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ABSTRACT

Idealized laboratory experiments reveal the existence of forced dissipative

hybrid Rossby shelf modes. The laboratory ocean consists of a deeper ocean, ac-

commodating basin scale Rossby modes, and a coastal step shelf, accommodating

trapped shelf modes. Planetary Rossby modes are mimicked in the laboratory

via a uniform topographic slope in the North-South direction. Hybrid modes

are found as linear modes in numerical calculations and similar streamfunction

patterns exist in streak photography of the rotating tank experiments. These

numerical calculations are based on depth-averaged potential vorticity dynamics

with Ekman forcing and damping. Preliminary nonlinear calculations explore

the deficiencies observed between reality and the linear solutions. The aim of

the work is twofold: to show that idealized hybrid Rossby shelf modes exist in

laboratory experiments, and to contribute in a general sense to the discussion on

the coupling and energy exchange associated with hybrid modes between shallow

coastal seas and deep ocean basins.
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1. Introduction

There is evidence that planetary scale Rossby waves have been generated off the western

coast of the U.S.A. either by unstable coastal boundary currents, or by coastal waves match-

ing in frequency and scale, cf. Kelly et al. (1998). Bokhove and Johnson (1999) therefore

investigated the matching of planetary Rossby modes with coastal shelf modes in a cylindri-

cal basin. Otherwise said, linear free modes were calculated with so-called semi-analytical

“mode matching” techniques, as well as linear forced dissipative finite element methods,

to find resonances. Two parameter regimes were considered: an ocean one and a labora-

tory analogue. These laboratory scale hybrid Rossby shelf modes had been considered with

validating laboratory rotating tank experiments in mind.

Such an experimental validation is the topic of the present paper. Planetary barotropic

Rossby modes have been shown before in the laboratory using the analogy between planetary

β–plane Rossby modes and topographic shelf modes for a uniform basin scale North-South

background topography, for example in the classic book of Greenspan (1968). Rotating tank

experiments geared towards enforcing resonant hybrid coastal and planetary modes appear to

be (relatively) new. In preparation of the rotating tank experiments, linear forced-dissipative

finite element calculations of barotropic potential vorticity dynamics have revealed the reso-

nant frequencies of two primary hybrid Rossby shelf modes. These primary forcing frequen-

cies were then used to drive the harmonic “wind” forcing provided via the Ekman pumping

and suction due to an oscillating rigid lid. Various forcing strengths have been imposed,

in which a match with the linear calculations is best suited by weak forcing while better

visualization requires a larger signal-to-noise ratio and consequently stronger forcing. The
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latter promotes, however, the emergence of nonlinear effects. We therefore also compare the

experimental streamfunction fields with some nonlinear simulations of barotropic potential

vorticity dynamics, in an attempt to explain the differences between linear theory and the

experimental results under stronger forcing.

In OGCM’s (ocean general circulation models) the coastal regions are often under re-

solved; furthermore it is hypothesized that significant energy exchange takes place between

the deeper ocean and the shallower coastal zones, e.g., Wunsch (2004). Vertical walls placed

in the shallow seas are generally used in coastal zones as lateral boundaries in OGCM’s,

while in reality mass, momentum and energy are transferred across these virtual vertical

walls. As a consequence, such an exchange would not be resolved or modelled properly in

the OGCM’s. Suitable parameterizations of these under resolved processes would therefore

be required in the coastal zones of OGCM’s. The laboratory experiments and finite element

calculations we present aim to serve as an idealized barotropic system to investigate this

modal coupling between basin and coastal scale dynamics.

The outline is as follows. Barotropic potential vorticity dynamics is introduced in §2, and

linear finite element calculations are presented to find the relevant forcing frequencies. These

forcing frequencies are a building block in §3, where the experimental set-up and results are

presented. Preliminary nonlinear simulations in §4 indicate the effects of strong forcing on

the dynamics observed. A short conclusion is found in §5.
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2. Rigid-lid potential vorticity model

a. Nonlinear model

The forced-dissipative evolution of vertical vorticity ω in a rigid-lid model is governed by

the following dimensional system of equations

∂ω

∂t
+ J

(

Ψ,
f + ω

H(x)

)

=curlF(x, t) − (f + ω)

H(x)
α DE ω (1a)

ω = ∇ ·
( 1

H(x)
∇Ψ

)

, (1b)

where the horizontal coordinates are x = (x, y)T , t is time, ∇ = (∂x, ∂y)
T = (∂/∂x, ∂/∂y)

T ,

the Jacobian J(P, Q) = ∂xP ∂yQ − ∂yP ∂xQ for functions P = P (x, y, t) and Q = Q(x, y, t),

the Coriolis parameter f = f(x, y), the transport streamfunction is Ψ, total depth H(x),

forcing curlF, and Ekman layer depth DE =
√

ν/Ωr with (effective) viscosity ν. For the

laboratory case f = f0 = 2 Ωr is constant with Ωr the rotation rate of the domain, while for

the planetary case a β–plane approximation is used (e.g., Pedlosky (1987)) and f = f0 + βy

for constant β. The forcing either relates to the windstress or the differential velocity of the

rigid lid, provided by Ekman suction or pumping, respectively (e.g., Pedlosky (1987, 1996)).

Hereafter, unless otherwise indicated, we consider the laboratory case with

curlF(x, t) =
(f + ω)

H

1

2
DE ωT , (2)

in which the vorticity at the top rigid lid

ωT = ∂xvT − ∂yuT (3)

is related to the velocity vT (x, y, t) = (uT , vT )T of the driven rigid lid. Ekman damping

is assumed to be valid in the transition region between a quasigeostrophic deep ocean and
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the ageostrophic coastal zone, even though the topography is rapidly changing from open

ocean to coastal zone. For the rigid-lid case α = 1; it results in twice the amount of Ekman

damping relative to the case with a free surface for which α = 1/2. The above system can

be derived using classical methods (Pedlosky 1987; Pedlosky et al. 2007).

The dimensional equations are scaled with radius R of the cylindrical domain, a typi-

cal depth H0 of the domain and the Coriolis parameter f0 (in which starred variables are

dimensional):

t⋆ =t/f0, (x⋆, y⋆) = R (x, y), Ψ⋆ = Ψ R2 H0 f0, (4a)

ω⋆ =f0 ω, H⋆ = H0 H, f ⋆ = f0 f. (4b)

The potential vorticity of the fluid is defined by

ξ = (f + ω)/H. (5)

The evolution of this potential vorticity weighted by the depth H follows by scaling with (4)

and rewriting the nondimensionalized form of the system (1) into

H
∂ξ

∂t
+ ∇ · (U ξ) =κ ξ

(1

2
ωT + α f − α H ξ

)

≈ κ
(1

2

ωT

H
+ α

f

H
− α ξ

)

(6a)

U =∇
⊥Ψ (6b)

∇ ·
( 1

H(x)
∇Ψ

)

=H ξ − f (6c)

with transport velocity U, two-dimensional curl operator ∇
⊥ = (−∂y, ∂x)

T , and parameter:

κ = DE/H0 =
√

ν/Ωr/H0. (7)

A cylindrical domain Ω is considered with Ψ = 0 at the boundary ∂Ω : r = R; and initial

conditions ξ = ξ(x, y, 0); we also used that ξ ≈ 1/H to simplify forcing and damping terms.
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The numerical (dis)continuous Galerkin finite element discretization used is based on

formulation (6), by extending the inviscid formulation in Bernsen et al. (2006); it couples

the hyperbolic potential vorticity equation (6a) to the elliptic equation (6c) for the trans-

port streamfunction and is advantageous for complex-shaped domains. Instead of a classical

continuous finite element method as used for the streamfunction, potential vorticity is de-

scretized discontinuously. For smooth profiles of potential vorticity, the numerical disconti-

nuities between elements are negligible and scale with the mesh size and order of accuracy.

The numerical method conserves vorticity and energy for infinitesimally small time steps in

the inviscid and unforced case, while enstrophy is slightly decaying for the upwind flux used.

The weak formulation of this finite element method is given in Appendix A. The method

provides an alternative to classical numerical methods and is well-suited for complex-shaped

domains, mesh and order (h- and p-) refinement.

b. Linear model and hybrid Rossby-shelf modes

We have performed laboratory experiments to assess whether hybrid Rossby-shelf modes

exist that couple planetary scale Rossby modes with coastal scale shelf modes. In the labora-

tory experiments a uniformly rotating tank is used with rotation frequency Ωr. Consequently,

there is no planetary variation of the background rotation in the North-South direction. We

consider the Northern hemisphere and define a North-South direction indirectly by introduc-

ing a background slope s = s(y) in the y-direction, which is related mathematically to the β

effect (e.g., Greenspan (1968)). Hence, the nondimensional β parameter β = s/H̄ at leading

order for a mean depth H̄ . (Dimensionally β⋆ = β f0/R with β⋆ ≈ df ⋆/dy⋆ with starred
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dimensional variables and coordinates.) In addition, a step shelf topography is chosen with

a sudden change in depth at r = Rs < R from the mean deep ocean value H2 to the mean

shallow coastal one H1 < H2. The topography in the laboratory domain therefore consists

of an interior deep ocean on a topographic β–plane with slope s2 = β H2, and likewise a

shallow shelf ocean with s1 = β H1. Hence, H = H1 − s1 y for r > Rs on the axisymmetric

shelf and H = H2 − s2 y in the deep ocean for r < Rs. A sketch of the domain has been

given in Fig. 1.

To assess at which forcing frequencies we expect resonant responses, we numerically

solved the linear counterpart of nonlinear dynamics (6). The flow regime of interest concerns

quasi-steady state dynamics under harmonic forcing

ωT = 2σ ∆θ ei σt (8)

with forcing frequency σ, angle ∆θ and complex number i2 = −1. Due to this enforced

harmonic behavior the linear dynamics can be reduced to a spatial problem. A second-

order Galerkin finite-element model (FEM) discretization in space was used with piecewise

linear basis and test functions. In a first set of simulations we took 4671 nodes and 4590

quadrilateral elements on an unstructured mesh. In this FEM, a matrix system results of

the form Aij Ψj = bi with Ψj the values on the node with index j, bi the result of the forcing,

and matrix elements Aij the combination of the rotational advective and dissipative terms.

To test the finite element implementation, we successfully recovered the forced-dissipative

analogues of the free planetary Rossby modes and their frequencies (Appendix A.§1).

The forced-dissipative response of the laboratory ocean, described above and sketched in

Fig. 1, is displayed in Fig. 2 for κ =
√

ν/Ωr/H0 = 0.042, and ∆θ = 2 π (using laboratory
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values of the viscosity of water ν = 10−6m2/s, Ωr = 2s−1, H0 = R⋆ = 0.17m). The

streamfunction field at maximum response is shown in Fig. 3 at forcing frequency σ =

0.0613. When the experiments were performed in late 1997, O.B. calculated a resonance at

σ = 0.0612 for fewer and less-accurate triangular elements, and used that slightly different

resonant frequency instead in the laboratory. This small difference, however, falls within

the accuracy to which the forcing frequency could be determined in the laboratory. Another

resonant frequency resides at σ = 0.0878 (calculation FEM 2009), where O.B. found σ =

0.0871 earlier (calculation FEM 1997) with streamfunction fields shown in Fig. 4. The

modal structure for either value, σ = 0.0878 (or 0.0871), is the same and the mode relates

most clearly to the m = 2 shelf mode. In these cases, the hybrid Rossby-shelf mode is a

combination of an azimuthal mode number m = 0–Rossby mode in the deep ocean absorbing

into a m = 2–shelf mode at the Western shelf, which after traversing counterclockwise along

the Southern shelf edge at Rs = 0.8 R radiates again into the deep-ocean “planetary” Rossby

mode. Such behavior is suggested directly from the dispersion relations (A6) and (A15) of

the invisicid or free planetary Rossby wave and shelf modes, plotted separately in Fig. 5.

The exact solution of the planetary Rossby mode is given in (A5) and (A6) and the one of

the shelf mode in (A15). The modal structure of the free planetary Rossby mode clearly

includes the East-West structure in its explicit x-dependence, while the free shelf mode is

well described solely in terms of polar coordinates. The spatial structure of the hybrid-shelf

mode, for the case with both β-plane topography and a step shelf, is thus seen to correspond

best by a combination of the m = 0 planetary free Rossby mode, with its explicit x– and

r–dependence, and the m = 2 free shelf mode, with its explicit r– and θ–dependence. In

contrast, the modal structures of the m = 1 free Rossby mode and the m = 1 free shelf mode
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don’t match that well, have more structure and are therefore more affected by damping. The

resonant peak expected at around σ = 0.04 for this m = 1–mode appears to be wiped out

in Fig. 2. See also the relevant m = 1 modes displayed in Figs. 3 and 4 in Bokhove and

Johnson (1999).

In the nonlinear numerical simulations described in the next section, instead of the abrupt

step shelf break a smoothed shelf break is introduced between Rs − ǫ < r < Rs + ǫ. The

finite element mesh contains regular nodes placed at the circles with radii Rs ± ǫ and R;

then random nodes are added subject to a minimum distance criterion outside the shelf

break; subsequent triangulation yields a triangular mesh and additional nodes are placed

at the centroid and midpoints of the edges of each triangle to further divide the triangular

mesh into a quadrilateral one. The shelf break contains two elements across and upon mesh

refinement the value of ǫ decreases and hence the shelf break also becomes more narrow. For

such smoothed topography, the linear forced-dissipative response and the streamfunction

field at the maximum resonance are given in Fig. 6 and Fig. 7 for ǫ = 0.0314. Relative to the

abrupt shelf topography with resonant forcing frequency σ = 0.0613, the resonant frequency

in the new calculation of the linearized system has lowered by 6% to σ = 0.0577 while the

actual fields at resonance remain highly similar.

.
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3. Laboratory experiments

a. Experimental set-up

The laboratory tank had the following dimensions: R∗ = 16.7cm, Rs = 0.8 R, and

β = β∗ R∗/(2 Ωr) = si/Hi = 0.3125 for i = 1, 2. The topography was cut out of foam,

subsequently made smooth with paste, and fit tightly into the cylindrical tank. The average

shelf and interior depths were H1 = 0.6 R, and H2 = 0.8 R, respectively. The corresponding

laboratory set-up is sketched in Fig. 1. Dimensionless variables therein are defined in terms

of the dimensional tank radius R⋆ and H0 = R⋆. The glass plate on top of the water column

was harmonically oscillating in a horizontal plane, its motion driven by a programmable

stepping motor connected to the plate with a driving belt. The non-dimensional azimuthal

velocity of the rigid lid is

vT = r σ ∆θ cos σt, (9)

cf. (8), with ∆θ the maximum angle of the lid reached over the forcing period T = 2 π/σ.

A thin horizontal light sheet had been constructed with a Tungsten lamp including a linear

filament and a lens. The black background permitted optimal reflection of light from whitish

pliolite particles of diameter 150 − 250 µm, suspended in the flow. An analogue photo

camera mounted above the rotating tank tracked the movement of the particles. The whole

configuration was placed on a uniformly rotating table with Ω = 1 s−1. An approximate

steadily oscillating state was achieved by spinning up the table for about 30min. (i.e.,

30 − 50 forcing periods).

10



b. Coupled modes

Numerous experiments were carried out for a few forcing frequencies. For each experi-

ment, streak photography was obtained with 2 to 4s exposure time. The main forcing fre-

quencies used in the laboratory experiments were calculated with a finite element model of

the linearized equations, as explained in §2b. We report here solely four sets of experiments,

deemed best regarding their visual resolution and the hybrid character of the Rossby-shelf

mode.

The two sets of eight images in Fig. 9 and Fig. 10 give an impression of the flow during

one forcing period of 51.3 s, i.e., with dimensional frequency σ⋆ = 0.1226s−1 (σ = 0.0612).

It nearly corresponds to a numerically calculated forced-dissipative resonance for a hybrid

Rossby-shelf mode of the rigid-lid model (6) linearized around a state of rest, see Fig. 2

and Fig. 3. The underlying Rossby mode has azimuthal mode number zero, while the

underlying shelf mode has azimuthal number m = 1, 2. The shelf break is visible as a thin

whitish line at r = 0.8 R. In the time sequence from top left to bottom right, a Rossby-

mode circulation cell in the deep interior “ocean” travels westward where it absorbs onto

the shelf and propagates counterclockwise (in the Northern Hemisphere) as a trapped shelf

mode circulation cell. On the Eastern boundary this shelf mode radiates into a planetary

Rossby mode. Apart from the striking qualitative resemblance with linear forced-dissipative

calculations in Fig. 3, discrepancies occur in the North-West, presumably due to nonlinear

effects, and in the East where the shelf mode disappears, presumably due to strong damping.

The rigid lid or glass plate has rotated from zero to a relatively large angles 2 π and π (Fig. 10

and Fig. 9, respectively) and back during a period. The “nonlinear” oscillations in the North-
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West corner at t = 14, 42 s in Fig. 10 are larger under the greater forcing amplitude than at

t = 0, 28 s in Fig. 9. These oscillations diminish even more when the forcing amplitude is

reduced to π/2, which is not shown here. The experimental dilemma is that a comparision

with linearized modal solutions requires a weak forcing while good visualisation requires

strong forcing for the streak photography used. Particle Image Velocimetry techniques could

have been used for weak forcing as well, but were not avialable in 1997 at the rotating tank

facilities in Woods Hole. Although the tank dimensions are not shallow, the simplifying

assumption has been that rotation is sufficiently strong to render the flow to be nearly

two-dimensional outside the thin Ekman top and bottom boundary layers, and the sidewall

boundary layers as well as the internal and boundary layers at the shelf break.

To compare the amplitudes observed and calculated, the streaks under 4s exposure are

compared with streak lengths in the calculation for σ = 0.00613 and ∆θ = π in Fig. 11. Note

that the calculated streaks are weaker, about 40%, than the observed ones. Such a difference

also occurs for forcing with ∆θ = 2 π in Fig. 12. The precise location of the mode around

resonance, and hence its amplitude, as well as nonlinear shifts, might cause this discrepancy.

The dimensionless speed at (x, y) = (−0.11, 0.11) is about 0.0276 and at the Southern shelf

the maximum speed is about 0.0773 in Fig. 11(a). The speed at (x, y) = (0, 0) is about

0.0543 and at the Southern shelf the maximum speed is about 0.1087 in Fig. 12(a).

Similarly, the linear forced disspative mode calculated at σ = 0.0878 corresponds rea-

sonably well with the observed mode for σ = 0.0871 (based on the FEM calculation in

1997) in Fig. 13 and Fig. 14, which are the observations under stronger and weaker forcing

∆θ = 2 π, π/2.

Finally, we conclude that hybrid-Rossby shelf modes exist and can be succesfully visu-
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alized and measured in the laboratory; they correspond well with linear forced-dissipative

calculations at a similar frequency. Discrepancies between the experimental and numerical

flow patterns are observed especially at the North-Western boundary. Further nonlinear

simulations aim to explain this discrepancy.

4. Laboratory results versus numerical simulations

Nonlinear simulations at resonance frequency σ = 0.0613 have been performed, starting

from a state of rest and with sinusoidal forcing. The forcing period is thus 102.5 time units;

in addition κ = 0.0042, with a smoothed shelf break of width 2 ǫ = 0.0628, and ∆θ = 2 π.

The value of κ = 0.0042 implies that start-up transients disappear below 1% of their initial

value within about 11 periods, cf. the energy and enstrophy graphs versus time in Fig. 15.

We note that the solution appears quasi-periodic for t > 800. Shown is the solution over

period 20 in Fig. 16 (i.e., from t = 1947.5 to 2050.0). A second-order spatial and third-order

temporal discretization has been used; single and double-resolution runs have been performed

with 4671 and 10363 nodes, and 4590 and 10242 elements; the former are shown but agree

well with the latter. These nonlinear simulations reveal the cause of the disturbances in the

North-West corner of the domain at t = 14, 42s in Fig. 10: a vortex starts to roll up on

the Northern shelf once the cell of the Southern shelf mode starts to radiate into a basin

Rossby mode; subsequently the vortex gets advected counterclockwise around the domain

by the basin Rossby mode, and is dissipated once the new forcing cycle starts, see Fig. 16

and Fig. 17 in tandem. The simulated potential vorticity field displayed is less smooth than

the streamfunction fields and displays more structure, including a vortex shedding.
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5. Conclusion

Hybrid Rossby shelf modes were shown to exists analytically and numerically before in

Bokhove and Johnson (1999). Based on depth-averaged potential vorticity dynamics, we

showed numerically that these hybrid modes also emerged as linear forced dissipative solu-

tions on a laboratory scale. These hybrid modes matched the largest planetary scale Rossby

mode to a trapped shelf mode, the latter propagating around the Southern shelf. The calcu-

lated frequencies of the two dominant hybrid modes were used as driving frequency in labo-

ratory tank experiments, based on the linearized calculations. Therein a driven lid provided

the Ekman forcing. The spatial structure of the streamfunction fields in the linear calcula-

tions and the observed streamfunction fields in streak photography agreed well or reasonably

well in the weaker and stronger forcing cases. Discrepancies in amplitude and structure were

attributed to nonlinear effects, and nonlinear simulations of the depth-averaged flow sug-

gested observed differences to be due to a vortex generated and shed off the Northern shelf

by the large Westward propagating planetary Rossby mode in the deep basin. The minimum

and maximum amplitudes in the calculations of the linear and nonlinear model differed; in

the former we observed values of −0.005 and 0.009 and in the latter values of −0.014 and

0.005. The simulations provided extra information on potential vorticity dynamics which

was unavailable from the laboratory observations.

Even though the topography used is still simple, the exhibited mode merging shows that

the linear normal modes rapidly obtain a complicated structure. The distinction between

trapped shelf modes and planetary modes becomes less clear in complex domains, and is a

bit artificial as both modes emerge from the spatial structure in the background potential
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vorticity. Vortical normal modes have recently been used to explain temporal variability in

the Mascarene Basin (Weijer 2008), and Norwegian and Greenland Gyres (LaCasce et al.

2008). Unexplored yet interesting aspects in the idealized ocean basin used by us concern

the effects of a mid-ocean ridge (cf. Pedlosky (1996)) on the communication between two

separate deep ocean half basins connected only via coastal shelfs, and numerical parame-

terization of under resolved shelf mode dynamics on the deep ocean dynamics as a way to

explore energy exchange through an effective, permeable boundary.
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APPENDIX A

(Dis)continuous Galerkin finite element discretization

a. Weak formulation

A (dis)continuous Galerkin finite element method is used to discretize the following gen-

eralized system of equations

1

A

∂ξ

∂t
+ ∇ · (U ξ) =κ

(1

2
A ωT + α A D − α ξ

)

, (A1a)

U =∇
⊥Ψ, (A1b)

∇ ·
(

A∇Ψ
)

− B Ψ =ξ/A − D, (A1c)

with A = A(x, y) > 0, B = B(x, y) ≥ 0 and D = D(x, y), and for a scaling in which

D ≈ D0 = 1 in a relevant leading order way. Here, only a singly-connected domain Ω is

considered with boundary ∂Ω; it is cylindrical with radius R and Ψ = 0 at ∂Ω : r = R. In

(A1a), we have used the approximation

κ ξ
(

ωT /2 + α D − α ξ/A
)

≈ κ
(

A ωT/2 + α A D − α ξ
)

in the forcing and damping terms since ξ ≈ A.

In Bernsen et al. (2006), a finite element discretization is given and verified for the

inviscid, unforced version of (A1) for complex shaped multiple connected domains. The gen-

eralized streamfunction and vorticity formulation (A1) is advantageous as it unifies several

systems into one, such as the barotropic quasigeostrophic, and rigid-lid equations. A third

order Runge-Kutta discretization in time and second, third or fourth order discretizations in
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space are implemented and available for use. Without forcing and dissipation, discrete en-

ergy conservation is guaranteed in space, while the discrete enstrophy decays for the upwind

numerical flux and is conserved for the central flux, for infinitesimal time steps. The latter

central flux is stable but yields small oscillations in combination with the third-order time

integrator. When necessary, the circulation along the boundary can also be treated properly

on the discrete level.

In extension to Bernsen et al. (2006), a discontinuous Galerkin method is used to find

the weak formulation of (A1a). After we multiply (A1a) with an arbitrary test function vh,

integrate over the domain Ω, and use numerical fluxes between interior elements and at the

boundary elements, over each element K the following weak formulation is obtained

(∂tξh/A, vh)K =
(

ξh∇
⊥Ψh, ∇vh

)

K
−

∫

∂K

v−
h F̂ (ξ+

h , ξ−h , ∇⊥Ψh · n̂) dΓ+

(

vh, κ (A ωT/2 + α A D − α ξh)
)

K
, (A2)

where the numerical flux F̂ is replacing ξ Un, in which Un is the component of the transport

velocity U normal to an element face ∂K; ξ−h and ξ+
h are the limit values of the vorticity just

in- and outside an element face; likewise v−
h is the limit value of the test function just inside

the element; and, ∂t = ∂/∂t. Moreover, (·, ·)K is the L2-inner product over element domain

K. In contrast, a continuous Galerkin finite element is used to find the weak formulation of

(A1c); we multiply (A1c) with an arbitrary test function wh, integrate over the domain Ω,

and use proper boundary conditions, to obtain

(√
A∇Ψh,

√
A∇wh

)

Ω
+

(√
BΨh,

√
Bwh

)

Ω
= − (ξh/A, wh)Ω +

∫

Ω

Dwh dΩ + wh

∣

∣

∂Ω
C (A3)
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with circulation

C =

∫

∂Ω

A ~U · τ̂ dΓ (A4)

for the case B > 0 with dΓ a line element and ~τ the unit tangential vector along ∂Ω. In case

B = 0, the streamfunction Ψh|∂Ω = 0 and then the circulation is not required, in the singly-

connected domain used here. Subscripts (·)h denote that test functions and variables are

approximations in the appropriate function spaces, see Bernsen et al. (2006). These spaces

are chosen specifically to guarantee energy conservation; that is, the space of functions for the

discontinuous part of the discretization must cover the space of functions of the continuous

part of the discretization. We have calculated several modal solutions as linear exact and

asymptotic test solutions for the nonlinear numerical model.

b. Normal mode numerical tests

1) Linear free and forced-dissipative planetary Rossby modes

A free Rossby mode in a cylindrical domain of radius R satisfies the linearized version

of system (6) with constant H = H0 = 1, f = 1 + β y, and κ = 0, or (A1) with A = 1/H0,

B = 0, D = 1 + β y = D0 + β y and κ = 0. A linear modal solution reads

Ψlinr(r, θ, t) = bm Jm(klm r) cos
(

β r cos θ/(2 ωlm) + m θ + ωlm t
)

, (A5)

where bm is the amplitude, Jm the Bessel function of the first kind, r the radius and θ the

azimuthal angle, and frequency

ωlm = ±0.5 β/klm; (A6)
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the boundary condition is satisfied since klm are the zeroes of Jm(klm R) = 0 given the

azimuthal mode number m (with l = 1, 2, . . . ,∞). A comparison between the linear so-

lution (A5) for m = 0 is made with the nonlinear numerical solution initialized by the

exact ξ(x, y, 0), given the initial streamfunction Ψ(x, y, 0) = Ψlinr(r, θ, 0). An approximate

Ψh(x, y, 0) is then calculated numerically. Good agreement between the linear exact and

the nonlinear numerical solutions is found. We numerically also calculated the linear forced-

dissipative response of planetary Rossby modes with β = 0.3125 as a representative labo-

ratory value and H1 = H2 = R. Some of the first few frequencies of inviscid free modes

are

ω1m = 0.0650, 0.0408, 0.0304, 0.0245, 0.0206, (A7)

and correspond to solutions (A5), The larger resonant frequencies match finely with the

free-wave frequencies (A7).

2) Linear free shelf mode

In the nonlinear numerical simulations, we wish to avoid a discontinuous profile of A =

A(x, y) or the depth A = 1/H . Instead of a discontinuous step in the depth, we consider the

continuous axisymmetric depth profile

H(r, θ) =































H1 r ≥ Rs + ǫ

H2 + 1
2
(H1 − H2) (r − Rs + ǫ)/ǫ Rs − ǫ < r < Rs + ǫ

H2 r ≤ Rs − ǫ

(A8)

with H1 < H2, the shelf break radius Rs < R where the depth changes suddenly, and ǫ ≪ 1.

A matched asymptotic solution (cf. Bokhove and Vanneste (2001)) to the linearized version
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of (6) is sought for D = f0 = 1, B = 0 and A = 1/H , i.e. a solution of:

∂t

(

1

r

∂

∂r

( r

H

∂Ψ

∂r

)

+
1

r2

∂2Ψ

∂θ2

)

+
1

r

(

∂Ψ

∂r

∂H−1

∂θ
− ∂Ψ

∂θ

∂H−1

∂r

)

= 0. (A9)

Outer solutions in the regions r ≤ Rs − ǫ and r ≥ Rs + ǫ will satisfy the linearized equation

(A9) with depth (A8) in the step-shelf limit ǫ → 0. Inner solutions are valid in the transition

region Rs − ǫ < r < Rs + ǫ, and a suitable sum of inner and outer solutions will provide the

entire asymptotic solution.

Outer solutions satisfy, to all orders, ∇2Ψ = 0 with Ψ(R, θ, t) = 0; hence, it concerns the

real part of














Ψ1(r, θ, t) =
∑

m6=0 am

(

(r/R)m − (R/r)m
)

ei (m θ+ω t) r > Rs

Ψ2(r, θ, t) =
∑

m6=0 cm r|m| ei (m θ+ω t) r ≤ Rs

(A10)

with coefficients am, cm, frequency ω, and azimuthal wave number m.

For the inner solution, a stretched coordinate ζ = (r−Rs)/ǫ is introduced. Subsequently,

the inner expansion

Ψ = Ψ(Rs, θ) + ǫ φ(1)(ζ, θ) + . . . (A11)

is substituted in (A9) and evaluated at leading order in ǫ; giving the leading-order equation

i ω
∂

∂ζ

(

1

H

∂φ(1)

∂ζ

)

− 1

Rs

∂Ψ

∂θ
(Rs, θ)

∂H−1

∂ζ
= 0. (A12)

Since the outer expansion in the inner region satisfies

Ψ(r, θ) = Ψ(Rs, θ) + ǫ ζ
∂Ψ

∂r
(Rs, θ) + . . .

and the inner one (A11), we obtain together with the continuity requirement the following

inner boundary conditions at ζ = ±1:

Ψ1(Rs, θ) =Ψ2(Rs, θ) and
∂Ψ

∂r
(R±

s , θ) =
∂φ(1)

∂ζ
|ζ=±1. (A13)
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Integration of (A12) from ζ = −1 to ζ = 1 using (A13) yields the dispersion relation for the

outer expansion

ω

(

1

H1

∂Ψ1

∂r
(Rs, θ) −

1

H2

∂Ψ2

∂r
(Rs, θ)

)

− m

Rs
Ψ(Rs, θ)

( 1

H1
− 1

H2

)

=0. (A14)

In rewritten form and by using Ψ1(Rs, θ) = Ψ2(Rs, θ) and (A10), the outer solutions therefore

become

Ψ(r, θ, t) =















Ψ1(r, θ, t) =
∑

m6=0 am

(

(r/R)m−(R/r)m

(Rs/R)m−(R/Rs)m

)

ei (m θ+ω t) r > Rs

Ψ2(r, θ, t) =
∑

m6=0 am
r

Rs

|m| ei (m θ+ω t) r > Rs

(A15a)

ω =

(H2 − H1)

(

(

Rs

R

)m −
(

R
Rs

)m
)

H2

(

(

Rs

R

)m
+

(

R
Rs

)m
)

− H1
|m|
m

(

(

Rs

R

)m −
(

R
Rs

)m
) . (A15b)

A first integration of (A12) from ζ = −1 to ζ < 1 or ζ > −1 to ζ = 1, using (A13),

followed by a second integration, gives

φ(1) =
∂Ψ2

∂r
(Rs, θ)ζ +

(

1

H2

∂Ψ2

∂r
(Rs, θ)−

m

Rs ω H2
Ψ(Rs, θ)

)

(H1 − H2)

4
(ζ + 1)2 + c1. (A16)

At ζ = −1, using (A16), we find therefore

φ(1)(−1, θ) = −∂Ψ2

∂r
(Rs, θ) + c1, (A17)

and, likewise, at ζ = 1,

φ(1)(1, θ) =
∂Ψ1

∂r
(Rs, θ) + c1, (A18)

where we used the dispersion relation (A14) to find the relation at ζ = 1. Considering the

inner and outer expansion in the inner region, we choose c1 = 0; it also explains why the

outer solution is chosen to hold at all orders.
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The uniformly valid matched asymptotic solution consists of the mean of inner and outer

solutions (A16) with c1 = 0 and (A15)

ΨUniform =















































Ψ1 r ≥ Rs + ǫ

Ψ(Rs, θ) + 1
2
(r − Rs)

∂Ψ
∂r

(Rs, θ) + 1
2

(

∂Ψ2

∂r
(Rs, θ) (r − Rs)+ Rs − ǫ <

(

1
H2

∂Ψ2

∂r
(Rs, θ) − m

Rs ω H2

Ψ(Rs, θ)
)

H1−H2

4ǫ
(r − Rs + ǫ)2

)

r < Rs + ǫ

Ψ2 r ≤ Rs − ǫ

.

(A19)

We initialized the nonlinear numerical simulation with the potential vorticity based on the

asymptotic solution (A19) of the streamfunction Ψ = ΨUniform at t = 0. The agreement

between the asymptotic linear solution and the nonlinear numerical solution of the stream-

function was quite reasonable.

3) Forced-dissipative hybrid-shelf modes

In the nonlinear numerical simulations, we use A = A(x, y) = 1/H(x, y), D(x, y) = f0 =

1. Instead of a discontinuous step in the depth, we consider a depth profile

H(r, θ) =































H1s = H1 − s1 y r > Rs + ǫ

H2s + 1
2
(H1s − H2s) (r − Rs + ǫ)/ǫ Rs − ǫ < r < Rs + ǫ

H2s = H2 − s2 y r < Rs − ǫ

(A20)

with H1 < H2, si = β Hi and ǫ ≪ 1, for i = 1, 2. The simulated streamfunction fields

displayed in Fig. 18 over forcing period 19 are seen to equal the ones in forcing period 20 in

Fig. 16. Parameter values are σ = 0.0613, κ = 0.0042, ǫ = 0.0314, and ∆θ = 2 π.
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APPENDIX B

Vorticity equation with Ekman forcing and dissipation

Consider the vertical component of the vorticity vector for the incompressible Navier-

Stokes equations in three dimensions1

∂tω + (v · ∇H)ω + w ∂zω + 2 v ∂yΩr + 2 u ∂xΩr =(2 Ωr + ω) ∂zw + ν ∇2
3ω (B1)

with the vertical vorticity component ω = ∂xv − ∂yu, ∇H = (∂x, ∂y)
T , ∇3 = (∂x, ∂y, ∂z)

T , in

a cylindrical domain with bottom topography, and with rotation Ωr aligned along the z–axis

of the cylinder. This equation for the vertical vorticity is simplified as follows:

(a) internal and side-wall friction is ignored relative to the Ekman damping and driving

because focus is put on large-scale driven modes;

(b) outside top and bottom Ekman boundary layers the dynamics are assumed inviscid

and uniform in z with depth H = H(x, y), such that ω ≈ ω(x, y, t) and horizontal

transport velocity H v = ∇
⊥Ψ is rotational at leading order; and, finally,

(c) the absolute vorticity 2 Ωr + ω in the vertical direction is approximated as 2 Ωr for the

Ekman forcing and viscous terms.

Under these assumptions (a) and (b), integration of (B1) from just above the bottom

boundary layer to just below the top boundary layer yields as an intermediate step

H ∂tω + J(Ψ, 2 Ωr + ω) = (2 Ωr + ω)
(

wT − wB

)

(B2)

1This Appendix is not part of a journal publication, but is solely supplied as clarification, for the authors.
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with top and bottom values wT and wB of the vertical velocity just below and above the

respective Ekman boundary layers, and Jacobian J(F1, F2) ≡ ∂x(F1)∂y(F2) − ∂x(F2)∂y(F1)

for two arbitrary functions F1 = F1(x, y, t) and F2 = F2(x, y, t).

The next step is to establish approximate relationships for these vertical Ekman velocities

using asymptotic analysis of the flow in the boundary layer (Pedlosky 1987; Pedlosky et al.

2007). Consider the scaled three-dimensional incompressible Navier-Stokes equations

ǫ
Dv

Dt
+ v⊥ = −∇HP +

E

2

(

∇2
Hv +

1

δ2

∂2v

∂z2

)

(B3)

δ2 ǫ
Dw

Dt
= − ∂zP + δ2 E

2

(

∇2
Hw +

1

δ2

∂2w

∂z2

)

(B4)

∇Hv + ∂zw =0 (B5)

with material derivative D/Dt, modified pressure P = p + ǫ z/F 2, constant density ρ, and

Froude number F . The non-dimensional numbers involved are the Rossby number ǫ =

U/(2 Ωr L), Ekman number E = ν/(Ωr L2), and the aspect ratio δ = D/L = W/U between

horizontal L, U and vertical D, W length and velocity scales. Pressure was scaled as p⋆ = P0 p

with P0 = 2 ρ Ωr L U .

In the top and bottom boundary layers, we take δ =
√

E. In the outer region δ = O(1)

and we find geostrophic balance at leading order in ǫ and E; for simplicity the uni-directional

case is considered with u = UI(y), v = 0 and P = −
∫ y

UI(ỹ) dỹ. The boundary layer

equations arising at leading order can be summarized to govern

∂2Λ

∂z2
= 2 i Λ (B6)

with Λ = (u − UI) + i v. At a flat bottom z = 0, one finds

Λ = −UI cos z e−z + i UI sin z e−z (B7)
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such that u = v = 0 at z = 0 and u → UI for the outer region z ≫ 1. The associated vertical

velocity follows from integration ∂zw = −∂yv, and yields

w = −dUI

dy

1

2

(

1 − (sin z + cos z) e−z
)

, (B8)

such that for z ≫ 1 the outer value becomes wB = −(1/2)dUI/dy ≈ ω/2. Hence, we have

extrapolated −dUI/dy to generalize to the interior value ω = ω(x, y, t) for the general time-

dependent case with UI = UI(x, y, t). For a sloping bottom z = b(x, y) = H0−H(x, y), these

results extend further to

wB = ω/2 − v · ∇H. (B9)

In a similar way, by using slightly different boundary conditions, we find in the top

boundary layer at z = H0 that, for rigid lid driven with velocity u = UT ,

Λ = −UI cos(z −H0) ez−H0 + UT cos(z −H0) ez−H0 + i (UI − UT ) sin(z −H0) ez−H0, (B10)

such that u = UT and v = 0 at z = H0 and u → UI for 0 ≪ z ≪ H0. The vertical velocity

below this boundary layer then satisfies

wT = ωT /2 − ω/2, (B11)

in extension to using −dUT (x, y, t)/dy and dUI(x, y, t)/dy. In dimensional form, the expres-

sions

wB =(DE/2) ω and wT = (DE/2) (ωT − ω) (B12)

are substituted into (B2), with Ekman depth DE =
√

ν/Ωr. We obtain therefore

H ∂tω + H J(Ψ, (2 Ωr + ω)/H) = (2 Ωr + ω) DE

(

ωT /2 − ω
)

; (B13)

with assumptions (b) and (c) this simplifies to the starting equation (1) in the main text.
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Fig. 1. Sketch of laboratory domain with abrupt shelf topography, and deep interior-ocean

and shallow-shelf slopes mimicking β (Bokhove and Johnson 1999).
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Fig. 2. Linear forced-dissipative response for topographic Rossby-shelf modes displayed as

the L∞–norm of |Ψ| against 500 forcing frequencies σ. Parameter values ωmax
T = 2 σ ∆θ =

2 σ 2 π, and κ =
√

ν/Ωr/H0 = 0.0042.
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Fig. 3. Streamfunction field for Rossby-shelf modes over one forcing period T nearby the

maximum response σ = 0.0613. Parameter values ωmax
T = 2 σ ∆θ = 2 σ 2 π, and κ =

√

ν/Ωr/H0 = 0.0042.
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Fig. 4. Streamfunction field for Rossby-shelf modes over one forcing period T at the maxi-

mum response σ = 0.0878.
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Fig. 6. Linear forced-dissipative response for topographic Rossby-shelf modes displayed

as the L∞–norm of |Ψ| against 500 forcing frequencies σ for a smoothed shelf break of

width 2 ǫ = 0.0628 around r = Rs. Parameter values ωmax
T = 2 σ ∆θ = 2 σ 2 π, and κ =

√

ν/Ωr/H0 = 0.0042.

36



y
0

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
T/8

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

y

T/4

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
3T/8

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−0.01

−0.005

0

0.005

0.01

y

T/2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
5T/8

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

3T/4

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

7T/8

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−0.01

−0.005

0

0.005

0.01

Fig. 7. Streamfunction field for Rossby-shelf modes over one forcing period T at the max-

imum response σ = 0.0577 for a smoothed shelf break. Parameter values ωmax
T = 2 σ ∆θ =

2 σ 2 π, and κ =
√

ν/Ωr/H0 = 0.0042.
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Fig. 8. Sketch of the laboratory set-up.
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Fig. 9. Streak photography of hybrid-Rossby shelf modes at t = 0, 7, 14, 28, 35, 42, 49s for a forcing

period of 51.3s (nondimensional σ = 0.0612), and maximum rigid-lid excursion ∆θ = π. Exposure

time was 4s. 39



Fig. 10. Streak photography of hybrid-Rossby shelf modes at t = 0, 7, 14, 28, 35, 42, 49s for a

forcing period of 51.3s (nondimensional σ = 0.0612), and maximum rigid-lid excursion ∆θ = 2π.

Exposure time was 2s. 40
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Fig. 11. a) Streak photography of hybrid-Rossby shelf mode observed at t = 0s for a forcing

period of 51.3s (nondimensional σ = 0.0612), and maximum rigid-lid excursion ∆θ = π. Exposure

time was 4s. b) Similarly, for the calculated linear solution; phase shift adjusted semi-optimally by

eye.
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Fig. 12. a) Streak photography of hybrid-Rossby shelf mode observed at t = 0s for a forcing period

of 51.3s (nondimensional σ = 0.0612), and maximum rigid-lid excursion ∆θ = 2π. Exposure time

was 2s. b) Similarly, for the calculated linear solution; phase shift adjusted semi-optimally by eye.
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Fig. 13. Streak photography of hybrid-Rossby shelf modes at t = 0, 5, 10, 15, 20, 25, 30, 35s for a

forcing period of 36.1s (nondimensional σ = 0.0871), and maximum rigid-lid excursion ∆θ = 2π.
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Fig. 14. Streak photography of hybrid-Rossby shelf modes at t = 0, 5, 10, 15, 20, 25, 30, 35s for a

forcing period of 36.1s (nondimensional σ = 0.0871), and maximum rigid-lid excursion ∆θ = π/2.
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Fig. 15. Energy and enstrophy versus time.
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Fig. 16. Streamfunction over forcing period 20; σ = 0.0613, κ = 0.0042, ǫ = 0.0314, and ∆θ = 2π.
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Fig. 17. Potential vorticity over forcing period 20; σ = 0.0613, κ = 0.0042, ǫ = 0.0314, and

∆θ = 2π.
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Fig. 18. Streamfunction fields over forcing period 19.
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