivial omponents may beidenti�ed in this way. Trivial omponents in between non-trivial SCCs will notbe identi�ed. These omponents, however, may beome leading or terminal whenthe graph is further divided. The graph depited in Figure 1 ontains all threetypes of trivial omponents: leading trivial omponents (LT), terminal trivialomponents (TT), and trivial omponents that are neither leading nor terminal(T).Having desribed the basi tehniques, we an now present individual algo-rithms. All pseudoodes listed below desribe the ore parts of the algorithms.We neither list the initial reahability proedure that must be performed in or-der to ompute the expliit representation from the impliit one, nor the manytehnial details related to implementation, parallelisation, distribution, et.3.4 FBThe FB algorithm [17℄ is the basi algorithm, outlined in Setion 1. We illustratethe basi priniple of this algorithm. Figure 1 shows the basi step of the algo-rithm. First, a vertex (alled pivot) is seleted at random from an independentsubgraph (the whole graph in this situation) that is not known to be a singleSCC yet. Seond, the forward and the bakward losure of the pivot are om-puted; these are depited by shaded regions. This proedure divides the graphinto four independent subgraphs. The verties that are both in the forward andthe bakward losure form the SCC of pivot and need not be further proessed.The other three subgraphs are: verties in the forward losure but not in the9



bakward losure, verties in the bakward losure but not in the forward lo-sure, and verties that are neither in the forward nor in the bakward losure.These three subgraphs have to be further deomposed. They an be deomposedindependently and hene in parallel. Reursive appliation of the basi step isused to do it.The pseudoode of the algorithm is in Figure 2. A pivot is seleted usingproedure PIVOT and its forward and bakward losures are omputed usingparallel reahability proedures FWD and BWD. Both reahability proedureshave two parameters. Besides the vertex or verties to start from, eah reaha-bility proedure is also given a set of verties that its exploration is limited to.This ensures that given a subgraph, the proedure will explore only immediatesuessors or predeessor of verties within the subgraph. The sets of verties asomputed by forward and bakward reahability proedures are referred to as Fand B, respetively. Having omputed both sets F and B, a new omponent isidenti�ed as the intersetion of F and B, and reursive alls for three new sub-graphs are made. As stated in Setion 1, the time omplexity of the algorithmis O(n � (n+m)).1 pro FB(V)2 if (V 6= ;)3 then p := PIVOT(V)4 F := FWD(p;V)5 B := BWD(p;V)6 F \B is SCC7 in parallel do8 FB(F r B)9 FB(B r F)10 FB(V r (F [ B))11 od12 �13 end Fig. 2. FB Algorithm10
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Fig. 3. Subgraphs identi�ed with maximal predeessors.3.5 Colouring/Heads-o� (CH)The olouring algorithm was introdued in [22℄. It uses a totally ordered set ofolours. Initially, eah vertex has its own olour. The olours are repeatedly prop-agated to suessors with a smaller olour, until all edges are non-dereasing. Aforward reahability proedure augmented to propagate maximal visited oloursan be used for this task. Note that a vertex an be re-oloured several times,whih results in time omplexity of O(n � m) [9℄. The �nal olour of a vertexis the olour of its maximal predeessor, i.e., predeessor with maximal olour.Here a predeessor doesn't neessarily mean an immediate predeessor (as in therest of this paper), but here it means any vertex in the bakward losure. Afterolouring, all verties in a single SCC have the same olour. This is beause allverties in a single strongly onneted omponent share the same set of prede-essors. So all edges between verties of di�erent olours an be removed. Thistehnique is able to divide the graph into more than four parts, as opposed tothe tehnique presented in Subsetion 3.4. Unfortunately, we don't know how todo this in linear time. A graph division obtained after olouring is depited inFigure 3.In the seond step, one takes as roots those verties that kept their ini-tial olour. The SCC of eah root onsists of those verties that are bakwardreahable (within the same olour) from it. These SCCs are removed (heads-o�)and the algorithm proeeds with the remaining sub-graph and with the originalolour assignment. 11



The pseudoode of the algorithm is in Figure 4. Computation of maximalpredeessors is done by the proedure FWD-MAXPRED, whih returns thelist of roots as PredList. It also omputes for eah k 2 PredList the set Vkof verties with maximal predeessor k. The SCCs of the roots are identi�edby the standard proedure BWD, whih performs bakward reahability. Theremoval of these SCCs on line 8 was referred to as heads-o� in the previousparagraph. Edges are not removed there. Instead, separate reursive alls of themain proedure restrited to the appropriate subgraphs are used.The time omplexity of the algorithm is O((L + 1) � n � m)), where O(n �m) omes from the omplexity of the FWD-MAXPRED proedure. The totalomplexity follows from the fat that every time a reursive all is invoked, it ison a graph with stritly shorter longest path in the quotient graph.1 pro CH(V)2 if (V 6= ;)3 then PredList; (Vk)k2PredList := FWD-MAXPRED(V)4 foreah k 2 PredList do5 in parallel do6 Bk := BWD(k; Vk)7 Bk is SCC8 CH(Vk rBk)9 od10 od11 �12 end Fig. 4. CH Algorithm3.6 OBFThis algorithm is based on a reent tehnique OWCTY-BWD-FWD (OBF) [4, 3℄whih gave name to the whole algorithm. It identi�es a number of independentsubgraphs (alled OBF slies) in O(n+m) time. The slies are then deomposedusing the FB algorithm. This algorithm assumes the input graph to be rooted,i.e., we have an initial vertex from whih all other verties are reahable.12



���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
������������������������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

��
��
��

��
��
��

��
��
��
��

��
��
��
��

where OWCTY is stopped

where FWD is stopped

OWCTY−eliminated vertices

Identified subgraphs

T T

T

T TTT

T

T T

T

T TTT

T

Fig. 5. Two steps of OWCTY-BWD-FWD independent subgraph identi�ation.The OBF tehnique repeatedly employs OWCTY elimination, sueeded withbakward and forward reahability. Eah iteration identi�es one OBF slie. Thepseudoode of the algorithm is in Figure 6. A graph and two steps of the teh-nique performed on the graph are depited in Figure 5. We simultaneously de-sribe the �gure and the pseudoode. We start with the initial vertex (the vertexwith no predeessors in the �gure, the vertex v in the pseudoode). The OWCTYelimination proedure (line 5 in pseudoode) eliminates all leading trivial om-ponents (the set Eliminated in the pseudoode) and visits some verties of allomponents immediately reahable from the eliminated trivial ones. Visited butnot eliminated verties are shown as verties with a little ross (the set Reahed).A bakward reahability (BWD()) performed from verties with the little rossidenti�es the �rst OBF slie (the set B). Note that the slie ontains exatlyall strongly onneted omponents immediately reahable from the eliminatedtrivial omponents. The deomposition of the slie is initiated as an independentparallel proedure (line 10). Then a forward reahability proedure that stops13



on immediate suessors of verties in the slie is exeuted (FWD-SEEDS()).These suessors (verties with the little irle in the �gure, Seeds on line 12 inthe pseudoode) are used to start the next iteration of OBF. The time omplexityof the algorithm is O(n � (n+m)), the same as for the FB algorithm.1 pro OBF(V; v)2 Seeds := fvg3 [v is initial vertex℄4 while V 6= ; do5 Eliminated;Reahed := OWCTY(Seeds; V )6 V := V n Eliminated7 [All elements of Eliminated are trivial SCCs℄8 B := BWD(Reahed; V )9 in parallel do10 FB(B)11 od12 Seeds := FWD-SEEDS(B; V )13 V := V n B14 od15 end Fig. 6. OBF Algorithm4 Reursive OBFAs shown in [4℄, OBF performs better than FB in a number of experiments. Notethat in OBF the graph is split into slies in linear time. On eah slie, algorithmFB is applied. But, as OBF is better than FB, we now propose to reursivelyapply OBF to the slies.However, the slie may not be rooted, so we must:{ Repeatedly pik a vertex from the slie and ompute its forward losurewithin the slie; we all this a \rooted hunk". Subsequently run OBF oneah rooted hunk within the slie;{ Add a termination riterion in ase the whole slie is one SCCAdding a termination riterion is easy. No speial work has to be done. Wesimply ount the verties visited during the �rst bakward searh in the �rst14



rooted hunk (The \B" part of OBF). If the slie onsists of exatly one SCCthere will be only one rooted hunk in it; O will not eliminate any vertex, andso B will be started from the root and explores the whole slie. Conversely, if Bstarting from the root of the �rst hunk explores the whole slie, the slie is oneSCC, for it is both the forward and the bakward losure of the root. We nowdesribe reursive OBF in more detail.The pseudoode of Reursive OBF is in Figure 7. The suÆx \-P" in thename of the proedure means that it runs in parallel on independent subgraphs.The term OBFR without any suÆxes is used to refer to Reursive OBF as suh,without speifying the degree of parallelism (see Subsetion 4.1).We start with the whole graph. Verties in reognised SCCs are removedfrom the \working" set V until we end up with an empty set at whih point allSCCs have been identi�ed.Initially we assume that we don't have a vertex from whih all other vertiesare reahable (initial vertex). To start OBF we need suh a vertex, so we pikone vertex (line 3) and ompute its forward losure Range in V using proedureFWD() (line 4). OBF is then applied on Range. Verties from V n Range willbe proessed in the next iterations of the main while-loop (lines 2{24).Before OBF is started on Range, Range is saved into OriginalRange, thiswill enable us to determine if a slie found by OBF is an SCC. Of ourse, in theatual implementation we only store the size of OriginalRange. On line 9 thereis an invariant \(The forward losure of Seeds in Range) = Range". In the �rstiteration of the while-loop on lines 8{23 the invariant holds trivially, beauseSeeds ontains just one vertex and Range was omputed as a forward losure ofthat vertex. Proedure OWCTY() eliminates leading trivial omponents by re-peatedly removing indegree 0 verties reahable from Seeds. Eliminated vertiesare returned as the set Eliminated, and subsequently removed from Range. Ver-ties at whihOWCTY() stops (they have positive indegree) are returned as the15



1 pro OBFR-P(V )2 while (V 6= ;) do3 v := PIVOT(V)4 Range := FWD(v; V )5 Seeds := fvg6 V := V n Range7 OriginalRange := Range8 while Range 6= ; do9 [Invariant: The forward losure of Seeds in Range = Range℄10 Eliminated;Reahed := OWCTY(Seeds;Range)11 Range := Range nEliminated12 [All elements of Eliminated are trivial SCCs℄13 B := BWD(Reahed;Range)14 if (B = OriginalRange) then15 B is SCC16 else17 in parallel do18 OBFR-P(B)19 od20 Seeds := FWD-SEEDS(B;Range)21 �22 Range := Range nB23 od24 od25 end Fig. 7. Reursive OBF
set Reahed. The forward losure of Reahed in Range equals Range, sine anypath that leads from Seeds to a non-eliminated vertex has to ontain some vertexfrom Reahed. All elements from Eliminated are trivial SCCs. Now a bakwardsearh is started from verties in Reahed. This searh is implemented by pro-edure BWD(). Bakward losure of Reahed in Range is returned as the setB. This is the �rst SCC-losed slie found by OBF. If the set B equals the setOriginalRange, it means that all verties in the SCC-losed set OriginalRangeare reahable from the same single vertex (Note that B = OriginalRange isonly possible in the �rst iteration of the while-loop 8{23) and so B is indeed anSCC. Consequently, Range nB is the empty set and the while-loop �nishes.16



If B 6= OriginalRange we run OBFR-P() on B reursively. Moreover, notethat the nested proedure an be run in parallel, whih inreases parallelism.Seeds for the next iteration of the while-loop 8{23 are omputed by the pro-edure FWD-SEEDS, whih simply returns all verties from Range that areimmediate suessors of verties in B but not in B. Sine all paths that reahverties in Range n B from B must ontain some vertex from Seeds, after wesubtrat B from Range, the invariant of line 9 is satis�ed. When Range = ;,the while-loop 8{23 �nishes and we handle the remaining verties in V .We now formally prove the orretness of the algorithm. The key point isthe invariant on line 9. It ensures that the whole graph is eventually proessed.As argued earlier, it trivially holds in the �rst iteration of the while loop onlines 8{23. Thus, it remains to show that, if the invariant holds in iteration i,then it holds also in iteration i + 1. Together with the fat than Range getssmaller in every iteration, it implies that the whole rooted hunk omputed online 4 is proessed on lines 8{23. Another important point is that the set B om-puted on line 13 is an independent (SCC-losed) subgraph. This implies partialorretness. Sine line 18 is exeuted only if B is smaller than OriginalRange,�nite depth of reursion and thus termination of the algorithm is ensured. Allthe statements in this paragraph are proved below.We sometimes use a set of verties to refer to the graph indued by that set.To prove the invariant, we need to strengthen it a bit. In addition to the fatthat the forward losure of Seeds in Range is equal to Range, we argue thatRange is an independent subgraph of OriginalRange. Sine initially Range =OriginalRange, the strengthened invariant holds in the �rst iteration of thewhile loop.The following lemmata analyse one iteration of the while loop on lines 8{23.In the whole iteration Range is used to refer to the set Range on line 9, i.e.,at the very beginning of the iteration. The same goes for Seeds. The set Range17



omputed on line 11 is referred to as Range0. The set Range omputed on line 22is referred to as Range00. The set Seeds omputed on line 20 is referred to asSeeds0.Lemma 1. Verties eliminated by OWCTY() (the set Eliminated on line 10)are trivial SCCs of OriginalRange.Proof. Let's suppose, for the sake of ontradition, that OWCTY() elimi-nates a vertex v suh that there is a vertex v0 suh that there is a path inOriginalRange from v to v0 and vie versa. Range is an independent subgraphof OriginalRange. It follows, that Range ontains a yle  = (v0; v1; : : : ; vk)with v0 = vk = v. At the moment when v was eliminated it must have had in-degree 0, whih means that vertex vk�1 must have been eliminated earlier, sinethere is an edge from vk�1 to v. By repeating this argument, we get that allverties vk�2; vk�3; : : : ; v0 were eliminated before v and sine v0 = v, it meansthat v was eliminated before v. An obvious ontradition. �Lemma 2. Let Reahed be the set of verties at whih OWCTY() stops (f.line 10; these are the non-eliminated verties from Seeds and the non-eliminatedsuessors of the eliminated verties). Then the forward losure of Reahed inRange0 is equal to Range0.Proof. Sine the forward losure of Seeds in Range is equal to Range, for eahv 2 Range0 there is w 2 Seeds suh that there is a path p = (v0; v1; : : : ; vk),where v0 = w, vk = v, and k � 0. Sine OWCTY() eliminates only indegree0 verties, there is j � 0 suh that verties v0; : : : ; vj�1 were eliminated andverties vj ; : : : ; vk were not, and vertex vj is in the set Reahed. It follows thatv is reahable from vj in Range0. Therefore, the forward losure of Reahed inRange0 is Range0. �18



Lemma 3. The set B omputed on line 13 (The bakward losure of Reahedin Range0) is an independent subgraph of Range0. (No SCC has verties both inB and Range0 nB).Proof. It is suÆient to show that there is no edge from Range0 n B to B.However, that's obvious for the existene of suh edge (w; v) would imply thatw 2 B, whih is impossible sine, aording to the assumption, w 2 Range0 nB.�Lemma 4. Let Seeds0 be the suessors of the verties in B whih are in Range00= Range0 nB. Then the forward losure of Seeds0 in Range00 is Range00.Proof. Sine Reahed � B, the forward losure of B in Range0 is Range0 byLemma 2. Therefore, for eah vertex v 2 Range00 there is w 2 B suh thatthere is a path p = (v0; v1; : : : ; vk), where v0 = w, vk = v, and k � 1. Let jbe the greatest index with the property that vj 2 B, then vj+1 2 Seeds0 andthe path p0 = (vj+1; : : : ; vk) is a path in Range00. Thus v is reahable fromvj+1 in Range00. It follows that the forward losure of Seeds0 in Range00 isequal to Range00. Together with the fat that Range00 is Range without someindependent subgraphs (Lemma 1 and Lemma 3) it implies that if Range00 6= ;,then the strengthened invariant is satis�ed in the next iteration. �So far, we proved the strengthened invariant of line 9 by analysing one itera-tion of the while loop on lines 8{23. It follows that the whole set OriginalRangeomputed on line 4 is eventually proessed and divided into independent sub-graphs by the while loop. To prove the orretness of the algorithm, we stillneed to show that it orretly identi�es an SCC when it sees it and that it neverreates a subgraph that is not independent, part of whih was already shown.Lemma 5. If the set OriginalRange on line 7 is an independent subgraph ofthe whole input graph then OriginalRange is an SCC of the whole input graph if19



and only if, for an arbitrary vertex v 2 OriginalRange, the forward losure of vin OriginalRange is equal to OriginalRange, OWCTY(fvg; OriginalRange)does not eliminate any vertex, and the bakward losure of v in OriginalRangeis equal to OriginalRange.Proof. Forward impliation. If OriginalRange is an SCC, then for eah pair ofverties z; w 2 OriginalRange there is a path from z to w in OriginalRange.The statements for the forward and the bakward losures follow diretly. Thereis a vertex w 2 OriginalRange suh that there is a path from w to v inOriginalRange, so indegree(v) > 0, and so OWCTY() started from v an-not eliminate any vertex.Bakward impliation. For eah pair of verties z; w 2 OriginalRange thereis a path from z to w in OriginalRange, whih follows from the assumptionabout the forward and the bakward losures. (There is a path from z to v anda path from v to w). Sine OriginalRange is an independent subgraph of thewhole input graph (Lemma 3), OriginalRange is an SCC of the whole inputgraph. �Lemma 6. Let G = (V;E) be an arbitrary graph. For arbitrary vertex v 2 V ,the forward losure of v in V , denoted by A, is an independent subgraph of G.Proof. Similar to the proof of Lemma 3. (There is no edge from A to V nA.)�Theorem 1. The algorithm in Figure 7 orretly identi�es all SCCs in the inputgraph.Proof. In the while loop on lines 2{24 the graph is orretly divided into in-dependent subgraphs by repeated appliation of lines 3 and 4 (Lemma 6). Thesubgraphs that are SCCs are orretly identi�ed by Lemma 5. The subgraphs20



that are not SCCs are divided into smaller independent subgraphs by Lem-mas 1{ 4. To these smaller subgraphs, the proedure is applied reursively.The only ase when the reursive appliation is not exeuted is the ase whenB = OriginalRange, whih an happen only in the �rst iteration of the whileloop on lines 8{23. This is exatly the ase when OriginalRange is one SCC,again by Lemma 5. The rest follows from the fat that the relation \being anindependent subgraph of" is transitive. �Lemma 7. The overall time omplexity of Reursive OBF is O((r + 1) � (m +n)), where r is the maximal depth of reursion (r = 0 if no reursive alls areexeuted).Proof. Two distint Reursive OBF proedures on the same depth of reursionoperate on disjoint parts of the graph, so at most O(m + n) work is done foreah reursion depth. Thus the overall omplexity is O((r +1) � (m+ n)). �Theorem 2. The depth of reursion of Reursive OBF is at most L (the lengthof the longest path in the quotient graph of the whole graph).Proof. The proof proeeds by indution on L.Indution basis. If L = 0, then the whole graph is one SCC. This is detetedon the reursion level zero, so the maximal depth of reursion is 0.Indution step. It is suÆient to show that appliation of the proedure inFigure 7 (not ounting reursive alls) to a graph with L = k > 0 divides it intosubgraphs with L at most k � 1. There are two possible ases.Case 1. The SCC of the vertex v seleted on line 3 is not the �rst vertexof any of the longest paths in the quotient graph. Then, obviously, the forwardlosure of v is an independent subgraph the quotient graph of whih does notontain paths longer than k � 1. The same goes for all independent subgraphsinto whih it might be further divided in the while loop on lines 8{23.21



Case 2. The SCC of the vertex v seleted on line 3 is the �rst vertex of one ofthe longest paths in the quotient graph. Then at least one of the longest paths isin the quotient graph of the forward losure of v. The important point is that alllongest paths in the quotient graph of the forward losure must have the SCC ofv as their �rst vertex. (The path not ontaining the SCC of v an be extended,beause the SCC of v is a leading SCC). If the SCC of v is trivial, it is eliminatedby OWCTY. If it is non-trivial, it is equal to the �rst OBF slie. In both ases,the SCC of v is removed in the �rst iteration of the while loop on lines 8{23.Whih leaves us with a graph with L less than k. The rest follows easily. �Corollary 1. The overall time omplexity of Reursive OBF is O((L+1) � (m+n)).The upper bound annot be tightened as shown by the following example.De�ne Gk = (Vk ; Ek) as follows. LetV 00 = f0gV 0i+1 = V 0i [ f2i+ 1; 2i+ 2gE00 = f(0; 0)gE0i+1 = E0i [ f (2i+ 1; 2i+ 1); (2i+ 2; 2i+ 2);(max(2i� 1; 0); 2i+ 1); (2i+ 2; 2i); (2i+ 2; 2i+ 1)gfor i 2 f0; : : : ; kg. NowVk = V 0k [ f2k + 1gEk = E0k [ f(2k + 1; 2k + 1); (max(2k � 1; 0); 2k + 1)gFigure 8 shows G2. Note that Gk has 2k + 2 verties and 5k + 3 edges. Onepossible behaviour of Reursive OBF (OBFR for short) on Gk is as follows.Suppose OBFR piks the vertex 2k �rst. All verties of Gk are reahable from2k so the �rst rooted hunk is the whole graph. OBF is then run on this rooted22
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Fig. 8. Example for lower bound of Reursive OBFhunk. No vertex is eliminated by OWCTY(), for 2k has a predeessor (itself).The �rst OBF slie is then f2kg whih is identi�ed as an SCC by subsequentreursive all to OBFR. The �rst OBF then ontinues on suessors of f2kg,these are 2k � 2 and 2k � 1. Again, OWCTY() does not eliminate anything.Then a bakward reahability is started from f2k � 2; 2k � 1g and explores thewhole remaining graph exept for the vertex 2k+1. So, the seond OBF slie isequal to the graph Gk�1 and OBFR is alled reursively to proess it.We have shown that maximal reursion depth of OBFR on Gk is k + 1. Atreursion depth i, a graph with at least 2(k�i)+2 verties and at least 5(k�i)+3edges is explored at least one. So by Corollary 1 the overall time omplexity ofOBFR on Gk is 
(n � (n+m)).4.1 Inreasing the degree of parallelismIn [4℄ it was notied that OBF has a better worst-ase running time than CH,mainly due to possible re-olouring. Still, our initial experiments (f. Figure 11)showed that CH performs better on graphs with many small SCCs. We attributethis to the higher degree of parallelism in CH, whih outweighs the extra ostsdue to re-olouring in this ase.There is room to inrease parallelism in OBFR-P() too. The pseudoode ofthis \more parallel" version is in Figure 10. It exploits the fat that, after wepik a vertex in V and identify its forward losure Range in V , we an run OBF23



on Range in parallel and without waiting for its ompletion we an pik anothervertex from V and start omputing its losure.So we essentially have three versions of Reursive OBF varying in the \degreeof parallelism". This is illustrated in Figure 9. Eah diagram starts with a boldvertial axis, where the downward diretion represents the progression of time.The numbered olumns represent independent parallel proedures. An arrowfrom olumn i to olumn j indiates that proedure i starts proedure j. Forsimpliity, the �gure does not show reursive alls of OBF.Assume we have a graph whose verties are partitioned into the followingdisjoint sets aording to how Reursive OBF works on the graph: V = B11 [B12 [ B13 [ B21 [ B31 [ B32. B1(1�3) = B11 [ B12 [B13 is the losure (Range)of the �rst piked vertex (�rst rooted hunk) and the individual sets are theslies identi�ed by OBF in the losure. Similarly B2(1) = B21 is the losure ofthe seond piked vertex (seond rooted hunk) and B3(1�2) = B31 [ B32 is thelosure of the third piked vertex (third rooted hunk). For simpliity, we assumethere are no trivial omponents eliminated by OWCTY.The leftmost diagram in Figure 9 illustrates the operation of the basi Re-ursive OBF when no parallel proedures are exeuted. SCCs are proessed oneby one (delete lines 17 and 19 from Figure 7).The middle diagram in Figure 9 illustrates the operation of Reursive OBFin Figure 7. Eah time a new slie is identi�ed by OBF, a new parallel proedureis started to proess the slie. The algorithm �rst piks a vertex, identi�es theset B1(1�3), then the slies B11, B12 and B13. Only then it an pik anothervertex from the unexplored part of the graph, identify B2(1), ...The rightmost diagram in Figure 9 illustrates the operation of the \moreparallel" Reursive OBF in Figure 10. It does sliing of B1(1�3), B2(1), andB3(1�2) in separate parallel proedures. This allows it to get to B2(1) and B3(1�2)muh faster. 24
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Fig. 9. Three versions of Reursive OBF di�erent in degree of parallelism5 Experimental EvaluationThe experiments were arried out on a luster of 8 workstations interonnetedwith 1 Gbps Ethernet. Eah workstation was equipped with AMD AthlonTM 643500+ Proessor and 1 GB RAM. We used the LAM/MPI library for messagepassing. Our implementation is a distributed memory one. The graph is parti-tioned into a number (in our ase 8) of disjoint parts. Eah workstation ownsone part. Eah workstation runs the same ode and ommuniates with otherworkstations via the message passing library only. The omputation at eahworkstation proeeds sequentially (the exeution of independent parallel pro-edures is serialised) meaning that no additional threads are exeuted. This isahieved by maintaining an appropriate piee of information about eah proe-dure in an \array of proedures" and iterating over its elements repeatedly to leteah proedure perform some work. Note that a single proedure runs in parallelover di�erent partitions of the graph.We observed that Reursive OBF su�ers from the amount of synhronisationpoints among individual proedures. However, the amount of synhronisationpoints may be signi�antly redued if independent proedures are started as25



pro OBFR-MP(V )while (V 6= ;) doPik a vertex v 2 VRange := FWD(v; V )Seeds := fvgV := V n Rangein parallel doOBFR-MPX(Seeds;Range)ododendpro OBFR-MPX(Seeds;Range)OriginalRange := Rangewhile Range 6= ; doEliminated;Reahed;Range := OWCTY(Seeds;Range)All elements of Eliminated are trivial SCCsB := BWD(Reahed;Range)if (B = OriginalRange) thenB is SCCelsein parallel doOBFR-MP(B)odSeeds := FWD-SEEDS(B;Range)�Range := Range nBodend Fig. 10. Reursive OBF with inreased parallelism
soon as all data they depend on are ready. Starting independent proedures anbe viewed as an implementation detail, however, it has proven to have signi�antimpat on the performane. The three di�erent versions presented in the previoussetion are reapitulated in the following.OBFR-S No proedures are exeuted in parallel. When OBF identi�es aslie it waits for the omplete omputation on the slie to �nishbefore ontinuing. 26



OBFR-P OBF identi�es the slies, and starts a parallel proedure on eahslie as soon as the slie is identi�ed.OBFR-MP Does the same as the previous one, but additionally, within aslie, it starts a parallel proedure as soon as a new forward hunk(forward losure of a piked vertex in a possibly not-rooted slie)within a slie is found.Our experiments show that indeed the total running time of the algorithmdereases by adding more parallelism, despite the extra overhead (e.g., runningvarious termination detetion proedures in parallel), and despite the fat thata single reahability omputation is already parallel.We ompare Reursive OBF with three other algorithms. Namely FB [17℄,OBF + FB [4℄ and CH (Colouring [22℄). Like Reursive OBF, FB and OBF + FBan be implemented with di�erent degrees of parallelism. For the omparisonswe implemented only the most parallel versions of these algorithms, whih givethe best results. These implementations are denoted by FB-P and OBF-FB-P.CH proesses SCCs inherently in parallel; we reused the ode from [22℄ and allexperiments are arried out in the same software/hardware environment.5.1 MeasurementsFor the evaluation we used syntheti graphs with a regular struture and �xedsize SCCs. The aim was to �nd out how the algorithms work as the SCC sizehanges. We used two types of graphs. The �rst type of graph, alled LmLmTnwas of the form Loop(m) jj Loop(m) jj Tree(n), where Loop(m) is a yle withm states, Tree(n) is the binary tree of depth n, and jj denotes the Cartesianprodut of graphs. This graph has 2n+1 � 1 omponents of size (m + 1)2. Itsquotient graph is a binary tree. 27



The seond type of graph, alled LimLon, uses Line(m), being a sequeneof m states. It is of the form Line(m) jj Line(m) jj Loop(n) jj Loop(n) andonsequently has m2 omponents of size n2. The quotient graph of the seondtype is a square mesh with edges oriented right and down. In the seond typethere are many paths of the same length to the same vertex.We also experimented with graphs that arise as state spaes in real modelheking appliations. The names of these graphs are pre�xed with \wi", \vasy"and \swp". The former two are taken from the VLTS Benhmark Suite [7℄3The swp-graph, alled swp dmwnqp, models the behaviour of a sliding windowprotool with m distint data elements, window size 2n, and queue size p. Theomplete list is in Tables 1 and 2.The size of the graphs is relatively small and in priniple they ould bedeomposed on a single mahine, but they are large enough for experimentswith distributed algorithms to provide insight.The results for syntheti graphs are in Table 3. The results for real graphs arein Table 4. All runtimes are in seonds, "n/a" means that the runtime exeeded36000 seonds (10 hours). Graphs of dependeny of runtime on SCC size are inFigure 12 and in Figure 13. We measured this dependeny for syntheti graphsonly. Figure 12 does not ontain results for all graphs of type 1 sine numbers ofverties of some of these graphs di�er too muh. Only graphs with approximately3 000 000 verties were hosen. The graphs of type 2 have all approximately4 000 000 verties, so Figure 13 ontains results for all of them.5.2 EvaluationThere is one important issue onerning spae omplexity. To implement a reah-ability analysis in linear time we need a way to determine whether a vertex has3 Note that we onsider the graph of all transitions, while [22℄ onsidered only (invis-ible) � -transitions. 28
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State spae N. of SCCs Size of one SCC States TransitionsL10L10T10 2 047 121 247 687 742 940L100L100T4 31 10 201 316 231 938 492L15L15T10 2 047 256 524 032 1 571 840L4L4T16 131 071 25 3 276 775 9 830 300L20L20T12 8 191 441 3 612 231 10 836 252L80L80T8 511 6 561 3 352 671 10 051 452L350L350T4 31 123 201 3 819 231 11 334 492L1750L1750T0 1 3 066 001 3 066 001 6 132 002L1750L1750T1 3 3 066 001 9 198 003 24 528 008Li200Lo10 40 000 100 4 000 000 15 960 000Li125Lo16 15 625 256 4 000 000 15 936 000Li100Lo20 10 000 400 4 000 000 15 920 000Li80Lo25 6 400 625 4 000 000 15 900 000Li67Lo30 4 489 900 4 040 100 16 039 800Li50Lo40 2 500 1 600 4 000 000 15 840 000Li40Lo50 1 600 2 500 4 000 000 15 800 000Li30Lo67 900 4 489 4 040 100 15 891 060Li25Lo80 625 6 400 4 000 000 15 680 000Li20Lo100 400 10 000 4 000 000 15 600 000Li16Lo125 256 15 625 4 000 000 15 500 000Li10Lo200 100 40 000 4 000 000 15 200 000Table 1. Syntheti graphs used in experiments
been already visited or not in onstant time. This is usually aomplished byalloating an array of booleans with n elements, one for eah vertex. Algorithmsthat perform many reahabilities in parallel must have suh an array for eahof them. Our implementations that fall into this ategory are FB-P, OBF-FB-P,OBFR-P, OBFR-MP. There is no problem with reahabilities in the same depthof reursion. Sine they operate on disjoint parts of the graph, one array of sizen is enough. But for proedures in di�erent depths we need separate arrays. Andso the spae omplexity is O(m + n � (maximum depth of reursion)).Although the maximum depth of reursion an be as high as n, in our ex-periments the algorithm we are mainly interested in, Reursive OBF, reahedmaximum depth of 15. This makes us believe that spae omplexity is not aproblem of Reursive OBF. However, the FB algorithm exeeded depth 200 in30



State spae N. of SCCs Max. SCC size States Transitionswi 2165 8723 47 926 423 505 2 165 446 8 723 465wi 2416 17605 2 150 392 6 2 416 632 17 605 592wi 7838 59101 1 7 838 608 7 838 608 59 101 007vasy 11026 24660 10 074 720 910 11 026 932 24 660 513vasy 1112 5290 160 061 71 968 1 112 490 5 290 860vasy 12323 27667 11 214 774 910 12 323 703 27 667 803vasy 2581 11442 274 690 26 796 2 581 374 11 442 382vasy 4220 13944 2 398 982 49 151 4 220 790 13 944 372vasy 4338 15666 828 412 26 796 4 338 672 15 666 588vasy 6020 19353 2 041 6 013 920 6 020 550 19 353 474vasy 6120 11031 4 638 059 1 902 6 120 718 11 031 292vasy 8082 42933 323 629 7 054 752 8 082 905 42 933 110swp d2w2q2.s 1 1 429 676 1 429 676 6 704 544swp d2w2q3.s 1 5 323 836 5 323 836 25 236 056swp d3w2q2.s 1 5 168 596 5 168 596 24 615 576Table 2. Real graphs used in experimentsState spae FB-P OBFR-S OBFR-P OBFR-MP OBF-FB-P CHL10L10T10 10 128 25 8 8 75L100L100T4 13 19 13 11 5 145L15L15T10 16 118 56 16 17 142L4L4T16 2743 6603 671 309 297 325L20L20T12 224 575 287 74 71 456L80L80T8 94 107 110 34 45 795L350L350T4 83 91 88 38 45 1583L1750L1750T0 34 31 43 17 16 1021L1750L1750T1 148 138 166 87 82 6533Li200Lo10 1982 1964 1131 76 58 9317Li125Lo16 1105 975 740 61 52 5827Li100Lo20 754 588 520 65 51 4513Li80Lo25 548 465 454 57 77 3560Li67Lo30 510 356 484 58 44 3080Li50Lo40 357 236 163 48 48 3350Li40Lo50 286 175 126 50 43 2628Li30Lo67 174 127 110 43 44 2364Li25Lo80 140 102 103 46 46 2972Li20Lo100 176 88 80 43 40 2782Li16Lo125 106 77 115 71 38 2148Li10Lo200 81 58 90 62 45 1895Table 3. Runtimes for syntheti graphs (in seonds)
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State spae FB-P OBFR-S OBFR-P OBFR-MP OBF-FB-P CHwi 2165 8723 21 43 30 29 22 49wi 2416 17605 76 8791 942 51 56 126wi 7838 59101 65 58 107 102 72 227vasy 11026 24660 3387 n/a 3391 416 827 471vasy 1112 5290 168 5611 399 73 73 365vasy 12323 27667 4483 n/a 3942 500 1016 509vasy 2581 11442 169 6182 2084 64 109 276vasy 4220 13944 531 8348 976 347 1987 151vasy 4338 15666 209 14352 4445 107 110 310vasy 6020 19353 60 147 93 51 34 130vasy 6120 11031 888 26611 1483 282 299 592vasy 8082 42933 162 440 640 455 407 280swp d2w2q2.s 12 9 12 16 6 44swp d2w2q3.s 55 13 28 55 18 102swp d3w2q2.s 38 16 42 35 15 70Total runtime 10324 >142621 18572 2583 5051 3702Table 4. Runtimes for real graphs (in seonds)
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Fig. 13. Dependeny of runtime on SCC size, type 2 syntheti graphs (log. sale)32



our experiments. It did not prevent the algorithm from suessful omputationof SCCs, beause our graphs are relatively small. Nevertheless, this high re-ursion depth kills the bene�t of having aumulated memory of a luster ofworkstations. If we add that FB is muh slower if independent subgraphs arenot proessed in parallel, we an onlude that FB is not a very good distributedalgorithm. On the other hand, OBF + FB reahed maximum reursion depth of17. It seems that the uppermost OBF is so suessful in sliing the whole graph,that the amount of work left for FB that proesses the slies is relatively small.And now for some omments on the measured runtimes. First for the syn-theti graphs. As one an see from Table 3, OBFR-MP and OBF-FB-P togetherare lear winners. Their runtimes are pratially the same beause most of thedeomposition was done by the �rst OBF whih is the same for both algorithms.The slies identi�ed by the OBF were then proessed in parallel. It did notmatter if OBF or FB was used for them beause of the struture of the slies.FB, OBFR-S and OBFR-P worked quite well on graphs with large SCCs, butthey require a long time to deompose a graph with many small omponents.OBFR-P was the best of them, but its performane on graphs with many smallomponents is still poor. The reason for the big di�erene between OBFR-P andOBFR-MP is that some slies identi�ed by the �rst OBF ontained many partswith no edges between them and waiting for OBF to �nish on one part beforemoving to next part a�ets the performane onsiderably.Interestingly enough, for the syntheti graphs of type 1, unlike most of theother algorithms, espeially OBFR-S, the CH algorithm worked better on graphswith many small omponents (Figure 11). We were unable to explain this be-haviour. Moreover, it was not on�rmed on type 2 graphs (Figure 13). Anotherinteresting point is the extremely poor behaviour of CH on type 2 graphs. Thisis explained by many paths of the same length leading to the same vertex, whihauses frequent re-olouring. 33



The experiments on real graphs (Table 4) have only one winner, OBFR-MP.Yet, its vitory was not as lear as the vitory for syntheti graphs. In partiular,CH turned out to be suessful. We inluded total runtimes for all real graphsto allow for better omparison.The struture of the graphs was not regular, so reursive OBF had to godeeper to deompose the graph. Sine the deomposition was not done by the�rst OBF, the FB algorithm had muh more work in OBF + FB than forsyntheti graphs, whih resulted in poor behaviour for some graphs, espeiallyvasy 12323 27667 and vasy 4220 13944.6 ConlusionIn this paper we listed and ompared known distributed algorithms for the de-omposition of direted graphs into their strongly onneted omponents. Wealso proposed a new algorithm, alled Reursive OBF, based on reursive ap-pliation of the OBF tehnique introdued in [4℄. The orretness of the newalgorithm was proven formally. We also report on an extensive experimentalstudy we did to evaluate the new algorithm. Reursive OBF outperformed allthe other algorithms in most ases.Our experiments show that the way the algorithm is implemented inuenesits performane a great deal. In partiular, the best implementation turned outto be the one with the highest degree of parallelism, that is the one whih startsanother parallel proedure every time a part of the graph that an be proessedindependently has been identi�ed.There is one type of graphs where the CH algorithm [22℄ may be the besthoie. These are graphs onsisting of many unonneted islands. Suh graphsarise for instane when onsidering only (invisible) � -transitions as a preproess-ing step to branhing bisimulation redution. CH starts working on all islands34
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