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a b s t r a c t

A remarkable feature of two-dimensional turbulence in a square container with no-slip walls is the
spontaneous production of angular momentum due to flow-wall interactions, also known as sponta-
neous spin-up of the flow. In this paper we address the statistics of spin-up and discuss its likely origin. A
signature of the spontaneous production of angular momentum is the development of a large-scale
circulation cell. It is found that the global turnover time of the flow guides the spin-up process, which can
be considered as a relaxation process of the macroscopic flow to an angular momentum containing state.
The high turnover rate of the small-scale vortical structures emerging from the no-slip walls apparently
has no significant effect on the spin-up rate. The presented data on the spin-up process strongly suggest
that spin-up is not the net result of isolated vortex-wall interactions, with its associated pressure fluc-
tuations on the domain boundaries, alone. The rapid spin-up of the flow clearly suggests the attraction to
an angular momentum containing state.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

The remarkable features of self-organizing two-dimensional
(2D) flows have been studied since the pioneering analysis of
Kraichnan [1], Batchelor [2] and Leith [3]. In contrast to three-
dimensional turbulence two-dimensional flows have a tendency of
self-organization due to the presence of the inverse energy cascade,
i.e. the kinetic energy condenses in the largest scale available.
Simultaneously, the enstrophy is transferred downscale towards
the viscous dissipation range. The inverse cascade is clearly
observed in forced 2D turbulence, but it should be noted that,
depending on the choice of the initial condition, it might be less
prominently present in decaying 2D turbulence. The formation of
large scales might then also be interpreted in terms of selective
decay [4]. Most theoretical studies, including the classical works of
Kraichnan, Batchelor and Leith, consider isotropic and homoge-
neous turbulence. The main reason for this approach is the
ndhoven University of Tech-
rlands. Tel.: þ31 402472680;

son SAS. All rights reserved.
conjecture that 2D turbulent flows, provided they are sufficiently
well separated from the domain boundaries, are statistically
isotropic and homogeneous. In numerical studies homogeneity and
isotropy conditions can be satisfied when periodic boundary
conditions are applied. This choice for the boundary condition is
also motivated by the availability of parallel fast Fourier spectral
solvers.

The effect of the presence of solid (no-slip) walls on the prop-
erties of decaying two-dimensional flows turned out to be of crucial
importance. For a recent overview, see Refs. [5,6]. In particular, the
end-state of decaying 2D turbulence is strikingly different for flow
in a periodic domain and a domain confined by solid walls. The
quasi-stationary final state of decaying turbulence on a periodic
domain is in most cases a large-scale dipole. However, also a so-
called ‘bar-state’ has been found as a quasi-stationary final state [7].
The experiments and numerical simulations of decaying 2D
turbulence at moderate integral-scale Reynolds numbers on
a square bounded domain reported by Clercx et al. [8,9] and
Maassen et al. [10] have shown that the flow at moderate Reynolds
numbers can spontaneously produce angular momentum. This
process starts early in the decay process and results in the forma-
tion of a domain-sized monopolar or tripolar vortex structure. For
flows that are confined by circular no-slip walls, first studied
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numerically by Li et al. [11e13], the production of angular
momentum is virtually absent [12,14]. This observation is also
confirmed by the experimental studies of Maassen et al. [10,15].
Recently, it has been shown that the absence of spin-up in a circular
geometry can be explained by the role of the pressure on the
domain boundaries. For circular domains the pressure does not
contribute to the generation of angular momentum. For decaying
turbulence in elliptic domains Keetels et al. [16] have observed that
the introduction of a small amount of eccentricity, thus rendering
the torques by pressure forces effective, can already trigger the
spin-up phenomenon. The observation that the pressure on the
domain boundaries drives the spin-up suggests that the production
of angular momentum will also be an important process for
turbulent flow in bounded domains in the limit of infinite Reynolds
numbers. In that limit only the pressure forces contribute to the
torque as viscous (normal and shear) stresses are then absent (for
more details, see Section 2).

High-resolution numerical simulations of 2D turbulence in
square domains are here conducted with a 2D Fourier pseudo-
spectral method, with the boundary conditions implemented by
a volume-penalization method [17]. The purpose of this study is
twofold. First, comparison with data from previous simulations
with a 2D Chebyshev pseudospectral method [8,9], gives insight in
the reliability of the novel method. Second, this new method allows
2D turbulence simulations with initial integral-scale Reynolds
numbers at least one order of magnitude larger then reported in
previous studies [8,9]. This allows verification of the presence of the
spontaneous spin-up phenomenon at significantly higher Reynolds
numbers than considered in previous studies of turbulence on
square bounded domains. Several characteristics of the spin-up
process are determined for high-Reynolds number flow, such as the
magnitude of the torque and the strength of the large-scale recir-
culation cell which results from spin-up. Furthermore, it is exam-
ined if a characteristic dimensionless time can be identified for the
spin-up of the flow.

The paper is organized as follows. In Section 2 the angular
momentum balance and numerical set-up is briefly introduced. The
flow phenomenology will be discussed in Section 3 and some
statistical data on spin-up will be provided in Sections 4 and 5.
Finally, a brief summary is given in Section 6.
2. Angular momentum balance

We consider the 2D motion of an incompressible, viscous fluid
on a bounded domain U with (no-slip) boundary vU. An important
quantity for fluids on a bounded domain is the angular momentum
L associated with the fluid motion. Defining a Cartesian reference
frame, with r¼ (x, y) in the plane of the flow and its origin in the
centre of the container, the angular momentum reads

L ¼
Z

U

ðr � uÞ$ez dA ¼
Z

U

ðxv� yuÞ dA; (1)

with u¼ (u, v) the flow field and ez the unit vector perpendicular to
the plane of the flow. By inserting the NaviereStokes equations in
velocityepressure form into the definition of the time rate of
change of the angular momentum it is obtained that,

dL
dt
¼ 1

r

I
vU

pr$dsþ n

I
vU

uðr$nÞ ds; (2)

with r the density, p the pressure, n the kinematic viscosity, and u

the (scalar) vorticity defined by u¼ vv/vx�vu/vy. Furthermore, n is
the unit (outward) normal on the boundary and ds an infinitesimal
tangential element of the boundary (and ds its norm). Since the
angular momentum can be rewritten in terms of the vorticity,
L ¼ �1=2

R
U r2u dA, it is possible to derive an alternative expres-

sion by using the vorticity equation,

dL
dt
¼ �1

2
n

I
vU

r2ðn$VuÞ dsþ n

I
vU

uðr$nÞ ds: (3)

It can be deduced that the first terms on the right-hand side of (2)
and (3) have to balance since the second term on the right-hand
side of both expressions is identical. A natural assumption is that
the pressure at the boundary will reach a finite value in the limit of
infinite Reynolds numbers. This implies that the product nvu/vn
should be finite as well for vanishing viscosity, thus providing
a scaling relation for the normal vorticity gradient at the no-slip
boundary: vu=vnjwallfRe. Here, Re¼UL/n is the Reynolds number,
with U and L a typical velocity and length scale. For the vorticity at
the wall this implies ujwallf

ffiffiffiffiffiffi
Re
p

[18], underlining the importance
of no-slip walls as vorticity sources.

A Fourier spectral method is applied in order to achieve higher-
order precision for the internal flow and the flow near the
boundaries. The no-slip walls are modelled by means of an
immersed boundary technique known as the volume-penalization
or Brinkman-penalization method. Inside the domain we solve the
usual NaviereStokes equation and in the volume of the obstacle
a Darcy term is added to the NaviereStokes equation. By making
the penalization or permeability parameter sufficiently small one
achieves a no-slip condition at the interface between the fluid and
the porous solid. This idea originated from Arquis and Caltagirone
[19] and was further developed by Angot et al. [20] and by Carbou
and Fabrie [21]. In Keetels et al. [17,22] details of the numerical
method are discussed and it is shown that the volume-penalization
method can successfully be adopted for Fourier spectral methods.
Furthermore, the convergence of the scheme is studied by
considering dipole-wall collisions. Recently, volume penalization
has been applied by Schneider and coworkers in several studies on
bounded 2D turbulent fluid and plasma flows [23,24].

The initial condition basically consists of 100 nearly equal-sized
Gaussian vortices with a dimensionless radius 0.05 in a domain
with a size of 2� 2 units. The initial condition is normalized such
that the rms velocity U¼ 1. This then corresponds with a vortex
amplitude umaxx100. Half of the vortices have positive circulation
and the other vortices have negative circulation. The vortices are
placed on a regular lattice, well away from the boundaries. The
symmetry is slightly broken by a small displacement of the vortex
centres and a slight variation of the vortex amplitudes. More details
about the initialization procedure as sketched above can be found
in Ref. [9]. In Fourier transform space certain coefficients are set
equal to zero such that the initial angular momentum is zero within
machine precision. A smoothing function, similar to the one
employed in Ref. [8], is applied to ensure that the initial flow is
consistent with the no-slip boundary condition. The parameters of
the simulations are assembled in Table 1.
3. Flow features

Fig. 1 shows several snapshots of the vorticity distribution of
decaying flow with an initial Reynolds number of Re¼ 105. Time
has been made dimensionless with the eddy turnover time of the
Gaussian vortices from the initial condition. The vorticity snapshot
taken from the vigorous early stage of the turbulent decay process
at s¼ 7 shows several characteristic features such as merging of
like-sign vortices in the centre of the container and the formation of
medium-sized dipoles. During several collisions of vortex struc-
tures with the domain boundaries high-amplitude vorticity fila-
ments are injected into the interior of the flow domain and roll up



Table 1
Overview of the simulations on a square domain. The first column denotes the
number of runs in each ensemble. The Reynolds number Re is based on the rms
velocity and half-width W of the domain. N denotes the spatial resolution, Nact is the
number of active Fourier coefficients, 3 the penalization parameter and dt the time-
step.

No. Re N Nact e dt

10 104 1024 682 10�8 1.0� 10�4

5 5� 104 2048 1364 10�8 5.0� 10�5

5 105 4096 2730 10�8 2.5� 10�5
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into new vortex cores. These new small-scale vortices contain high-
amplitude vorticity. The second stage of the decay process, for
which a typical example of the vorticity distribution is displayed in
Fig. 1 at s¼ 20, is characterized by the formation of increasingly
larger coherent structures. Injection of small-scale vorticity from
the no-slip domain boundaries and subsequent formation of new
vortex cores continues.

Fig. 2 gives the stream function corresponding with the vorticity
fields in Fig. 1. The streamlines reveal the development of a large-
scale flow pattern during the decay process. Since the angular
momentum can equivalently be expressed in terms of the stream
function j as L ¼ 2

R
j dA it is obvious that the flow has acquired net

angular momentum. This is strikingly different compared to the
final state of decaying turbulence on a periodic domain, for which
the angular momentum is trivially zero. The (quasi-stationary) final
state of the decay process in a periodic box is a large-scale dipolar
vortex structure [4]. Under certain circumstances the ‘bar-state’ is
retrieved, see Ref. [7].

The overall picture of the decay process in a no-slip box
considered here for Re¼ 105 is similar to the Re¼ 104 case reported
in Clercx et al. [9]. An important difference is, however, the pres-
ence of a much larger number of (small-scale) vortices in the high-
Reynolds number case. The size of these small-scale vortices is
substantially less than the size of the Gaussian vortices constituting
the initial vorticity field. The diameter of these Gaussian vortices is
approximately one-tenth of the container size. To demonstrate that
the small-scale vortex structures are indeed the result of flow-wall
interaction, a comparison with a numerical simulation on a double
periodic domain is shown in Fig. 3. The initial condition and the
(initial) Reynolds number for the periodic computation are the
same as for the no-slip case. Note the large number of small-scale
vortices distributed over the entire square domain (with no-slip
walls). Such small-scale vortices are virtually absent in the periodic
case. This observation signifies that these vortices are indeed
formed due to flow-wall interaction events.
Fig. 1. Vorticity snapshots of a simulation with an initial Reynolds number Re¼ 105. The si
terms of s, where time has been made dimensionless by the eddy turnover time of the in
breaking symmetry). Thirty grey levels are applied from u¼�80 to u¼þ80. The normal
respectively.
Also in the late-time evolution several differences are discov-
ered between the present results with Re¼ 105 and those with
Re¼ 104, reported previously by Clercx et al. [9]. Around s¼ 200
a monopolar or a tripolar structure emerges that completely fills
the domain for Re¼ 104. For the high-Reynolds number decay
process considered here it is observed that the radius of the
dominant vortex structure appearing around the same time is
significantly smaller. Two processes are responsible for the pres-
ence of a smaller dominant vortex in the high-Reynolds number
case. First of all it is due to reduced lateral diffusion, which slows
down the broadening of the dominant vortex cores. Additionally,
the dominant vortex structures merge with on average smaller
vortices in the high-Reynolds number runs. Many of these small
vortices contain high-amplitude vorticity that originate from
detached boundary layers (which become thinner as the Reynolds
number increases). Also in the late-time evolution the number of
vortices in the high-Reynolds number case is much larger. Note that
although the radius of the dominant vortex is smaller, the associ-
ated stream function displayed in Fig. 2 reveals the development of
a global circulation cell in the interior of the container, which
contains net angular momentum.

Fig. 4 shows the total kinetic energy, E ¼ 1=2
R

U juj
2 dA, and the

enstrophy of the flow, Z ¼ 1=2
R

U u2 dA, versus the dimensionless
time s for several typical runs of decaying turbulence on a square
domain with no-slip walls. Fig. 4a and c show the results for
Re¼ 104, b and e for Re¼ 5�104, and c and f for Re¼ 105, respec-
tively. As reference we have plotted the kinetic energy and ens-
trophy for decaying turbulence on a double periodic domain with
Re¼ 105 in Fig. 4c and f, see the dotted lines (s(100). The ens-
trophy of the flow on a periodic domain, represented by the dotted
line in Fig. 4f, decays very rapidly due to the vorticity gradient
amplification process (see Ref. [2]). During the vigorous first stage
of the decay process on a bounded domain intense production of
small-scale vorticity at the domain boundaries occurs which
compensates for the enstrophy dissipation (and it even might
instantaneously increase the enstrophy of the flow substantially),
see Fig. 4e and f. Persistence of enstrophy implies enhanced dissi-
pation of kinetic energy according to dE/dt¼�2Z(t)/Re, and the
dissipation rate of the total kinetic energy in the no-slip case is
significantly faster compared with the periodic case, see Fig. 4c. For
decaying turbulence on a periodic domain the enstrophy is boun-
ded by its initial value. This implies that jdEðtÞ=dtj � 2Zðt ¼ 0Þ=Re,
thus the energy dissipation rate falls of proportional to Re�1 in the
periodic case provided Z(t) z Z(t¼ 0) (for sufficiently small t). For
larger times the energy dissipation rate will inevitably decrease as
the enstrophy is a monotonically decaying function of time.
mulation is performed with 40962 Fourier modes. The dimensionless time is given in
itial vortices positioned in an array of 10� 10 vortices (position slightly distorted for
ized angular momentum is jLj ¼ 0.01, 0.08, 0.28 and 0.25 for s¼ 7, 20, 100 and 200,



τ = 7 τ = 20 τ = 100 τ = 200

a b c d

Fig. 2. Stream function plots corresponding with the vorticity fields shown in Fig. 1. Increments size is 0.04. The normalized angular momentum is jLj ¼ 0.01, 0.08, 0.28 and 0.25 for
s¼ 7, 20, 100 and 200, respectively.
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As the no-slip walls serve as sources for high-amplitude
vorticity the legitimacy of the classical prediction dE=dtfRe�1 for
decaying 2D turbulence in domains enclosed by no-slip boundaries
could be questioned and alternative scaling relations might be
valid. Let us first recall some recent results on the scaling of
vorticity production at no-slip walls. Clercx and van Heijst [18]
analysed the enstrophy production during the collision of an indi-
vidual dipole with a no-slip wall. They found the following scaling
behaviour of the peak enstrophy: Zmax f Re0.75 for Re(20;000 and
Zmax f Re0.5 for Re[20;000. This corresponds with an energy
dissipation rate proportional to Re�0.25 and Re�0.5, respectively. It is
important to realize that the Reynolds number associated with the
individual vortex-wall collisions, denoted by Red (based on the
translation speed of the vortices and the radius of the dipole half1),
is an order of magnitude smaller than the integral-scale Reynolds
number of the turbulent flow itself. For the present numerical runs
we have 10(Red(103 and 102(Red(104 for integral-scale Rey-
nolds numbers Re¼ 104 and Re¼ 105, respectively.

Fig. 4def reveal that the ratio of the enstrophy levels for
different initial Reynolds numbers and for sa200 agrees quite well
with the expected scaling behaviour of the enstrophy, Z f Re0.75 (as
Red � 2� 104). Also the amount of energy dissipation is consistent
and shows a scaling which is almost proportional to Re�0.25. For
example, as a rough measure of the energy dissipation rate we
consider the decrease of kinetic energy dE defined with respect to
the initial kinetic energy at s¼ 400: dE z 1.6� 0.1, 1.3� 0.1 and
1.0� 0.1 for Re¼ 104, 5�104 and 105, respectively. It does not
satisfy the ratio 10:2:1 according to a scaling of the energy dissi-
pation proportional to Re�1. It is thus clearly shown that 2D
turbulence bounded by no-slip sidewalls is strongly dissipative
compared with 2D turbulence on a double periodic domain.

It may be inferred from the high-Reynolds number dipole-wall
collision observations [18] that in the infinite Reynolds number limit
the dissipation of kinetic energy of decaying 2D turbulence in
bounded domains might eventually scale according to Re�0.5. To
observe this scaling regime the integral-scale Reynolds number
should, however, be one or two orders of magnitude larger such that
the vortex-based Reynolds number is of the order of Red z 20,000
or higher. This is left for future studies when computational
resources allow this kind of numerical investigations.

Fig. 5 shows the angular momentum versus the dimensionless
time s. The run with an initial Reynolds number Re¼ 104, see
Fig. 5a, is consistent with the findings of Clercx et al. [9], who
1 The typical translation speed of the vortices is based on the rms velocity of the
flow, U z 1, and the range of vortex radii is obtained from the vorticity snapshots
like in Fig. 1.
revealed a vary rapid increase of the angular momentum of the
flow and a subsequent relatively slow decay during the late-time
evolution.2 The thick solid line in Fig. 5c represents the angular
momentum for the run displayed in Figs. 1 and 2. The flow attains
its maximum value of angular momentum around sx100, while
the vorticity snapshots displayed in Fig. 1 clearly show the presence
of many small-scale vortices. In some of the high-Reynolds number
simulations considered here the angular momentum evolves in
a similar way as for the Re¼ 104 case. In other runs it is found that
the angular momentum can show more disordered behaviour (see
Fig. 5b and c). During the intermediate decay stage the flow can
suddenly spin-down, presumably due to destabilization of the large-
scale circulation by boundary-layer generated strong, small-scale
vortices, and subsequently the flow can spin-up again. The angular
momentum retains small values only briefly before it revives again. In
the latter case the circulation of the large-scale flow can be in either
the same or in the opposite direction. Examples of both cases are
shown in Fig. 5b (opposite sign) and c (same sign). These observations
are similar as found in forced 2D turbulence simulations (with much
smaller integral-scale Reynolds number) [25]. After final spin-up the
large-scale circulation of the flow is persistent besides a very slow
overall decay on very long times.
4. Spin-up statistics

Table 2 presents the ensemble-averaged properties of the spin-
up process for three different Reynolds numbers. The maximum of
the angular momentum is normalized with both Lsb(t¼ 0) and
Lsb(t), where Lsb(t) is the angular momentum of the same amount of
fluid, with total kinetic energy E(t), in solid-body rotation. The
normalization with Lsb(t) compensates for the fact that the energy
decays significantly faster for the Re¼ 104 case compared to the
two higher Reynolds number cases, see Fig. 4a. Table 2 also contains
the ensemble-averaged values of the spin-up time. Three different
dimensionless times have been considered based on different
properties of the flow. Recall that the dimensionless time s as used
in Fig. 4 is based on the turnover time of the initial vortices. The
average number of turnovers of the vortices in the domain is
expected to be larger as a result of the formation of many small-
scale strong vortices due to flowewall interactions. To include this
effect it is appropriate to use a different dimensionless time, and we
will use the one introduced by Chasnov [26] in a study on the
2 Results from previous studies of decaying 2D turbulence in square domains
with no-slip walls, computed with a 2D Chebsyhev pseudospectral method, could
be reproduced with the 2D Fourier pseudospectral method with volume
penalization.



Fig. 3. Comparison of vorticity snapshots at s¼ 15 from two simulations with (a) no-slip and (b) periodic boundary conditions. The Reynolds number for both simulations is
Re¼ 105 and 40962 Fourier modes are used. The initial conditions are identical. The vorticity values range from u¼�80 to u¼þ80 and are indicated by the grey levels. Dark grey
indicates positive vorticity, light grey negative vorticity.
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Reynolds number dependence of energy and enstrophy dissipation
in decaying 2D turbulence on a double periodic domain,

s* ¼
Z t1

0

D
u2
E1=2

dt ¼ 1
2W

Z t1

0
kuk2 dt ¼ 1ffiffiffi

2
p

W

Z t1

0

ffiffiffi
Z
p

dt;

(4)

with W the half-width of the domain. The time s* can be inter-
preted as an appropriate measure of the turnover time of the
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correspond with the run shown in Figs. 1 and 2.
vortices in the flow averaged over the time interval [0, t1] during
which the flow acquires maximum angular momentum. It is
possible to express the kinetic energy in the form of an inequality,
see the Appendix, which clearly identifies s* as a time unit in the
decay process.

A third non-dimensional time, Tg, is based on the global turnover
rate of the flow, which is characterized by the rms velocity kuk2
(averaged over the time interval [0, t1]), Tg ¼ 1=2W2 R t1

0 kuk2 dt.
We would like to emphasize here that s, s*, and Tg are all
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non-dimensional times (and not time scales) used for quantifying
typical spin-up times for the different Reynolds number cases.

From Table 2 it can be deduced that high-Reynolds number
flows show an equally strong spin-up compared with the moderate
Reynolds number flows with Re¼ 104. Also the spin-up time
measured in terms of the initial turnover time of the vortices s or
the global turnover time Tg does not show significant Reynolds
number dependence. Note that the variation of the spin-up time
between the ensemble runs is very large, see for example Fig. 5, and
explains the relatively large error margins. The number of small-
scale turnovers s* during the spin-up of the flow increases, on the
other hand, with the Reynolds number. Apparently, the formation
of small-scale vortices and the accompanying reduction of the
overall turnover rate of the vortex population does not result in
a faster spin-up of the flow for higher Reynolds numbers. This
indicates that it is mainly the turnover of the dominant vortices and
the associated formation of a large-scale flow pattern that deter-
mine the spin-up rate of the flow. It should, however, be mentioned
here that the small-scale vortices might destabilize the large-scale
circulation.

Another interesting issue is the magnitude of the torque
measured by the standard deviation s of the time-derivative of the
angular momentum. The magnitude of the torque does not
demonstrate significant dependence on the Reynolds number, as
can be seen in Table 3. This supports the conjecture that the pres-
sure contribution in the angular momentum balance (2) becomes
finite in the high-Reynolds number limit, whereas the contribution
of the viscous stresses will vanish in the same limit. It has been
verified that the pressure term is at least two orders of magnitude
larger than the contribution of the viscous stresses in the range
104� Re� 105 and s< 400.

The angular momentum production during an oblique dipole-
wall collision does not exhibit significant Reynolds number
dependence [27]. The vortex-based Reynolds number Red of the 2D
Table 2
Statistics of the spin-up variables for three different Reynolds numbers. Ensemble-
averaged maximum of the absolute value of the angular momentum hLmaxi defined
as the maximum for s< 400. This value is normalized with the angular momentum
corresponding with solid-body rotation of the initial flow field, Lsb(s¼ 0), and based
on an equivalent solid-body rotation computed with the rms velocity at the time the
maximum is observed. The last three columns give the spin-up time measured in
terms of the dimensionless times s, s*, and Tg, respectively.

Re hLmaxi
Lsbðs¼0Þ

hLmaxi
LsbðsÞ s s* Tg

104 0.19� 0.05 0.35� 0.07 180� 50 600� 200 45� 20
5� 104 0.24� 0.05 0.36� 0.07 150� 50 1000� 300 50� 15
105 0.23� 0.05 0.32� 0.07 150� 50 1300� 500 50� 15
turbulence simulations considered in the present investigation is in
the same order of magnitude as in Ref. [27]. Our observation that
the magnitude of the torque hardly depends on the Reynolds
number is thus indeed consistent with the results from oblique
dipole-wall collision experiments.
5. Angular momentum production: systematic or diffusive?

In this Section we focus on the angular momentum production
in the time interval between initialization of the flow and the
typical time when the flow has spun up (see Table 2). The angular
momentum of the flow then approaches the upper bound deter-
mined by the total kinetic energy of the flow and the shape of the
domain and will subsequently decay slowly. From the time evolu-
tion of the angular momentum up to the moment the flow has spun
up, shown in Fig. 5, one might be tempted to conclude that the
production of angular momentum is driven by a Brownian motion
like process. A more quantitative analysis of the spin-up process
can be based on a comparison of the time-series of the angular
momentum with a diffusion process. The test hypothesis is that the
production of angular momentum is driven by stochastic fluctua-
tions of the pressure on the domain boundaries. We will then show
the incorrectness of this hypothesis.

The stochastic fluctuations of the pressure can be associated with
multiple local vortexewall interaction events (note that a full spin-
up cycle requires a large number of local eddy turnover times, see
Table 2, thus supporting a statistical approach). For simplicity it is
assumed that the overall torque is normally distributed. The prob-
ability density function (pdf) of the local pressure of bounded 2D
turbulence is not Gaussian and is strongly skewed [14]. The pressure
correlation length along the domain boundary, however, is found to
be small and we can then assume that the torque is the weighted
sum of many statistically independent local pressure contributions
Table 3
Statistics of the torque. Standard deviation s of the net torque, i.e. _L averaged over
the period s< ss where ss denotes the time the maximum in the absolute value of the
angular momentum is observed. The standard deviation s represents the torque
normalized with Lsb(s¼ 0) and the turnover time of the initial vortices. The corre-
lation time dsc estimated by the position of the first minimum of the autocovariance
function of the torque.

Re s s dsc

104 0.10� 0.01 8.1� 10�3 4s
5� 104 0.13� 0.02 1.1� 10�2 3s
105 0.10� 0.02 8.1� 10�3 3s
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Fig. 6. Probability density function of the torque dL/dt, where L is normalized with
Lsb(s¼ 0). The pdf is computed by averaging over the simulations with initial Reynolds
number of Re¼ 104 (top), Re¼ 5�104 (middle), and Re¼ 105 (bottom), respectively.
The dashed lines represent Gaussian fits.

G.H. Keetels et al. / European Journal of Mechanics B/Fluids 29 (2010) 1e8 7
on the domain walls given by the same distribution. According to the
central limit theorem the overall torque is then normally distrib-
uted. We have computed the pdf of the torque for three spin-up
realizations, one for each Reynolds number under investigation, and
the results are shown in Fig. 6. These data indeed support our
assertion. Following this procedure a surrogate time-series for the
angular momentum can be generated with a surrogate torque which
is fully correlated for ds< dsc, but independently drawn from
0 100 200 300 400
0

0.1

0.2

0.3

0.4

0.5

S n
→

n →τ

Fig. 7. Expectation value of the trace of the amplitude of a surrogate Brownian data set
generated with dsc¼ 4s and s ¼ 8:1� 10�3. The solid line represent the expectation
value and the dashed line the expected deviation. The markers correspond with the
location in this diagram of the maximum angular momentum (normalized with
Lsb(s¼ 0)) from each simulation. The different symbols represent data from runs with
an initial Reynolds number of Re¼ 104 (circles), Re¼ 5�104 (stars), and Re¼ 105

(plusses), respectively.
a normal distribution for ds> dsc. The statistical parameters dsc and s

are determined by the data reported in Table 3.
The central statistical quantity considered here is the trace of

a diffusion process, see for example Sprott [28]. In the present
analysis the trace is expressed as Sn ¼ dsc

Pn
j¼1 Tj, where Tj is

drawn from the normal distribution Nð0; sÞ at each time level
sj¼ jdsc. The expectation value for the absolute value of the trace
reads hjSnji ¼ sdsc

ffiffiffiffiffiffiffiffiffiffiffiffi
2n=p

p
and for the deviation we obtain

hðjSnj � hjSnjiÞ2i1=2 ¼ dscs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� 2=pÞ

p
.

Fig. 7 shows the corresponding curves based on the observed
statistics of the angular momentum and torque. The observed spin-
up times and amplitudes from the simulations with Re¼ 104

(circles), 5�104 (stars) and 105 (plusses) are also included in Fig. 7.
These data points indicate that the observed spin-up rate is higher
than can be expected from a standard diffusive process. The time-
series of the angular momentum show persistence, i.e. a tendency
exists to proceed a trend more strongly compared with Brownian
motion. In that respect the generation of angular momentum
should in our view be regarded as a systematic process, and the
hypothesis is shown to be incorrect.

6. Conclusion

The high-Reynolds number simulations presented in this paper
reveal that spontaneous production of angular momentum is
a persistent feature of 2D turbulent flows in non-circular domains.
In the lower Reynolds number regime spin-up is associated with
the emergence of large-scale monopolar and tripolar structures
that progressively fill the container as viscous decay continues, see
Ref. [9]. Higher Reynolds number flows show strong and rapid spin-
up that is statistically comparable with the lower Reynolds number
cases. The angular momentum of these flows is, however, associ-
ated with a markedly different flow pattern. A large-scale circula-
tion cell emerges early in the flow evolution that carries a dense
population of high-amplitude vortices for many turnover times.
High-amplitude vorticity filaments emanating from the domain
boundaries are able to disrupt the internal circulation cell, but do
not prevent strong spin-up events and allow the persistence of an
angular momentum containing flow state. Although the boundary
layers clearly affect the organization of the interior fluid, the spin-
up time is not proportional to the microscopic time-scale based on
the total enstrophy (and the average eddy turnover time of the
vortices). Moreover, a standard diffusion process that mimics the
action of local flow-wall interactions and associated pressure
fluctuations cannot explain the strong and rapid spin-up of the
flow. In that respect the internal flow does not merely respond to
the net torque provided by local processes near boundaries alone,
but exhibits an intrinsic property to relax towards an angular
momentum containing large-scale flow pattern. By considering the
spin-up as an intrinsic property of the internal flow it is not
surprising that the macroscopic turnover time of the internal flow,
based on the rms velocity and half-width of the domain, deter-
mines the spin-up rate.

In summary, the present observations suggest that spin-up
should be regarded as an intrinsic and robust property of the flow
that is hardly dependent on the initial Reynolds number.
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Appendix. A note on the microscopic time-scale

An important time-scale in decaying turbulence is the time-
scale s* as defined in Eq. (4). The physical interpretation of Chasnov
[26] is already given in Section 4. Here we obtain an inequality that
clearly demonstrates that s* is closely related to the decay process.

Theorem 1. The total kinetic energy E(t) of viscous flow on
a bounded domain U 3 R2 with the smallest Stokes eigenvalue l

verifies for t1 ˛ (0, N) the following property

EðtÞ � E0exp

2
4� 2n

ffiffiffiffiffiffiffiffiffiffi
l=E0

q Z t1

0

ffiffiffi
Z
p

dt

3
5:

Proof: By using the Poincar�e inequality kuk2
2 �

l�1kVuk2
2 ¼ l�1kuk2

2 and time-integration of dE/dt¼�2nZ(t)
yields,

EðtÞ � E0expð�2vltÞ:

Rewriting dE/dt¼�2nZ(t) and applying the Poincar�e inequality
once gives,

d
dt
kuk2

2

ku0k2
2

¼ �2n
kuk2

2

ku0k2
2

� �2nl1=2 kuk2
ku0k2

kuk2
ku0k2

:

From the inequality E(t)� E0 exp(�2nlt) it is realized that
kuk=ku0k � 1 such that it follows that

d
dt
kuk2

2

ku0k2
2

þ 2l1=2n
kuk2
ku0k2

kuk2
2

ku0k2
2

� 0:

Then Gronwall’s inequality in the following form finishes the proof.

Lemma 1. (Gronwall’s inequality) If a(t) is real-valued and non-
negative on (0, N), and if the function y(t) satisfies the following
differential inequality:

dy
dt
þ aðtÞy � 0;

then y(t) is bounded on (0, N) by

yðtÞ � yð0Þexp

0
@�

Z t1

0
aðtÞ dt

1
A:
References

[1] R.H. Kraichnan, Inertial ranges in two-dimensional turbulence, Phys. Fluids 10
(1967) 1417e1423.

[2] G.K. Batchelor, Computation of the energy spectrum in two-dimensional
turbulence, Phys. Fluids Suppl. 12 (1969) 233e239.

[3] C.E. Leith, Diffusion approximation for two-dimensional turbulence, Phys.
Fluids 11 (1968) 671e673.

[4] W.H. Matthaeus, W.T. Stribling, D. Martinez, S. Oughton, D. Montgomery,
Selective decay and coherent vortices in two-dimensional incompressible
turbulence, Phys. Rev. Lett. 66 (1991) 2731e2734.

[5] G.J.F. van Heijst, H.J.H. Clercx, D. Molenaar, The effects of solid boundaries on
confined two-dimensional turbulence, J. Fluid Mech. 554 (2006) 411e431.

[6] H.J.H. Clercx, G.J.F. van Heijst, Two-dimensional Naviere-Stokes turbulence in
bounded domains, Appl. Mech. Rev. 62 (2009) 020802 1e25.

[7] Z. Yin, D.C. Montgomery, H.J.H. Clercx, Alternative statisticalemechanical
descriptions of decaying two-dimensional turbulence in terms of ‘‘patches’’
and ‘‘points’’, Phys. Fluids 15 (2003) 1937e1953.

[8] H.J.H. Clercx, S.R. Maassen, G.J.F. van Heijst, Spontaneous spin-up during the
decay of 2D turbulence in a square container with rigid boundaries, Phys. Rev.
Lett. 80 (1998) 5129e5132.

[9] H.J.H. Clercx, A.H. Nielsen, D.J. Torres, E.A. Coutsias, Two-dimensional turbu-
lence in square and circular domains with no-slip walls, Eur. J. Mech. B Fluids
20 (2001) 557e576.

[10] S.R. Maassen, H.J.H. Clercx, G.J.F. van Heijst, Self-organization of quasi-two-
dimensional turbulence in stratified fluids in square and circular containers,
Phys. Fluids 14 (2002) 2150e2169.

[11] S. Li, D. Montgomery, W.B. Jones, Inverse cascades of angular momentum, J.
Plasma Phys. 56 (1996) 615e639.

[12] S. Li, D. Montgomery, Decaying two-dimensional turbulence with rigid walls,
Phys. Lett. A 218 (1996) 281e291.

[13] S. Li, D. Montgomery, W.B. Jones, Two-dimensional turbulence with rigid
circular walls, Theor. Comput. Fluid Dynam. 9 (1997) 167e181.

[14] K. Schneider, M. Farge, Decaying two-dimensional turbulence in a circular
container, Phys. Rev. Lett. 95 (2005) 244502 1e4.

[15] S.R. Maassen, H.J.H. Clercx, G.J.F. van Heijst, Decaying quasi-2D turbulence in
a stratified fluid with circular boundaries, Europhys. Lett. 46 (1999) 339e345.

[16] G.H. Keetels, H.J.H. Clercx, G.J.F. van Heijst, Spontaneous angular momentum
generation of 2D fluid flow in an elliptic geometry, Phys. Rev. E 78 (2008)
036301 1e7.

[17] G.H. Keetels, U. D’Ortona, W. Kramer, H.J.H. Clercx, K. Schneider, G.J.F. van
Heijst, Fourier spectral and wavelet solvers for the incompressible Naviere-
Stokes equations with volume penalization: convergence of a dipole-wall
collision, J. Comput. Phys. 227 (2007) 919e945.

[18] H.J.H. Clercx, G.J.F. van Heijst, On the dissipation of kinetic energy in 2D
bounded flows, Phys. Rev. E 65 (2002) 066305 1e4.

[19] E. Arquis, J.P. Caltagirone, Sur les conditions hydrodynamique au voisinage
d’une interface milieu fluide-milieu poreux: application �a la convection
naturelle, C. R. Acad. Sci. Paris 299 (1984) 1e4.

[20] Ph. Angot, C.-H. Bruneau, P. Fabrie, A penalization method to take into account
obstacles in viscous flow, Numer. Math. 81 (1999) 497e520.

[21] G. Carbou, P. Fabrie, Boundary layer for a penalization method for viscous
incompressible flow, Adv. Differ. Equ. 8 (2003) 1453e1480.

[22] G.H. Keetels, H.J.H. Clercx, G.J.F. van Heijst, A Fourier spectral solver for
confined NaviereStokes flow, Int. J. Mult. Comput. Eng. 6 (2008) 53e63.

[23] K. Schneider, M. Farge, Final states of decaying 2D turbulence in bounded
domains, Physica D 237 (2008) 2228e2233.

[24] W.J.T. Bos, S. Neffaa, K. Schneider, Rapid generation of angular momentum in
bounded magnetized plasmas, Phys. Rev. Lett. 101 (2008) 235003 1e4.

[25] D. Molenaar, H.J.H. Clercx, G.J.F. van Heijst, Angular momentum of forced 2D
turbulence in a square no-slip domain, Physica D 196 (2004) 329e340.

[26] J.R. Chasnov, On the decay of two-dimensional homogeneous turbulence,
Phys. Fluids 9 (1997) 171e180.

[27] H.J.H. Clercx, C.-H. Bruneau, The normal and oblique collision of a dipole with
a no-slip boundary, Comput. Fluids 35 (2006) 245e279.

[28] J.C. Sprott, Chaos and Time-series Analysis, Oxford University Press, Oxford,
United Kingdom, 2003.


	On the origin of spin-up processes in decaying two-dimensional turbulence
	Introduction
	Angular momentum balance
	Flow features
	Spin-up statistics
	Angular momentum production: systematic or diffusive?
	Conclusion
	Acknowledgements
	A note on the microscopic time-scale
	References


