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Spontaneous spin-up, i.e., the significant increase of the total angular momentum of a flow that initially has
no net angular momentum, is very characteristic for decaying two-dimensional turbulence in square domains
bounded by rigid no-slip walls. In contrast, spontaneous spin-up is virtually absent for such flows in a circular
domain with a no-slip boundary. In order to acquire an understanding of this strikingly different behavior
observed on the square and the circle, we consider a set of elliptic geometries with a gradual increase of the
eccentricity. It is shown that a variation of the eccentricity can be used as a control parameter to tune the
relative contribution of the pressure and viscous stresses in the angular momentum balance. Direct numerical
simulations demonstrate that the magnitude of the torque can be related to the relative contribution of the
pressure. As a consequence, the number of spin-up events in an ensemble of slightly different initial conditions
depends strongly on the eccentricity. For small eccentricities, strong and rapid spin-up events are observed
occasionally, whereas the majority of the runs do not show significant spin-up. Small differences in the initial
condition can result in a completely different evolution of the flow and an appearance of the end state of the
decay process. For sufficiently large eccentricities, all the runs in the ensemble demonstrate strong and rapid
spin-up, which is consistent with the flow development on the square. It is verified that the number of spin-up
events for a given eccentricity does not depend on the Reynolds number of the flow. This observation is
consistent with the conjecture that it is the pressure on the domain boundaries that drives the spin-up processes.
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INTRODUCTION

Many characteristic phenomena of two-dimensional �2D�
turbulence, such as the formation of coherent structures, vor-
ticity filamentation, and the turbulent dual cascades, are usu-
ally analyzed theoretically or studied numerically in the ab-
sence of rigid boundaries. Moreover, in experimental studies
it is often assumed that rigid walls are located at a sufficient
distance from the measurement area so that any influence of
the walls is assumed negligible. Interaction of 2D flows with
a no-slip boundary can, however, dramatically affect the evo-
lution of both decaying and forced 2D turbulence; for a re-
cent overview, see �1�. In the present paper, we focus on the
spontaneous production of angular momentum L �the precise
definition will follow�, and associated spontaneous symmetry
breaking of the flow, due to the interaction of decaying 2D
turbulence with elliptical, no-slip sidewalls.

One of the first remarkable results in this field hinting at
the special role of the angular momentum was obtained nu-
merically by Li et al. �2,3�. They reported that the decay
scenario of 2D turbulence in a circular geometry with a no-
slip boundary depends strongly on the net angular momen-
tum contained by the initial flow field. Any angular momen-
tum production due to flow-wall interactions seems
insignificant for this particular geometry. It was found that
the late-time state depends strongly on the amount of angular
momentum introduced during the initialization of the flow. In
particular, an initial flow field without significant angular
momentum yields after a rapid self-organization process a
quadrupolar structure filling the circular container. This

structure eventually evolves toward a dipolar structure in the
late-time flow evolution. On the other hand, an initial turbu-
lent velocity field that contains some net angular momentum
evolves into a large monopolar structure that eventually fills
the entire container. The numerical predictions of Li et al.
�3,4� have been confirmed experimentally by Maassen et al.
�5�. Typical initial integral-scale Reynolds numbers in the
numerical and experimental studies were Re=UW /��2
�103, with U the rms velocity, W the size of the container,
and � the kinematic viscosity of the fluid.

Similar simulations and experiments have been conducted
for decaying 2D turbulence in square domains by Clercx et
al. �6,7�. These studies gave an essentially different picture.
It was observed that the no-slip boundaries of the square
container exert a net torque on the fluid such that the flow,
which has initially no significant amount of angular momen-
tum, acquires angular momentum during the decay process.
As a consequence, rapid production of angular momentum
can result in a large monopolar or tripolar vortex completely
filling the domain later on in the flow evolution, a clear sign
of spontaneous symmetry breaking of the flow. It was re-
ported that in an ensemble of simulations with an initial Rey-
nolds number of Re=2�103, a part of the runs showed
strong spin-up effects �6�. However, an ensemble of runs
with initially Re=104 revealed that all the simulations show
a flow evolution following the scenario with sudden and
strong spin-up �7�, although the flow in the container after it
has spun up consists basically of a sea of smaller-scale vor-
tices on top of a domain-filling swirling flow. Approximately
one-half of the runs showed the emergence of a clockwise
swirl, and the other half an anticlockwise motion; thus on
average, symmetry breaking is absent, as is to be expected.*h.j.h.clercx@tue.nl.
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ANGULAR MOMENTUM PRODUCTION

In a recent study of the circular case �8�, it was shown that
the production of angular momentum on a circle is negligible
for higher Reynolds numbers, up to Re=5�104, as well.
Montgomery �9� suggests that the elliptical geometry in par-
ticular would be a good starting point to further investigate
the behavior of bounded 2D fluids. A hint to explain the
dramatic influence of the shape of the no-slip boundary may
be found in the angular momentum balance,

dL

dt
=

1

�
�

�D
p�r,t�r · ds +

1

Re
�

�D
��r,t��r · n�ds , �1�

where the angular momentum is defined as

L = �
D

r � udA = �
D

�xv − yu�dA . �2�

Here, we introduced a Cartesian coordinate system �x ,y�
with origin in the center of the container, and u= �u ,v� with
respect to this coordinate system. Furthermore, p represents
the pressure, � is the fluid density, and �= �v

�x − �u
�y is the vor-

ticity associated with the 2D velocity field u. The first term
on the right-hand side of Eq. �1� represents the pressure con-
tribution and the second term the effect of viscous shear and
normal stresses. An important result can directly be conjec-
tured from Eq. �1�: the pressure term is essentially zero on
the boundary of the circular domain, since r ·ds�0. This
signifies that although the pressure distribution over the do-
main boundary may be asymmetric, it does not yield a net
torque to the interior fluid. For flows on the square domain,
however, it is reported by Clercx et al. �7� that it is essen-
tially the pressure term that guides the spin-up process as it is
orders of magnitude larger than the viscous stress contribu-
tion represented by the second term on the right-hand side in
Eq. �1�.

To investigate the generalization toward an elliptic geom-
etry, it is useful to represent Eq. �1� in the cylindrical elliptic
coordinate system �� ,��, where a constant � and variable �
in the range 0���2	 describe an elliptic curve. For con-
venience, we keep the major axis a�1 while the minor half-
axis b=1−
 is in the range 0�b�1 in the following. The
angular momentum balance then reads

dL

dt
=


�
 − 2�
2�

�
�D

p���sin�2��d� +
�1 − 
�

Re
�

�D

����d� .

�3�

The pressure term in Eq. �3� is of order 
 and will grow
linearly with the deviation from the circle geometry. The
contribution of the viscous stresses remains small. Note that
in an elliptic geometry, a broken symmetry in the pressure
distribution over the domain boundary can, in principle,
yield a global spin-up of the fluid in the interior. Summariz-
ing: by making a small change 
 from a circular to an elliptic
geometry, we can tune the relative contribution of the pres-
sure term and the viscous stresses in the angular momentum
balance, and eventually determine whether the pressure con-
tribution is actually responsible for the spontaneous spin-up.

Moreover, it allows us to determine a critical value for the
minor half-axis bcrit below which always spin-up occurs.

For normalization of the angular momentum, it is impor-
tant to know the maximum amount of angular momentum
that can be present on an elliptic domain for a given amount
of the total kinetic energy E= 1

2	D�u2+v2�dA. For arbitrary
geometries �and irrespective of the boundary conditions� it is
helpful to introduce a limit to the angular momentum with a
Schwarz inequality, yielding

L � 
r
2
u
2 = 
r
2
�2E , �4�

where 
 · 
2 denotes the L2 norm. The right-hand side of in-
equality �4� equals the amount of angular momentum if the
fluid is in solid body rotation. Impermeability of the elliptic
boundary prevents fluid from obtaining a full solid body
state. It is, however, possible to derive an upper bound for
the angular momentum that is consistent with the imperme-
ability of the elliptic boundary. By virtue of the incompress-
ibility condition � ·u=0 we can introduce a stream function
according to u=�y� and v=−�x�. An impermeable boundary
can be modeled by setting �=0 at the boundary. The angular
momentum and total kinetic energy can then be formulated
as L=2	D�dA and E= 1

2	D��dA. Using standard variational
techniques �10�, it is straightforward to show that the varia-
tional problem L��� with constraint E���=1 yields a Poisson
equation, �2�=−2
 with �=0 on the boundary. The
Lagrange multiplier 
 equals the angular velocity in the case
of solid body rotation on the circle. The solution normalized
with the amount of angular momentum of the same fluid in
solid body rotation reads

L̃ =
2

b/a + a/b
, �5�

where a and b represent the major and minor half-axes of the
ellipse, respectively. Figure 1 shows the solutions of the
Poisson problem on the ellipse and the corresponding upper
bound for the angular momentum. The streamline pattern has
the appearance of a single cell filling the entire container.

Keeping in mind the tendency to axisymmetrization of a
domain filling vortex, we also consider an alternative stream-
line pattern �Fig. 1, bottom�. It is computed by conformal
mapping �modified Joukowski� of the solid body rotation on
a circle to an elliptic geometry. A single concentric cell ap-
pears in the center, while the streamlines become eccentric
when moving radially outward.

Both patterns show that for small deviations of the minor
half-axis from the unit circle �b�0.7�, the amount of angular
momentum that can be reached is more than 90% of solid
body rotation. For larger eccentricities, i.e., 
�0.3, on the
other hand, the angular momentum vanishes much faster.
Recall that the upper bound is derived by only demanding
impermeability of the boundary, allowing a free-slip velocity
at the boundary. Incorporation of a no-slip boundary condi-
tion in the variational problem is not possible. Demanding an
extra condition, i.e., zero circulation, �=	D�dA=0, yields
the same Poisson equation though with Cauchy boundary
conditions, which are too restrictive on a closed surface �10�.
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NUMERICAL METHOD

The numerical results are obtained by a Fourier spectral
solver combined with an immersed boundary technique,
known as “volume-penalization” or “Brinkman penalization”
to incorporate the no-slip boundary condition. The concept
proposed by Arquis and Caltagirone �11� is to model a solid
obstacle with no-slip boundaries as a porous obstacle with an
extremely small permeability. The flow domain 
 f is embed-
ded in a computational domain 
, such that 
 f =
 \
s,
where 
s represents the volume of porous objects. The in-
teraction with the porous objects is modeled by adding a
Darcy drag term to the incompressible Navier-Stokes equa-
tions �unit density �=1� locally inside 
s. This gives the
penalized Navier-Stokes equation defined for x�
,

�tu + �u · ��u + �p − ��u +
1

�
Hu = 0, �6�

which is accompanied by the continuity equation for x�
,

� · u = 0, �7�

where � is the penalization parameter and H represents a
mask function defined as

H = �1 if x � 
̄s

0 if x � 
 f .

 �8�

Note that inside the obstacle 
s, Darcy drag is added and
inside the flow domain 
 f, the usual Navier-Stokes equation
is considered. The initial velocity is defined inside the flow
domain 
 f. Inside the obstacle, the initial condition can be
extended to the porous obstacle by setting the initial velocity
equal to zero inside the domain 
s. As a result, the initial
condition is properly defined on the entire computational do-
main 
. In this study, the mask function is chosen such that

the elliptic flow domain is sufficiently embedded inside the
computational domain 
. By simply changing the shape of
the mask function, it is possible to solve another elliptic ge-
ometry with a different eccentricity. This is employed by
fixing the major half-axis a=1 and varying the minor half-
axis b. In contrast to other immersed boundary techniques,
the method is fully theoretically justified �12,13�. The penal-
ization error is proportional to ��. Various numerical bench-
mark studies are available �13–15� and some 2D turbulence
studies have already adopted the method �8,16�. The Fourier-
spectral scheme with volume penalization applied in the
present study is validated by a detailed convergence analysis
on vortex-wall collisions �17�. It was found that it is possible
to make the penalization error smaller than the truncation
error. Note that the penalization parameter is actually an ar-
bitrary parameter. If an appropriate time scheme is applied,
unusual restrictions on the time-step are avoided as well.

Important features of the method are the straightforward
implementation of �curved� no-slip boundaries and the effi-
cient computation of 2D turbulence on arbitrary closed do-
mains with parallellized Fourier pseudospectral codes. The
flow is initialized by the same procedure as used in the study
of Clercx et al. �7� on spontaneous angular momentum pro-
duction in a square geometry. The initial condition consists
of 100 nearly equal-sized Gaussian vortices with a radius
0.05 normalized with the major half-axis a of the ellipses
�a=1� and vortex amplitude �max�100 normalized with rms
velocity U=1 and the major half-axis. Half of the vortices
have positive circulation and the other vortices have negative
circulation. The vortices are placed on a regular lattice, well
away from the boundaries. The symmetry is slightly broken
by slight displacement of the vortex centers. In Fourier trans-
form space, certain coefficients are set equal to zero such that
the initial angular momentum is zero within machine preci-
sion. A smoothing function �7� is applied to ensure that the
initial flow is consistent with the no-slip boundary condition.

The ensemble simulations are conducted with a total num-
ber of 10242 Fourier modes. The penalization parameter is
�=10−8 and the time step is 
t=10−4. The following values
for minor half-axis b have been considered: b=1.0, 0.95, 0.9,
0.8, and 0.7. For each case, 12 ensemble runs are performed.
The flow is initialized such that the rms velocity U=1. The
majority of the runs has an initial Reynolds number of Re
=aU /�=104. For one case, b=0.9, the Reynolds number is
increased to Re=2�104. These runs require a larger reso-
lution up to 20482 Fourier modes. To check if convergence is
achieved, lower spatial resolution computations have been
performed for the same initial condition for each value of the
minor half-axis b. Furthermore, it is verified that the enstro-
phy dissipation length scale, defined as 2	��3 /��1/6 with �
denoting the enstrophy dissipation rate per unit area, is well
resolved. The required resolutions are consistent with the
convergence study of the numerical scheme based on vortex-
wall interaction �17,18�.

DECAYING 2D TURBULENCE IN ELLIPTIC
GEOMETRIES

Snapshots of the vorticity field from a decaying turbu-
lence simulation in an elliptic domain with minor half-axis

L

0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.7

0.8

0.9

1

b

FIG. 1. �Color online� Upper bound �solid line� for the angular
momentum in an elliptic geometry, normalized with angular mo-
mentum of the fluid in solid body rotation, versus size of the minor
half-axis b while the major half-axis a=1 is fixed. The inset shows
the streamlines for b=0.5 for the Poisson solution �top� and the
streamlines obtained by conformal mapping of a uniform rotation
on the circle to an ellipse �bottom�. The dashed line denotes angular
momentum of the conformal mapping result.

SPONTANEOUS ANGULAR MOMENTUM GENERATION OF … PHYSICAL REVIEW E 78, 036301 �2008�

036301-3



b=0.8 are displayed in Fig. 2. The initial integral-scale Rey-
nolds number is Re=104, which eventually decreased to Re
�2�103 at the end of the simulation. The first stage of the
decay process is characterized by intense vortex-wall inter-
actions and vortex merger events in the interior of the flow
domain. Later the vortex density decreases, while a large-
scale monopolar vortex starts to fill the interior of the elliptic
domain. In Fig. 3, the Reynolds number Re=aU /�
=a�2E�t� /ab	 /� and integral length scale L�t�=�E�t� /Z�t�
�where Z�t�= 1 / 2	D�2dA denotes the total entropy� are
given. The Reynolds number is larger than 2000 for �

�500, where � is defined as the turnover time of the initial
vortices. This implies that the large-scale vortex develops in
the nonlinear regime. �Note that for �→�, the flow is finally
governed by viscous dynamics, which selects the slowest
dissipating mode or fundamental Stokes mode.� The integral
length scale grows very rapidly in the beginning of the simu-
lation due to merger events and dissipation of entropy in the
interior. The growth rate of the integral length scale is sup-
pressed between 80���300 due to production of entropy at
the domain boundaries. Finally, the integral length scale in-
creases rapidly, which can be associated with the relaxation
to the large-scale vortex in Fig. 2 at �=500.

Note that the emergence of a large monopolar vortex in
the interior of the flow domain, as shown in Fig. 2, inevitably
implies a net angular momentum. The angular momentum
can be normalized by using Lsb= 
r
2
u
2 with 
r
2
= 1 / 2�b�1+b2�	 and 
u
2=�2E either determined by the
initial energy E0 or the instantaneous energy E�t�. The first
normalization does not take into account viscous dissipation,
and although the normalized angular momentum will be vir-
tually constant after spin-up, it eventually decays to zero as
the flow dissipates. On the other hand, the second normaliza-
tion procedure compensates for viscous decay, and in the
long-time limit ���103� the normalized angular momentum
will always approach a certain finite value due to viscous
relaxation. Figure 4 shows the normalized angular momen-
tum versus time for two sizes of the minor half-axis. Note
that the left-hand panel in Fig. 4 shows the corresponding
curves �with thick lines� for the run presented in Fig. 2. It
can be observed in Fig. 4 that the angular momentum nor-
malized with Lsb= 
r
2

�2E0 �solid line� is produced early and
becomes more or less constant after ��300. Note that in this
paper, the quasistationary end state of the nonlinear regime is
considered. In the limit of �→�, the angular momentum will
eventually vanish due to viscous decay. The corresponding
curve for the angular momentum of the run shown in Fig. 2
normalized with Lsb�t�= 
r
2

�2E�t� �dashed line� reveals that
at �=500, more than 70% of uniform-like rotation has been

τ = 6, Re = 8.5 × 103 τ = 70, Re = 5.5 × 103

τ = 200, Re = 3.3 × 103 τ = 500, Re = 2.1 × 103

FIG. 2. Vorticity plots of a run with an initial Reynolds number
Re=104 and minor half-axis b=0.8. White indicates positive vor-
ticity, black negative. For �=500 also the contour lines of the
stream function � are shown with an increment of 0.02. Time is
made dimensionless by the turnover time of the initial vortices.
Spatial resolution is 10242.
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FIG. 3. Reynolds number Re and the integral length scale L of

the simulation shown in Fig. 2.
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FIG. 4. Angular momentum in an elliptic geometry versus time.

Angular momentum is normalized with uniform rotation using Lsb

at �=0 �solid line� and Lsb�t� �dashed line�. Thick lines in the left-
hand panel correspond with the run shown in Fig. 2.
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reached. All runs for b=0.8 show fairly rapid spin-up fol-
lowed by a slow spin-down due to long-term dissipation.
While the total kinetic energy is continuously dissipated, the
flow maintains normalized angular momentum by assuming
a more uniformlike rotation. The oscillations of the angular
momentum, as observed in several runs during the spin-up
process in an elliptic geometry with minor axis b=0.8, are
related to the formation of a domain-sized tripole that inter-
acts with the domain boundary. This phenomenon has been
observed and explained earlier in the square bounded geom-
etry �7�, and we suspect that a similar mechanism is respon-
sible for the oscillations in angular momentum signal for the
flow in the elliptic geometry. The right-hand panel in Fig. 4
shows two examples of the angular momentum versus time
for b=0.9, so for an ellipse with a smaller eccentricity. Not
all the runs for this case show strong spin-up events �six runs
show spin-up with an amplitude of A�0.5 �see Table I for
definition of A� and six runs show only weak spin-up, A
�0.2� and the ensemble averaged amplitude is smaller than
for the b=0.8 case. In Fig. 5, the vorticity and stream func-
tion are given for a run showing strong spin-up and a run
with weak spin-up. Note that the corresponding time series

of the angular momentum is presented in the right-hand
panel of Fig. 4 for the case b=0.9. It can be observed in Fig.
5 that a strong spin-up can be associated with the develop-
ment of a strongly asymmetric dipole. On the other hand, in
the case of a weak spin-up an asymmetric quadrupole con-
figuration can be recognized inside the elliptic container. Re-
call that this quadrupolar structure is also found in the end
state of the nonlinear regime �but far from the Stokes regime�
in a circular geometry �b=1.0� where spin-up is virtually
absent �3,5,8,19�. This observation is confirmed by the
present simulations for b=1.0: no runs in the ensemble of 12
runs show spin-up. Spin-up becomes rare for the intermedi-
ate case b=0.95 �two runs with amplitude A�0.3 in an en-
semble of 12 runs�.

Figure 6 shows the probability density function �pdf� of

the derivative of the angular momentum L̇�t�, which is es-
sentially equal to the net torque on the container. It can be
deduced from Fig. 6 that on average the net torque is Gauss-
ian distributed �the histogram of the torque of a specific run
can strongly deviate from Gaussian behavior, especially in
the tails of the distribution�. Table I presents the ensemble
averaged amplitude �A� and standard deviation � of the de-
rivative of the angular momentum. The standard deviation �
of the Gaussian fit curves corresponds to the second-order
moment of the ensemble averaged distribution. It appears
that � depends linearly on the deviation of b from the unit
circle for 
=1−b�0.2. Recall that this scaling behavior can
be related to the prefactor �proportional to 
� in the pressure
contribution in Eq. �3�. The standard deviation for the case
b=0.7 �
=0.3� seems �considering a 10% error margin in ��
to be larger than expected from the prefactor alone. Note that
a spin-up of the flow could enhance symmetry breaking on
the domain boundary and thus increase, in turn, the magni-
tude of the pressure contribution in Eq. �3�.

The relative importance of the pressure term and the con-
tribution of the viscous shear and normal stresses for the
standard deviation � has been checked. It is found that the
standard deviation of the viscous term in the angular momen-
tum balance �3� is always less than 0.001, which implies that

P
(∆

L̇
)

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−3

−2

−1

0

1

2

∆L̇

FIG. 6. �Color online� Semilogarithmic plot of the pdf �solid

lines� of L̇�t� for different sizes of minor half-axis b. The first pdf in
the center corresponds with b=1.0; when moving outward b equals
0.95, 0.9, 0.8, and 0.7, respectively. The pdf is averaged over a time
interval �= �5,100�. Error bars are based on computations from an
ensemble of 12 runs for each value of b. Gaussian fit �dashed� to the
ensemble averages.

TABLE I. Ensemble averaged amplitude �A�, where A is defined
as the maximum for ��500 of the normalized angular momentum
Lsb�t�. Conditional average �A�c over the runs in the ensemble that

show strong spin-up of the flow. Standard deviation � of L̇ for
different sizes of the minor half-axis b. The error in �A� is 20% and
in � 10%. Number of runs �No.� in an ensemble of 12 runs showing
relatively strong spin-up of the flow.

b 1.0 0.95 0.9 0.8 0.7

�A� 0.07 0.17 0.31 0.58 0.68

�A�c 0.29 0.52 0.58 0.68

� 0.002 0.011 0.022 0.045 0.073

No. 0 2 6 12 12

spin-up weak spin-up

FIG. 5. Vorticity and stream function of two runs with slightly
different initial conditions in an elliptic geometry with minor half-
axis b=0.9 at �=500. The run in the left-hand panel shows a strong
spin-up event �corresponding with the thin lines in Fig. 4 case b
=0.9�; the run shown in the right-hand panel shows only weak
spin-up �corresponding with the thick lines in Fig. 4 case b=0.9�.
White indicates positive vorticity and black negative vorticity; for
both runs, the vorticity ranges from �=−5 to �= +5. Isolines rep-
resent the stream function with an increment of 0.01.
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the production of angular momentum is predominantly a re-
sult of the pressure contribution.

In order to investigate the Reynolds number dependence,
a smaller number of ensemble runs is performed for Re=2
�104 using a minor half-axis b=0.9. It is observed that the
intensity of the spin-up process does not increase signifi-

cantly. The standard deviation of L̇ determined over the same
time interval as used in Fig. 6 is �b=0.9=2.5�10−2, which
lies within a 10% error margin of � computed for Re=104.
Furthermore, the frequency of strong spin-up events �four�
within the ensemble �nine runs� is also similar to the Re
=104 case.

CONCLUSION

The results presented in this paper are helpful to under-
stand the strikingly different behavior of the angular momen-
tum in square versus circular geometries. By using a volume-
penalization technique, it is possible, starting with a circular
geometry, to gradually introduce some eccentricity. It is dem-
onstrated that a small transition from the circle results in a
linear increase of the magnitude of the torque �in terms of the
standard deviation�, which can be related to the relative im-
portance of the pressure contribution in the balance that
guides the angular momentum production. In this respect, the
observations reported on the absence of significant spin-up in
a circular geometry and the associated ambivalence in the
end state �2,3,8� are robust, i.e., the eccentricity cannot be
regarded as a bifurcation parameter in this respect. Recall
that it might be conjectured that an introduction of very
small eccentricity may result in a symmetry breaking of the
flow and significantly enhance the magnitude of the integral
over the domain boundaries in Eq. �3�. Apparently, it is the
prefactor in front of the pressure contribution in Eq. �3�,
however, that tunes the magnitude of the torque and in addi-
tion the strength of the spin-up. When moving from a circu-
lar toward a noncircular geometry, this gives a gradual tran-
sition from virtually no spin-up toward a regime where all
the runs in an ensemble with slightly different initial condi-
tions show strong and rapid spin-up events. The eccentricity
above which all runs show spin-up can be denoted by the
critical value of the minor axis, and the present results
clearly indicate that 0.8�bcrit�0.9. Between those limiting
cases, thus bcrit�b�1, there exists a critical sensitivity to
the initial conditions. Some runs in the ensemble show

strong spin-up, whereas the other runs in the ensemble dem-
onstrate very weak or virtually no spin-up. Recall that the
initial flow of all the ensemble runs does not contain angular
momentum within machine precision accuracy. Small varia-
tions of the initial conditions are introduced by a slight dis-
placement of the core of the Gaussian vortices on a regular
lattice. It is thus surprising that these small differences in the
initial conditions can result in a markedly different end state
of the decay process. The number of spin-up events increases
significantly for increasing eccentricities.

In previous reports, it was anticipated that the pressure
contribution depends only weakly on the Reynolds number
since the pressure will obviously reach finite values in the
limit of infinite Reynolds numbers �7�. The analysis of the
torque for the ensemble study at a significantly higher Rey-
nolds number �Re=2�104� supports this conjecture. In ad-
dition, the probability that the flow will demonstrate strong
and rapid spin-up is not markedly affected by the Reynolds
number of the flow.

It may be interesting to note that apparently the disconti-
nuity of the domain boundaries �corners� is not essential for
breaking the symmetry of the flow. By changing the eccen-
tricity, it is possible to tune the relative importance of the
pressure and viscous stresses in the angular momentum bal-
ance. The present study convincingly shows that angular mo-
mentum production is essentially due to the pressure contri-
bution at the boundaries. As a consequence, the results of
statistical mechanical studies that usually consider inviscid
flow with free-slip boundaries may be more generally rel-
evant for the quasistationary final states of viscous flow in
bounded domains with no-slip sidewalls, though in a quali-
tative sense. A statistical mechanical prediction of the qua-
sistationary end state of inviscid flow in an elliptic geometry
with free-slip boundaries, in the spirit of Pointin and
Lundgren �20� and Chavanis and Sommeria �21�, would
therefore be an interesting endeavor.
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