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Abstract—Living cells are constantly subjected to a plethora of
environmental stimuli that require integration into an appropri-
ate cellular response. This integration takes place through signal
transduction events that form tightly interconnected networks.
The understanding of these networks requires to capture their
dynamics through computational support and models. ANIMO
(Analysis of Networks with Interactive MOdelling) is a tool that
enables construction and exploration of executable models of
biological networks, helping to derive hypotheses and to plan
wet-lab experiments. The tool is based on the formalism of
Timed Automata, which can be analysed via the UPPAAL model
checker. Thanks to Timed Automata, we can provide a formal
semantics for the domain-specific language used to represent
signalling networks. This enforces precision and uniformity in the
definition of signalling pathways, contributing to the integration
of isolated signalling events into complex network models. We
propose an approach to discretization of reaction kinetics that
allows us to efficiently use UPPAAL as the computational engine
to explore the dynamic behaviour of the network of interest. A
user-friendly interface hides the use of Timed Automata from
the user, while keeping the expressive power intact. Abstraction
to single-parameter kinetics speeds up construction of models
that remain faithful enough to provide meaningful insight. The
resulting dynamic behaviour of the network components is
displayed graphically, allowing for an intuitive and interactive
modelling experience.

Index Terms—timed automata; signalling pathway; modelling;
dynamic behaviour

I. INTRODUCTION

Systems biology aims at understanding biological systems
from a holistic rather than a reductionist perspective. As the
complexity of dynamic molecular interaction networks ex-
ceeds the capacity of the human mind, computational support
is needed to describe and understand such networks. Large
volumes of data are particularly useful when used as reference
for functional models that formalize the interactions between
the components of a network. Such models can assist in explo-
ration and transfer of knowledge. Functional disease models
can be combined with patient-specific expression profiles to
stratify patients into groups and maximize treatment efficacy.
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Executable biology is a relatively new area in systems
biology and takes the approach of in silico mimicking bi-
ological processes of interacting network components. This
paradigm offers a close match with biological intuition [1].
ODEs (ordinary differential equations) are often used to model
the dynamics of biochemical processes, and the availability
of supporting tools [2], [3], [4] makes their power accessible
to end users. Process calculi are also classified as executable
approaches, and tools based on such formalisms have been
successfully used in modelling complex biological events [5],
[6]. However, most of the existing modelling tools require
theoretical foundations or training in mathematics, and this
may hamper the widespread creation of in silico models within
the biological community. For this reason, we developed a
modelling tool centred around user-friendliness, ANIMO [7],
the technical foundations of which are described in detail in
this paper. The formalism of Timed Automata [8] provides an
excellent starting point for construction of executable models
of biological networks and enables the use of the dedicated
model checking tool UPPAAL [9]. The use of Timed Automata
to model molecular interactions has been explored before [10],
[11], [12], and is further elaborated by us and for the first time
applied in a mature modelling tool. ANIMO is implemented
as a plug-in to the network visualization tool Cytoscape [13],
which contributes to the user friendliness and widens AN-
IMO’s applicability within the biological community. The
modelling process is entirely performed via the user interface,
and user input is automatically translated into an underlying
Timed Automata model.

This paper extends on the BIBE conference paper presented
in 2012 [14]. In the present work, we describe in detail how
Timed Automata guards and invariants are calculated from
kinetic reaction equations and how unwanted side effects of
rounding to integer time units are dealt with. Furthermore, we
show how the use of UPPAAL’s statistical model checker [15]
improves simulation performance. Finally, a newly imple-
mented feature is presented that assists in understanding the
effect of modifications to the model, by using a heat-map
that shows the dynamic per-node differences between two
versions of the model. To exemplify this new functionality,
we provide an illustrative case study that shows the added
value for performing in silico experiments.

After a brief introduction on the basic aspects of biolog-
ical signalling networks and Timed Automata in Section II,
we will explain in Section III how our modelling approach
works, showing an example application in Section IV. After
discussing related work in Section V, Section VI concludes the
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paper and gives some perspectives for future developments.

II. PRELIMINARIES

A. Signalling pathways in biology

Intra-cellular signalling pathways represent the cellular
events occurring when receptors are activated by specific
ligands. A typical interaction occurring in a signalling pathway
involves an upstream protein inducing a post-translational
modification (e.g. phosphorylation) to a downstream substrate.
Changing the state of a protein often results in a change in
its activity. A cascade of activating reactions relays incoming
signals to their downstream targets. Graphical representations
of a signalling pathway typically depict proteins as nodes and
reactions as edges, with → and a representing activation and
inhibition, respectively.

Many nodes are shared by different signalling pathways and
this crosstalk ties pathways into strongly interconnected net-
works that also contain feedback loops. However, the function
of these networks does not only derive from their topology, but
also from their dynamic behaviour, which cannot be deduced
from traditional static representations. This is an incentive
towards a method for enriching these representations with a
formal description of the associated dynamics. Computational
models of such complex, dynamic networks would enable
in silico experiments, generation of hypotheses and rational
design of wet-lab experiments.

B. Timed Automata

Timed Automata (TA) [8] are finite-state automata to which
real-valued clocks and communication channels have been
added. In particular, clocks are used to define conditions
enabling transitions between locations of an automaton, or to
limit the permanence in locations. These conditions are called
guards and invariants, respectively. Performing a transition
may require two automata to interact via synchronization,
where each participant performs one of two complementary
actions (termed input and output) on a shared communication
channel. Such channels can also be defined as broadcast,
allowing multi-part communication with one sender and many
receivers. In order to obtain answers to interesting questions
about the behaviour of a model, model checking [16] can
be applied to a TA model, using a software tool such as
UPPAAL [9].

As an example of TA, a basic model of a generic signalling
network is given in Figure 1. The model represents the active
fraction (further called activity level, or simply activity when
not ambiguous) of a population of molecules as an integer
variable (reactant, Fig. 1a), the value of which is increased
(Fig. 1b) or decreased by reactions. In the example, the value
of reactant is limited to the interval [0,MAX], and reaching a
bound may cause disabling of a reaction (location NotReact-
ing in Fig. 1b). More precise models of signalling networks
also take into account the activity of upstream components
when determining the availability of an activating reaction.
This will be explained in the next section.

reactant := reactant − 1

reactant := reactant + 1

goDown?

goUp?

(a) Reactant

Reacting NotReacting
c <= UB

c >= LB
&& reactant < MAX − 1

c >= LB
&& reactant >= MAX − 1

c := 0
c := 0

goDown?

goUp!

goUp!

(b) Activation

Fig. 1. TA templates to model a signalling pathway as represented by
UPPAAL’s user interface. Each automaton starts evolving from the location
marked with two concentric circles. (a) This automaton updates the reactant
variable whenever a reaction occurs, changing its activity level (reactant
:= reactant+1 increases the activity). (b) Activating reaction, which occurs
when its internal clock c is inside the interval [LB, UB] (guard c >= LB and
invariant c <= UB), making the target reactant’s activity level increase. The
current value of reactant (>= MAX−1 or < MAX−1) determines whether
the automaton takes the upper transition or the transition at the lower left.
The former ends in location NotReacting and disables the reaction because
the reactant has reached its maximum activity. The latter ends in location
Reacting and the reaction remains active. An inhibiting reaction can be
defined in a similar way, with the effect of decreasing the reactant’s activity.
Shared broadcast channels goUp and goDown are used for communication
between reaction and reactant automata.

III. MODELLING SIGNALLING PATHWAYS

A. Abstraction and discretization

In order to provide experimental biologists with an intuitive
way to formalize prior knowledge and experimental results, a
key aspect is to choose a suitable abstraction level.

The first abstraction made in ANIMO is the representation
of proteins in the network in terms of their activity. Distinct
biological processes can lead to activation or inhibition of
proteins. In ANIMO, these processes are all abstracted to
reactions that change the activity of downstream reactants.

Second, we abstract from detailed elementary reactions.
This is particularly useful in biology, where the construction of
very detailed models is often hampered by a lack of knowledge
about the exact details of the molecular mechanisms involved.
Detailed representations of biological systems require detailed
knowledge of reaction mechanisms as well as accompanying
kinetic parameters for each individual step in the overall
reaction. By choosing a higher abstraction level, elementary
reaction steps can be aggregated into a single step in the
model, reducing the number of parameters in the model. As
such, this abstraction not only reduces the time to construct
a model, it also facilitates the modelling of larger networks
for which not all details of elementary reactions are known.
Of course, a higher abstraction level also comes at the price
of losing some descriptiveness, but we will demonstrate in
Section IV that abstracted models can capture experimental
data in a meaningful way.

A third level of abstraction is the discretization of activities
into integer variables with a user-defined granularity, ranging
from Boolean (2 levels) to almost continuous (100 levels). This
discretization gives the user the flexibility to adjust the model
abstraction to the level of prior knowledge, to the quality and
nature of experimental data and to the biological questions at
hand. A starting user working on smaller models will benefit
from choosing a high granularity, whereas more experienced
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users will be able to exploit the trade-off between level of
detail and performance when dealing with large models.

B. Reaction kinetics

Reaction rates depend on the current activity levels of the
involved reactants. For instance, a higher activity of upstream
enzyme and/or a higher abundance of downstream substrate
increase the reaction rate.

Different degrees of complexity are taken into account
when defining reaction kinetics. Given a reaction in which
A (enzyme) activates B (substrate), we define R as the time
needed to increase the activity level of B by 1. R is computed
using a kinetic function f that depends on the current activity
levels of both A and B: R = f(a, b)

f(a, b) =

{ 1
r(a,b) × levelsScale× timeScale if r(a, b) 6= 0

∞ otherwise

The reaction rate r is computed from a single kinetic
constant k and the activity levels of the reactants (a, b). Three
kinetic scenarios are implemented :
Scenario 1: r(a) = k × a : the reaction rate depends on the
activity level of the upstream enzyme only.
Scenario 2: r(a, b) = k × a × b : the reaction rate depends
on the activity levels of both the upstream enzyme and the
downstream substrate. b represents the inactive fraction of
substrate if the reaction is an activation, whereas it refers to
the active fraction when the effect is inhibitory.
Scenario 3: r(c, d) = k× c×d : the reaction rate depends on
the activity of two upstream components chosen by the user.
This scenario performs a function analogous to an AND-gate
in Boolean models.

levelsScale is a scale factor that allows to keep reaction
kinetics independent from the granularity of its reactants. The
value of levelsScale depends on the kinetic scenario used
to compute r. With nA the granularity of reactant A (and
similarly for other reactants), levelsScale is defined as:
Scenario 1: levelsScale = nA

nB

Scenario 2: levelsScale = nA×nB
nB = nA

Scenario 3: levelsScale = nC×nD
nB , with nB the granularity

of the reactant influenced by the reaction.
The numerators are used to normalize all input activity values
to the [0, 1] interval, which keeps the reaction kinetics inde-
pendent from the input reactants’ granularity. The denominator
works similarly on the downstream reactant. The importance
of this can be intuitively understood with a simple example.
Consider an activating reaction A → B, with A completely
active and B completely inactive. If B has 10 granularity
levels and no other reactions influence A or B, the reaction
will take T seconds to completely activate B from 0 to 10
levels. When the granularity of B would be increased to 30
levels, the reaction should still take T seconds to completely
activate B, bringing it from 0 to 30 levels. This implies that
each reaction step that increases the activity of B by one level
takes one third of the time it took in the situation with 10
activity levels for B. This scaling is accounted for by using
nB as denominator in levelsScale.

timeScale is based on the ratio between real-life seconds
and TA time units. This enables performing simulation runs
using real-life units of time. Moreover, as an UPPAAL model
must express all time bounds as integers, timeScale is auto-
matically optimized to prevent rounding problems when R
would be rounded to 0 for values < 0.5. Increasing the
value for timeScale ensures that the smallest value for R
becomes larger than 0. It is important to note that timeScale
cannot simply be assigned an arbitrarily high value, because
the resulting time constraints could overflow the maximum
constant allowed in UPPAAL (currently, 230 − 2). ANIMO
automatically chooses the optimum timeScale value by making
a preliminary computation of all borderline values, i.e. the
minimum and maximum time constraint for each reaction. The
starting value for timeScale is computed as

timeScale =
1

secondsPerStep

where secondsPerStep is the user-chosen ratio between real-
life seconds and TA time units, with 1 as its default value. The
resulting value is then optimized (raised or lowered) to ensure
that all time bounds are inside the allowed interval [0, 230−2].

Finally, to take into account a natural variability that occurs
in biological reactions in which reactants are present in low
copy numbers, an uncertainty parameter can be set for each
reaction. This uncertainty is translated to time intervals for
model transitions, as is shown in the model in Figure 1 (cf.
LB and UB time bounds). With an uncertainty value of 5%,
the upper and lower bounds of R are computed as:

R(a, b)lower bound = f(a, b)× 0.95
R(a, b)upper bound = f(a, b)× 1.05

for all values of a and b.
As we represent activity levels a, b via integer variables,

there is a finite number of combinations for the values of a
and b. A two-dimensional table is pre-computed, containing
all possible values for R. As an example of this computation,
Table I shows the lower and upper bounds table for a reaction
A→ B, using scenario 2.

TABLE I
LOWER AND UPPER BOUNDS FOR A REACTION A→ B WITH KINETIC

SCENARIO 2, k = 0.004 (CORRESPONDING TO THE medium PRESET) AND
10 SECONDS PER UPPAAL TIME STEP. GRANULARITY OF A IS 5 (I.E. 5
ACTIVATION STEPS FROM 0 TO MAXIMUM ACTIVITY), GRANULARITY OF
B IS 3. IN BOTH CASES, 0 MEANS COMPLETELY INACTIVE. WITH THESE
SETTINGS, levelsScale = 5.0 AND timeScale = 0.1. UNCERTAINTY IS SET

AT 5%. CYAN NUMBERS ARE LOWER BOUNDS, RED NUMBERS ARE UPPER
BOUNDS.

H
HHHB

A 0 1 2 3 4 5

0 ∞ [40, 44] [20, 22] [13, 15] [10, 11] [8, 9]
1 ∞ [59, 66] [30, 33] [20, 22] [15, 16] [12, 13]
2 ∞ [119, 131] [59, 66] [40, 44] [30, 33] [24, 26]
3 ∞ ∞ ∞ ∞ ∞ ∞

The choice of the scenario and the value for the correspond-
ing parameter k are the only inputs requested when defining
the kinetics of a reaction. To further simplify the modelling
process, we implemented the possibility to use qualitative
values for k, by providing a pre-defined set of reaction rates,
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labelled very slow, slow, medium, fast, very fast. These options
encourage construction of a model in which relative reaction
rates define the network dynamics. In subsequent steps, the
preliminary model can be fit to experimental data by more
precisely setting the values for k.

C. Timed Automata model

An ANIMO network model contains an instance of the
Reaction TA template (Fig. 2) for each reaction present in
the model. An integer variable is defined for each of the n
reactants of the network to represent the reactant’s current
activity level. This variable is initialized as specified by the
user. Finally, a series of channels called reactingi, with
i ∈ {1, 2, . . . , n}, is defined to allow reaction processes to
communicate when the activity level of the i-th reactant has
been updated.

Fig. 2. The TA template for the reactions in the model. The two matrices
timeL and timeU define the lower and upper time bounds for each possible
combination of the activity levels of the reactants on which the reaction rate
depends. Channels r1 reacting, r2 reacting and output reacting are used
for communicating modifications to the value of the reactants involved. Each
of these three channels is a reference to a global shared channel reactingi,
where i is the index of the corresponding reactant. The output reactant is
assumed here to have 15 levels of granularity, and the guards ensure that
0 ≤ output + delta ≤ 15.

The TA template in Figure 2 depends on two input reac-
tants, to which reactant1 and reactant2 are references, and
influences one reactant (output). This template is used for
kinetic scenarios 2 and 3, whereas a slightly simpler template
is used for scenario 1 that relies on a single input. The basic
concept underlying the Reaction TA is to perform a continuous
cycle, where at each iteration the activity level of the target
reactant (variable output) is updated upon completion of the
reaction. The variable delta represents the increment caused
in output when the reaction occurs: thus, delta contains +1
if the reaction is an activation and −1 for inhibitory reactions.
The locations in the Reaction TA template in Figure 2 have
been labelled s1, s2, s3, s4, where s1 is the starting location.

s1 is used to reset the internal clock c and start counting
(transition to location s3) or to enter a “dormant” location if
the reaction cannot occur (transition to location s2). This is the
case when the lower bound of the reaction duration is declared

as INFINITY (i.e. the reaction rate is 0, see the definition of
f(a, b) in Sect. III-B). For instance, if the reaction activates
its target and the kinetics are based on scenario 2, the reaction
cannot occur if either no inactive substrate or no active enzyme
are available (cf. Tab. I). The U symbol inside locations s1 and
s4 marks them as urgent: while there is at least one automaton
in an urgent location, time cannot progress. In this way, all
necessary updates are made before the reactions can continue.

The waiting location is identified by the label s3: the
automaton can exit from this location when the activity
level of an input reactant has been changed by another
reaction (transitions from s3 to s4, receiving a communica-
tion on channel r1 reacting or r2 reacting), or when the
current value of the internal clock c is inside the interval
[R[r2][r1]lower bound, R[r2][r1]upper bound], i.e. when the reaction
can occur. The bounds for R under the current conditions are
found in the tables timeL[ ][ ] (corresponding to R[ ][ ]lower bound)
and timeU[ ][ ] (R[ ][ ]upper bound), which are indexed by the
current activity levels of the two input reactants r1 and r2.

If the reaction cannot occur (e.g. because all substrate is
already active), the automaton stays in location s2 until an
update takes place, which can possibly change the current
situation (transitions from s2 to s4).

Finally, location s4 is used to check that the clock settings
are consistent with the current time bounds.

For an example run, consider two reactions R1 = A → B
and R2 = C a B, both based on scenario 2, with starting
activity levels A = 10/10, B = 0/10, C = 10/10. The
two automata for R1 and R2 will start from location s1
and move immediately to s3 and s2 respectively. As both
reactions depend on the activity level of B (see the definition
of scenario 2 in Sect. III-B) and B is completely inactive, R1

can proceed at full speed, while R2 cannot occur. After some
time (depending on the parameter k of R1), transition s3→ s4
will be taken by the automaton for R1, increasing the activity
level of the output reactant B by 1 (output = output + delta in
the template). At the same time, a synchronization on channel
reactingB (corresponding to output reacting for R1 and to
r2 reacting for R2) will allow the automaton for R2 to reach
location s4. reactingB also corresponds to r2 reacting in the
automaton for R1, but that automaton is already performing
output reacting!, and no more than one transition can be
taken at a time. As R1 can still occur with A = 10/10 and
B = 1/10, the proper s4→ s3 transition is taken next. For the
same reason, a transition s4 → s3 is taken in the automaton
for R2, making both reactions active. From this point, the
evolution of the system will proceed depending on the kinetic
parameters defined for the reactions, and the activity of B will
vary depending on which of the two reactions will occur faster,
i.e. more frequently.

D. Analysis with ANIMO

We use the statistical model checking engine [15] of the
UPPAAL model checker to obtain a simulation run of the
model. In order to obtain the required data, ANIMO generates
a query of the form simulate 1 [<= 36000]{r0, r1, . . . , rn},
which can be read as “perform one simulation run until 36000
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time units and produce a trace where the values of variables
r0, r1, . . . , rn (the reactant activities) are shown”. This ap-
proach is considerably faster (especially in large models) than
the one we presented previously [14], because only strictly
needed data is produced by UPPAAL, greatly reducing the
time needed for parsing the result. Note that the number of
simulations is normally fixed to one, so no real statistical
model checking is done when asking for one simulation. In
order to see the result of multiple simulation runs of the same
model, the user needs to select the option Compute X runs on
the ANIMO interface, choosing how many simulations have
to be performed. Parsed traces can be graphically explored in
the ANIMO user interface, where they are displayed as time-
series graphs of the selected reactants. In case of multiple
simulation runs, the user can choose whether to obtain a plot
of the averages (with standard deviation bars) or an overlay
plot of all the computed series. Experimental time series data
can be added to the graph, enabling a direct comparison with
model predictions. By moving a slider at the bottom of the
time series graph, the original input model is interactively
enhanced by colour codings, showing the activity levels of
all reactants for each time instant.

IV. CASE STUDY

As an example application of our approach, we present
a model that describes signalling events downstream of two
growth factors that regulate cell development and function in
PC12 cells: epidermal growth factor (EGF) and nerve growth
factor (NGF). PC-12 cells are a model cell line to study
neuronal differentiation. We modelled part of the signalling
network and compared the behaviour of our model with
experimental data from Santos et al. [17].

It has been observed that the activation of extracellular
regulated kinase (ERK) shows significantly different dynamics
upon treatment with EGF as compared to treatment with NGF.
A transient, peak-shaped activation is observed when PC-12
cells are treated with EGF, whereas treatment with NGF results
in sustained activation of ERK, even after removal of the
input signals via growth factor-neutralizing antibodies. These
activation profiles are tied to different cellular outcomes, with
transient activation leading to proliferation and sustained acti-
vation leading to differentiation. These findings led the authors
of [17] to hypothesize the existence of a positive feedback
from ERK to an upstream node in the network and existence
of a new network component that blocks this feedback. It
was found that NGF prevents this blocking, leading to sus-
tained activation [17]. We have formalized and implemented
these topological reasonings in an ANIMO model, shown in
Figure 3. The parameters used in this network are given in
Table II. The corresponding experimental conditions are the
addition of either EGF or NGF in sufficient quantity to fully
activate their respective receptors. After 10 minutes a growth
factor-neutralizing antibody is added, shutting off the input
signal to the network. The evolution of the network is observed
for 60 minutes from the initial treatment.

Nodes labelled as EGF, NGF, PKC (protein ki-
nase C), RKIP (Raf kinase inhibitory protein), RAF (Raf),

Fig. 3. The model represented in the ANIMO user interface. The Network
central panel represents the model as the classical nodes-edges network
familiar in biology. To this representation, node colours and shapes are added
to represent current activity levels and protein categories, as defined in the
Legend panel on the left. On the right, the Results Panel shows a graph of
the activities of selected nodes during the user-chosen interval of 60 minutes.
A vertical red bar, which can be moved with the underlying slider, indicates
the point in the simulation trace on which the colouring of the nodes in
the Network panel is based. The graph allows the user to visually compare
simulation results with experimental data. The Erk (EGF) data series is based
on experimental data from Santos et al. [17].

MEK (MAPK ERK kinase), and ERK in the ANIMO model
correspond to the proteins in the network topology that was
presented by Santos et al. [17]. Nodes introduction of Ab and
neutralizing antibody are used to represent the introduction
of growth factor-neutralizing antibody after 10 minutes from
the start of the initial treatment. The reaction that activates
node neutralizing antibody takes 10 minutes to complete.
Finally, nodes labelled (1), (2) and (3) are phosphatases
that inactivate their targets. These inactivations cause cellular
signalling networks to be reset to their resting state after a
signal has been processed. The feedback activation from ERK
to RAF is shown as an edge from ERK to RAF in Fig. 3.
In the absence of PKC activity, RKIP is active and inhibits
RAF. When PKC is activated by NGF, RKIP is phosphorylated
and inhibited by PKC, causing sustained activation of RAF by
ERK (cf. Fig. 4b).

The dynamic behaviour of ERK in the model and from the
experimental data is shown in Figure 4. The model reflects the
general behaviour of ERK: transient activation results from
treatment with EGF, whereas NGF treatment causes sustained
activation. In this model, we deliberately left out a number
of proteins, e.g. the receptors for EGF and NGF, since no
experimental data were available for these nodes. In order to
further refine the model, these intermediate nodes could be
added to the model. In this way, the model could fit the data
more closely, going beyond the scope of this example.

Due to a new addition to ANIMO, it is possible to highlight
the differences in the network dynamics between two versions
of the model. To this end, simulation results for one version
of the model are subtracted from the results of a second
version. These differences are then visualized in the network
topology, by using a suitable colour scheme. This allows a
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TABLE II
PARAMETER SETTINGS FOR THE MODEL IN FIGURE 3. THE SCEN.

COLUMN CONTAINS THE NUMBER OF THE KINETIC SCENARIO FOR EACH
REACTION (SEE SECT. III-B). (∗) IN ORDER TO REFLECT EXPERIMENTAL

TREATMENT CONDITIONS, THE SETTINGS FOR INITIAL NGF AND EGF
ACTIVITY ARE TO BE CONSIDERED MUTUALLY EXCLUSIVE: IF ONE IS AT

MAXIMUM ACTIVITY, THE OTHER IS SET AT 0.

Reactants Reactions
Name Levels Init act. Reaction Scen. k
intr. Ab 1 1 intr. Ab → neutr. Ab 1 0.003
neutr. Ab 1 0 neutr. Ab → NGF 2 0.00375
NGF 15 15(∗) neutr. Ab a EGF 2 0.0625
EGF 15 15(∗) NGF → PKC 2 7e-4
PKC 40 0 NGF a RAF 2 0.005
RKIP 20 20 EGF → RAF 2 0.0125
RAF 60 0 PKC a RKIP 2 0.004
(1) 1 1 RKIP a RAF 2 0.02
MEK 60 0 (1) a RAF 2 0.0035
(2) 1 1 ERK → RAF 2 3.75e-4
ERK 100 0 RAF → MEK 2 0.054
(3) 1 1 (2) a MEK 2 0.0049

ERK a MEK 2 0.0192
MEK → ERK 2 0.075
(3) a ERK 2 0.0075

(a) (b)

Fig. 4. Comparison of the model and experimental data. (a) Treatment with
100 ng/ml EGF results in transient ERK activation. (b) Treatment with 50
ng/ml NGF results in sustained ERK activation. The ERK series are computed
from the model, while Erk (EGF) data and Erk (NGF) data are based on
experimental data from Santos et al. [17].

visual evaluation of the influences of a change in the model on
the resulting dynamic behaviour. Figure 5 shows an example,
with the differences in activities between 1) treatment with
NGF and 2) treatment with EGF. It can be seen that a
higher activity of PKC downstream of NGF leads to inhibition
of RKIP, causing sustained ERK activity. This visualization
can be used to rapidly assess the effect of model changes,
such as extra nodes, different initializations, altered values
for reaction parameters or a new wiring of the network. This
feature is particularly useful when working with large models
with extensive feedback loops, when the complete impact of
changes to the model becomes much harder to grasp.

V. RELATED WORK

Formal approaches to modelling biological systems can be
divided into two large groups. The first includes approaches
based on ordinary differential equations (ODEs), whereas the
second encompasses methods based on concurrent systems.
In ODEs, the model can be directly derived from the ac-
tual chemical reaction laws that govern the evolution of a
system. However, this characteristic makes rewriting of the
model necessary upon modification of the network. Concurrent
methods on the other hand, describe a system by specifying

Fig. 5. Difference between the simulations obtained using 50 ng/ml NGF
and 100 ng/ml EGF as input at 22 minutes (vertical red bar in right panel).
In this mode, node colours are based on the difference of activity between
the two configurations of the model: a red-coloured node is more active due
to NGF treatment, while cyan indicates less activity and white means no
difference. Note that NGF and EGF are both white, since at 22 minutes, NGF
and EGF are inactivated in both conditions by the neutralizing antibody. A
slider underneath the graph can be used to interactively view the differences
at different time points.

its components in isolation, and then defining the interaction
rules. This compositionality promotes modularity of models
and reuse of previously developed network motifs.

Tools that allow to construct models based on ODEs include
for example COPASI [2], E-Cell [4] and GNA [3]. These tools
add to the potential of ODEs by coupling them with additional
modelling approaches, such as stochastic models used in CO-
PASI and E-Cell, and by allowing for qualitative modelling, as
does GNA. Stochastic modelling becomes particularly useful
when some molecular species have very small concentrations,
which nullifies the assumption of a well-mixed solution used in
models based on ODEs. Other tools, such as Systems Biology
Workbench [18], allow to couple high-performance analysis
engines (such as roadRunner) to user-friendly interfaces (e.g.
JDesigner). Finally, tools such as CellDesigner [19] provide an
appealing graphical representation as an interface to powerful
computational engines.

In the category of concurrent methods, Cell Illustrator [20]
is characterized by visually representing a network in a way
that is strongly related to the underlying Petri net model. This
gives a clear link between the network representation and the
model. ANIMO aims at bringing the model representation as
close as possible to text book figures of biological networks, by
collapsing different protein states into a single node. Together
with the abstraction of biochemical reactions to cause-and-
effect relationships, this makes mathematical modelling more
accessible to users without previous experience in this field.
The use of TA to model biological signalling events has been
described before by Maler and Batt [12]. ANIMO takes a less
general approach, tailored for the construction of more abstract
models.
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VI. CONCLUSIONS AND FUTURE WORK

We contribute to the modelling of biological pathways by
introducing a formalization of the domain-specific language
traditionally used for pathway representations into a model
based on Timed Automata (TA). The ANIMO user interface
makes the power of TA available to users that lack a thorough
background in mathematics or computer science. This will
likely contribute to to the dissemination of computational
modelling in the realm of molecular cell biology and regen-
erative medicine. In this respect, we are applying ANIMO in
a research project aimed at studying chondrocyte signalling
in relation to osteoarthritis [21], [22]. The objective is to
enhance cartilage tissue engineering strategies by investigating
the effect of extracellular signalling molecules and cell-matrix
interactions in order to mimic these signals in the development
of biomaterials that provide direct support, while stimulating
chondrocytes to repair the damaged cartilage tissue.

The use of TA as the underlying formalism of ANIMO
lies the foundation to the use of more advanced analysis
techniques to query constructed models. In particular, applying
model checking techniques would allow us to perform in
silico experiments, answering questions such as “What is the
combination of inputs that leads to activity(A) ≥ 20/50 and
activity(B) < 10/80 in 120 minutes?”. Moreover, taking
advantage of statistical model checking capabilities recently
introduced to UPPAAL [15], we plan to extend the current
modelling paradigm adding the possibility to define stochastic
behaviour. This could for instance be done by assigning
exponential distributions to a set of reactions, to support
probabilistic queries such as “What is the probability that
activity(A) ≥ 40/50 in 30 minutes?”. Other interesting
developments are aimed at further speeding up the modelling
phase, in order to let the user start interrogating a model as
soon as possible. We plan to include a support for parameter
sensitivity analysis and automated parameter fitting to a given
experimental data set. After having defined a measure of
distance between the model and the experimental data, we
plan to minimize that distance via user-defined parameter
sweeps. We are also developing techniques based on automata
learning [23] for deriving the topology of a biological network,
based on a series of constraints and experimental data series.

In the future, ANIMO and related tools may lead to a new
paradigm for interactive representation of biological networks.
Networks in digital textbooks and articles could be displayed
as animations amenable to modifications by readers. Reposi-
tories of formal descriptions of signalling modules could be
used to put together executable signalling networks. In general,
the process of formalizing biological knowledge will lead to a
more thorough understanding of biological networks and will
accelerate hypothesis-driven research.
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