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How Much Control Is Enough? Influence of
Unreliable Input on User Experience

Bram van de Laar, Danny Plass-Oude Bos, Boris Reuderink, Mannes Poel, and Anton Nijholt

Abstract—Brain–computer interfaces (BCI) provide a valuable
new input modality within human–computer interaction systems.
However, like other body-based inputs such as gesture or gaze
based systems, the system recognition of input commands is still
far from perfect. This raises important questions, such as what
level of control should such an interface be able to provide.
What is the relationship between actual and perceived control?
And in the case of applications for entertainment in which fun
is an important part of user experience, should we even aim
for the highest level of control, or is the optimum elsewhere? In
this paper, we evaluate whether we can modulate the amount of
control and if a game can be fun with less than perfect control.
In the experiment users (n = 158) played a simple game in which
a hamster has to be guided to the exit of a maze. The amount of
control the user has over the hamster is varied. The variation of
control through confusion matrices makes it possible to simulate
the experience of using a BCI, while using the traditional
keyboard for input. After each session the user completed a
short questionnaire on user experience and perceived control.
Analysis of the data showed that the perceived control of the
user could largely be explained by the amount of control in the
respective session. As expected, user frustration decreases with
increasing control. Moreover, the results indicate that the relation
between fun and control is not linear. Although at lower levels of
control fun does increase with improved control, the level of fun
drops just before perfect control is reached (with an optimum
around 96%). This poses new insights for developers of games
who want to incorporate some form of BCI or other modality
with unreliable input in their game: for creating a fun game,
unreliable input can be used to create a challenge for the user.

Index Terms—Brain-computer interfaces, computer interfaces,
human computer interaction.

I. Introduction

R ECENT DEVELOPMENTS in interfaces show that there
is a need for less artificial means of control. The most

prominent examples of the moment are the Nintendo Wii
and the Microsoft Kinect, both gesture interfaces. However,
speech, eye gaze, and other physiological measures are also
promising a more intuitive way of interaction. By allowing
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the user to apply knowledge from previous interactions, for
example from interacting with the real world or from inter-
acting with comparable systems, the interface is easy to learn,
easy to remember, and easy to use, which are key aspects
for usable systems [1]–[3]. Brain activity as input modality
also has potential in this area, as it can provide some insight
in the intention of the user, without depending on external
expression. Unfortunately, most of the current systems are still
in the phase of proving that using brain activity for control is
even possible, and are therefore not making full use of the
intuitiveness this input could provide.

A. Unreliable input

One thing physiology-based inputs have in common is that
the interpretation of the input is often problematic. This is
mainly because of the noisiness and ambiguity of the input, but
also because of the problem of intentionality (see [4]–[6] for
example). This noise and ambiguity will make an unreliable
input channel. We try to clarify this through three examples.

1) Keyboard: In case of input through a keyboard, the
keys that are pressed by a user are always recognized as
what was typed in. There is (in case of a wired keyboard)
no measurable noise between the keyboard and the computer
and no problematic interpretation of the keystrokes. The only
possibility for an error to occur is by uncontrolled motor
activity of the user. A recognition or classification rate is not
applicable in this case.

2) Vision-Based: In case of a gaze, gesture, or other
vision-based interface: interfaces based on gaze, gestures,
etc., depend on visually capturing (part of) the user. Either
eyes or limbs point in a certain direction or make a certain
movement which is classified by the computer and translated
into an action within the system. Users can make errors by
not accurately carrying out what they intended to do. As
the system depends on the captured image, different kinds
of artifacts and noise can hinder classification of the correct
action. Pixel noise, different lighting, occlusion, movement
of the person, movement of the camera, vibrations, etc., all
may have a negative impact on the recognition rate. Input
can change over time, for example as the user becomes more
fatigued and is less expressive, or as the sun sets and the
lighting changes. Besides, there can also be a large variability
between users, such as between children and elderly, or men
and women. As an example of ambiguity, when somebody
waves their hand, it could mean good bye, hello, or even no.
A final problem is intentionality (also referred to as the Midas
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touch problem [7]). Not all actions will have a purposeful
intention related to it. What if the user was not waving at the
system, but waving to get rid of a mosquito passing by? Or
in the case of an eye tracker, the user will already look at the
system simply to take in information. In that case, not every
eye gaze is meant as an input command. Especially when the
system is always on, there will be times when the user is not
purposefully interacting with the system.

3) Brain: Brain–computer interfaces (BCI) are dependent
on the brain activity generated by the user performing a task.
This can either be the user attending a visual, auditory or
tactile stimulus, or by generating brain activity by actively
performing a mental task (e.g., imaginary motor movement,
performing mental calculus). Errors can occur when the user
is not attending the stimulus or not (correctly) performing
the mental task. But because of the highly varying nature of
the resulting measured signal, the system will make errors
in recognizing the users intention to attend/not attend or to
perform the mental task or not. Recognition rates vary greatly
between users and within users over time, largely independent
of the type of BCI [8]. Related to the Midas touch problem,
in BCIs it is difficult to detect whether the user is performing
a task or not (e.g., idling) [9].

In the last two cases, there is an inherent noise (with
different causes) on the input channel to the system. This noise
makes recognizing the users intentions nontrivial. We therefore
define unreliable input as the system not being able to reliably
recognize the users intention, caused by inherent noise on the
input channel.

B. BCI-Based input

In the case of brain–computer interfaces, each of these
problems can be even more difficult to solve as there is no
way to obtain a ground truth. Systems based on visual input
can be evaluated using expert assessments on recordings of
for example gaze and movements. For BCI based input this is
very hard to do. First, BCIs require robust and noise-free brain
activity recordings which is problematic at user’s homes. For
the general population, undergoing surgery to get electrodes
implanted is also not a viable option, as the surgery, but also
long-term implantation of these electrodes, are still too risky.
Finally, there is the issue of response time. If a system is to be
used for direct control, the response time should be minimal.
This means that systems that depend on indirect measures
such as increased blood flow in more active brain areas will
be considered too slow for this purpose. What the general
home-user then is left with is electroencephalography (EEG).
Unfortunately, this measurement is highly sensitive to noise,
both from the environment and from the user’s body. It has
a good temporal resolution, but because it uses electrodes on
the outside of the head, it is difficult to only measure what we
need to measure. Instead, a smeared out and attenuated signal
from numerous interfering sources is measured. Even if all this
would have been perfect, the brain is a very complex system,
and specific areas may activate for different reasons. As an
example, certain areas of the brain are involved in making
gestures. These areas may also activate, however, when the
user is imagining to make that gesture, or when the user is

looking at somebody else making that gesture [10], [11]. The
problem of intentionality also still remains, as the user’s brain
may be responding to something that is not at all related to this
particular part of the interaction with the system. As a result,
the interpretation of such physiological input modalities may
never be perfect, and at the moment, brain input seems to be
the least perfect of all.

In most studies concerning user control, the input itself
is considered to be near perfect, although mistakes may
still be made because the user is distracted, unskilled, or
is unsure about what to do. The general solutions that are
provided to solve problems caused by imperfect control are
therefore generally to make sure that the system is responsive
(short delays for feedback or updated system status), the
feedback is easily understood and include an undo button [3].
There are very little guidelines for interfaces where the control
input itself may be a critical issue. How many mistakes can be
made before a system becomes unusable or unacceptable? One
could argue that it is not the actual control that matters, only
the user’s perception, but how do these two relate? And do we
even need to aim for perfect control? Especially in the case of
entertainment applications, some imperfections may add to the
challenge of the task up until the point the user gets frustrated.
Keeping in mind an imperfect control when designing a game
can keep the user in a state of flow while they deal with the
problem and learn how to cope with the imperfect control [12].
In this paper, we let users utilize the keyboard for interaction
and simulate unreliable input by manipulating the input from
the keyboard and mapping it, with different levels of accuracy,
to actions in the game.

II. Related Work

A. How to Measure Control?

There are many different measures of performance of the
recognition by the system. Accuracy is the easiest one to
understand as it is simply the percentage of correct inter-
pretations. The opposite measure is the error rate. Precision
(fraction of retrieved instances) and recall (fraction of relevant
instances) are the de facto measures in the information retrieval
and visual action recognition domain. However, when dealing
with an interactive system the interval at which actions can
be performed and speed of processing become important as
well. Also, as accuracy and error are dependent on the number
of classes and the ratio between samples from the different
classes, more complex measures should be calculated.

For example, in the case of the interpretation of moving
either left or right, a random choice should yield a 50%
accuracy on average, but in the case of left, right, forward,
and back, the random classifier would only achieve 25%. This
means that performance of 75% accuracy in a two-class system
is very different from the same accuracy in a four-class system.

For an example of acceptable accuracies within the BCI
domain for a four-class problem: Ware et al. have evaluated
the level of acceptable and desirable accuracy in a four-class
steady-state visual evoked potential based brain-computer in-
terface, with five participants, by incrementally decreasing the
accuracy of the interface. They found that accuracy levels of
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at least 77% were accepted and desired [13]. These results are
based on a very limited number of participants, but it may be
an initial indication of the level of control toward which a BCI
should aim.

However, in case of a two-class problem, if the user moves
to the left 70% of the time, and the system would be a simple
classifier that always selects the class with the highest prior
probability (the class which has been used most in the past),
it could already achieve an accuracy of 70%, where if the
classes would be equal, the result would have been 50%. To
address this problem, various performance measures have been
designed. One of these is the receiver operating characteristic
(ROC) which displays the ratio between the true positive rate
(the fraction of correctly detected target movements) and the
false positive rate (detecting a target movement). The related
area under the curve (AUC) value of the ROC that gives the
probability that target event (e.g., movement to the left) has
a higher confidence than a nontarget event (all other events)
[14]. While the ROC and AUC-ROC give reliable measure
of performance when the prior probabilities of the events are
unequal, they are inherently binary, i.e., they measure the
performance for discerning only two classes. A performance
measure for multiple classes that has been gaining popularity
in the BCI field is the information transfer rate (ITR), which
measures the amount of information expressed in bits that
can be communicated through an unreliable channel per unit
of time. In this case, the unreliable channel is the BCI, and
the user is supposed to use an optimal encoding strategy for
its message. Current, noninvasive BCIs have ITRs of up to
10–25 bits per minute [15]. The type of BCIs with the highest
ITRs are so-called P300 speller systems. These systems make
use of the event-related potential (ERP) associated to attending
a stimulus in the EEG of the user. This ERP starts to show up
300 ms after the (visual) stimulus has been given to the user.
By visually highlighting all letters of the alphabet the system
can distill what letter the user was attending to [16].

The advantage of measuring performance with the ITR is
that, when calculated based on mutual information (MUI)
[17], it is insensitive to unequal prior event probabilities, and
incorporates both the precision of and the time needed to detect
an event. The more time you take for a selection, the more data
the system can gather about the input you are trying to provide,
the higher the resulting interpretation accuracy. But while a
higher accuracy will increase the throughput, it will generally
take more time which reduces the ITR in turn. Therefore this
measure gives a good indication of the tradeoff between time
and accuracy.

Because the ITR incorporates both the speed of communi-
cation, and the amount of information a single event contains,
it might measure a quality that is as much related to the ability
of the user to express its intent as possible with an objective
measure. Similarly, the difficulty index ID in Fitts’ law is
also a measure of information, measured in bits [18]. The
assumption of using an optimal encoding strategy made in the
ITR might be difficult to achieve in practice however. Most
BCI-based spelling applications do not use text prediction,
and based on context the optimal predictions might change.
But while an optimal encoding in the decoder might not

always be feasible, some environments might be forgiving
enough to let the user exploit alternative control strategies
to optimize their information throughput. For example, an
unreliable command to turn left might be replaced with turning
right for a longer period when time and space permit. Finally,
Furdea et al. proposed the written symbol rate for BCI based
speller systems. This approach only accounts for correctly
written symbols excluding corrections [19].

B. Dealing With Errors in BCIs

One example of how to deal with the Midas touch problem
in BCI is the low-frequency asynchronous switch design,
which is an added layer of control by which the BCI control
can be turned on or off which improves overall classification
rates [20].

In most cases, it is better for the system not to take action
on an input than to take the wrong action. For example, in the
case of a P300 speller, to correct an incorrect character, one
selection is needed to delete it, and another selection to then
select the correct one. Now, there are dynamic P300 spellers
that do not make a selection until the confidence level for a
specific option is above a certain threshold [21].

Such systems not only act when the certainty is high
enough, but also use repeated inputs to increase the certainty
for a specific selection. This last feature is part of many
potential-based BCIs, as these features are very sensitive to
noise and difficult to detect based on one repeat (single-trial).
Systems based on other types of brain activity features could
also make use of these same principles, by looking at the
confidence levels of the classifier, or by combining successive
classifications until a certain threshold is reached.

Quek et al. [22] developed a simulation tool for control
in applications using a BCI but without the need of an
actual participant and an EEG cap connected to the system.
Various factors, such as error rate, nonstationarities due to a
changing state of mind, noise, and delay, are incorporated in
their models. However useful this paper is, for our study this
approach was unusable for a couple of reasons. The study by
Quek et al. [22] only simulates two classes (i.e., left and right),
needs EEG data from users to generate a model, and would
therefore be too time consuming and from a logistics point of
view impossible for our intended experiment.

C. Perception of BCI Control

Various studies have been carried out not only focusing on
accuracy, but also taking into account how users perceived
exerting control through a BCI. In a comparison of user
experience between actual and imaginary movement control of
a BCI game, users had better control with actual movement,
which also resulted in higher alertness. Imaginary movement
was perceived as more challenging [23]. A more longitudinal
study was done in which 14 participants played a BCI game
repeatedly over a period of five weeks. They used three
different mental task pairs during each session. The results
indicate that the user preference for certain mental tasks
is primarily based on the correct recognition of the tasks
by the system, and second on the ease of task execution
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[24]. To further improve possible recognition rates, Zander
and Jatzev [33] developed and demonstrated an application
detecting whether the errors occur on the user or system
side. This could allow for new ways of dealing with errors,
to improve the usability of any system [25]. Control and
dealing with errors are important constructs in evaluating
input methods that are unreliable. When evaluating games
or virtual environments on user experience, which can be
presence in virtual worlds [26] or user experience of BCIs
[27] one has to not only look at the absolute performance, but
also at the qualitative aspects of the input channel, such as
the learning curve, obtrusiveness and intuitiveness. Combining
improved recognition rates, user centered design, intelligently
handling the inevitable errors, and proper user experience
evaluation will all help in generating a better user experience
for BCIs.

D. Perception of Control

From psychology, it is known that people tend to overes-
timate their ability to control events; this effect is called the
illusion of control. In a laboratory study, participants had a
varying control over a pair of lights. Even when their actual
control was none at all, the participants indicated they had
some level of control (the illusion of control) [28]. Langer
demonstrated that this illusion of control is stronger when
certain factors are present, such as competition, individual
choice, familiarity with the action or elements part of the
action, and level of involvement [29]. Thompson et al. [26]
propose that this perception is already created simply from
the intention to create a particular outcome (turn on the left
light), and a possible connection between the action executed
(press a button) and the outcome (left or right light on). If
the expected outcome is positive, people tend to overestimate
their level of control, whereas if the outcome is negative,
people tend to downplay their amount of control [30]. Nijboer
et al. [20] showed that mastery confidence was related to BCI
performance. However, this was shown only in two out of four
participants [31].

III. Methods

The goal of this paper is to investigate whether we can
modulate control in a game and what relation exists between
control and fun.

Hypothesis 1: If we can construct confusion matrices that
resemble the various accuracy levels in the same way one
experiences when controlling a BCI and this is validated by
the perceived control of participants, then we have a proper
way of modulating control.

Hypothesis 2: If the modulation of control is related to the
reported values for fun, then we can further investigate what
the relation is between these two and whether an optimum or
point of no improvement exists.

Hence, we need to look at various conditions with different
amounts of accuracy to evaluate the user experience. This
requires many data points, not attainable by doing experiments
in a lab. We therefore set up an experiment which can be
done by using a web browser. The experiment consists of a

Fig. 1. Runs, rounds and levels.

Flash based game developed by a professional game studio.
We varied the amount of control users had in the game and
evaluated their user experience by administering a question-
naire after finishing the game. In the following sections we
will elaborate on the design of the game, how we varied the
amount of control and what data was used for analysis.

A. Experimental Design

The game consists of four levels, increasing in difficulty.
Four levels in consecutive order make up one round, one or
more rounds (usually five) make up one run. See Fig. 1 for
an overview. Participants started every round in a randomly
assigned condition. In total, there were 15 different conditions,
each with a different amount of control (see Section III-C).
Before starting each round users were given instructions on the
control of the game, what they were supposed to do to finish
the game as well as how to complete the questionnaire. After
finishing a round, the in-game questionnaire was administered
and a new condition randomly chosen for the next round.
Participants in this experiment finished at least one round,
and there was no maximum number of rounds. This means
participants could opt to quit the experiment after every round.
Participants were however encouraged to play for five runs.
Five runs would amount to an average experiment duration of
25 min including breaks.

B. Game

In the game used for the experiment, participants controlled
a hamster by pressing the four arrow keys on the keyboard.
The game setting is an evil laboratory where experiments on
hamsters are carried out on computer–brain interfacing with
the goal to control hamsters. Users can take control over one
hamster to lead it to freedom. A screenshot of the game can
be seen in Fig. 2.

The amount of control of the user over the hamster varies
randomly across rounds (Section III-C). One round in the game
consists of four sequential levels, shaped in the context of the
evil laboratory. A cage, a labyrinth, an office room, and the
block, respectively, where the laboratory is situated have to
be escaped from. Each level is a maze with dead ends and
some occasional obstacles. Touching the obstacles causes the
player to die and to be transported back to where they started
in that level. When the user finishes a level, immediately the
next level is presented. After the last level a questionnaire was
presented (see Section III-E). After completing the question-
naire, the users could play another round, most probably with
a different level of control. After five rounds the total amount
of time they took to rescue five hamsters was recorded and
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Fig. 2. Screenshot of the game that was used for the experiment.

compared to the times that were already in the database to pro-
vide the user with a rank. This was supposed to motivate the
participants to play again. If a certain round was too hard, the
user had the opportunity to press a button skip round to skip
the current round an go directly to the questionnaire. After the
start of a level, it took 1 min for this button to become active.

C. Levels of Control

The level of control in the game was manipulated by using
specific control schemes for each of the conditions consisting
of different levels of control.

The events that are used to control the game consist of
directives to move in one of four directions, or not to move
at all, resulting in five possible events at each evaluation of
the game loop. When the user has perfect control—which
is usually the case with button-based input—each directive
of the user is directly translated in the corresponding action.
With unreliable controllers, such as a BCI, it is possible that a
different, unintended action is performed. For each directive,
action pair, the probability of making this mistake can be
denoted, which results in a so-called confusion matrix. The
behavior of an imperfect BCI with discrete output can be fully
described by this confusion matrix.

The 15 conditions in the game are specified with a confusion
matrix. We have chosen to start with the simple assumption
that each class (four directives for movement, or no action) is
detected correctly with the same probability (accuracy), and
that all mistakes are equally likely

Ca =

⎡
⎢⎢⎢⎢⎣

a e e e e

e a e e e

e e a e e

e e e a e

e e e e a

⎤
⎥⎥⎥⎥⎦

(1)

where a is the percentage of correctly detected events, and e =
1−a
5−1 is the rate for a specific confusion. Rows of Ca correspond

Fig. 3. Relation between the MUI and the accuracy for a five-class confusion
matrix with the same probability for all correctly detected events, and the same
probability of each pair of mistaking one event for another.

to a specific directive (the ground truth) and sum to one, the
columns correspond to a specific detection.

The specific accuracies are chosen such that the MUI of
the confusion matrices Ca is distributed evenly with 15 points
over the whole possible range. Given the rate of events, the
ITR can be calculated from the MUI. The accuracies of the
different throughputs with regular increases are displayed in
Fig. 3. The logarithmic relation between the accuracy and MUI
results in relatively few conditions with low accuracies. Given
a information (I) of 0.0, the resulting accuracy will be 20%
(Fig. 3) which equals a random distribution over five classes.

The MUI in bits is calculated as follows, with a discrete
variable Y for the different directives, and discrete variable X

for the different detections:

I(X; Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log2
p(x, y)

p1(x) p2(y)
(2)

where p(x, y) = Ca
x,y is the joint probability distribution

function of X and Y , and p1(x) and p2(y) are the marginal
probability distribution functions of X and Y , respectively.
Note that the marginal probability distributions are assumed
to be uniform. This is the same assumption used in [15] for
ITR calculation.

In summary, we constructed 15 levels of control based
on the equally spaced MUI of control schemes with equal
probabilities of correct detection, and equal probabilities for
each confusion.

D. Participants

Participants to the experiments were invited to play the
game through various means (e-mails, social media, and
mouth-to-mouth). Based on IP addresses, 200 unique partici-
pants started a round. In total, 351 rounds were started. Two
hundred and twelve (60.4%) of these runs were continued
through the four levels and properly filled in the question-
naire. The average age of all participants was 24.99 years
(SD = 7.76). Eight (3.8%) participants refused or gave a bogus
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TABLE I

Constructs and Items

answer on the age question. 52.5% of the participants indicated
male and 47.5% of the participants indicated female on the
gender question. Only 45.8% of all participants replied to this
question. Twelve participants played the game for the desired
total of five rounds and got a high score ranking in the game.
The fastest to finish did this in a time of 21 min and 42 s, the
slowest in 35 min and 3 s.

E. Questionnaire

The questionnaire was presented to the user within the Flash
game, before they could continue with another run in the game.
The questionnaire included three open questions and six visual
analog scale (VAS) items. Two open questions were included
to gather basic demographics, namely age and gender. The
third open answer box was for general remarks and additions.

The six VAS items measured the amount of fun, engage-
ment, and control the users experienced in the game. Table I
shows the items for each construct. The way users answered
the VAS was through a graphical slider. Of course, the
experiment being carried out by means of a computer this VAS
was digital, but approaching the analogue domain with values
ranging from 0 to 100. One click on the scale put the slider on
the designated point, also indicated by the changing number
right below the scale. Users could correct their answers until
they clicked on the next button, to go to the next page with
three items.

IV. Results

In this section, we will analyze the results from the ques-
tionnaire data. First, we will report the data on the perceived
control to assert that our method of varying the amount of
control is also experienced by the user in the correct way. In
the section thereafter, we will analyze the relationship between
the amount of control induced by the confusion matrices on
the amount of fun the user experiences.

A. Perceived Control

First, we cleaned up the data from obviously erroneous
responses. If one of the following criteria were met the
response would removed from our data set.

1) Partly filled-in questionnaires: if only the first or the first
and second page with questions was filled in and not the
subsequent page(s), the complete response was removed
from the data set.

2) Meaningless questionnaires: if all questions were an-
swered with the initialization value (the VAS scale was

Fig. 4. Median of perceived control including error bars and linear regres-
sion of control (x-axis) versus perceived control (y-axis).

initialized in the middle with a pointer), the complete
response was removed from the data set.

In Section III-B, we mentioned that participants had the
ability to skip a round after 1 min. We included these records
as it still provides us with useful data. After the cleanup
process, we got 158 data points to base our analysis on.
Looking at the cleaned questionnaire data we first describe the
distribution of data points over the conditions. We expected
an even distribution of data points over the conditions as
these were randomly initialized. The minimum amount of
data points per condition was seven for the lower half of the
accuracy scale and ten for the higher part of the scale.

Then, we constructed the scale perceived control. This
scale was made up out of two items, “I had the feeling the
hamster did what I wanted it to do” and “I had the feeling
the computer was following my commands.” A reliability
analysis of the proposed scale resulted in a Cronbach’s Alpha
of 0.885 which made this scale a proper measurement of how
much control the participants experienced in the game. To
validate if we indeed varied the amount of control as we
intended a linear regression was carried out. This revealed a
significant linear trend, explaining 50% of the variance in the
data (R2 = 0.499, p < 0.001) as can be seen in Fig. 4.

Another item, frustration, further validates our method of
influencing control. Linear regression showed a significant
negative trend (R2 = 0.133, p < 0.001), as shown in Fig. 5.

B. Fun-Control

To validate our most important hypothesis, control posi-
tively influences fun, up to a certain point where fun is decreas-
ing because the challenge is becoming less, we analyze the
questionnaire data for fun and compare it to the amount of con-
trol. To assess whether a linear model or another model would
explain our data better, we first performed a linear regression.
This showed a significant trend (R2 = 0.291, p < 0.001)
through the data. Second, third and higher order polynomials
were also tested. The third-order polynomial, which can be
seen alongside the first-order (linear) polynomial in Fig. 6,
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Fig. 5. Median of frustration including error bars and linear regression of
control (x-axis) versus frustration (y-axis).

Fig. 6. Median of fun (y-axis) including error bars versus control (x-axis)
and fourth-order curve fit.

proved to provide the best fit with an explained variance in the
data of 34.9% (R2 = 0.349, p < 0.001), taking into account
that higher order polynomials yield a slightly higher R2 but
also require sacrificing another degree of freedom for every
incrementation of the order. Another measure for this that
takes the added complexity of higher order polynomials into
account is the Akaikes information criterion (AIC) [32]. The
gain of less information loss is resembled in a lower AIC.
While the difference in the AIC for the second- and third-order
polynomial is substantial, the difference between the third and
fourth orders is only marginal compared to the former.

The third-order polynomial and the medians of the data
points show a clear downward tendency from the linear
trend after the mui=2.05/acc=96.73% point. This supports our
hypothesis that control is needed for fun, up to a certain
point, after which fun decreases. Another interesting fact is
that the condition in which movement is completely random

TABLE II

First Through Fourth-Order Models With Respective R2
, AIC,

and the Change in AIC From the Lower Order Polynomial

(20% accuracy, mui=0) participants apparently found it rel-
atively fun to play the game. When participants do have
some amount of control in the condition following it
(mui=0.17/41,22% accuracy) this effect is gone.

V. Discussion and Conclusion

This paper showed that it is possible to influence the
amount of perceived control the user has in a game that
has a four-class, 2-D control of navigation. This is supported
by the fact that users reporting the amount of control they
experienced showed a strong relation to the amount of control
they were given. We hypothesized an illusion of control; an
overestimation of control on the near perfect side of control.
Our data did however not support this hypothesis. We also did
not find support for an underestimation of control at the low
side. A possible explanation for this might be that in our study,
users are given a certain amount of control defined by the
confusion matrix in a session. This given amount of control is
something they cannot alter by increasing their effort. Whereas
with a BCI user may alter their amount of control, to a certain
extent by the effort they put in. In this case, the effort put in
by the user is highly dependent on the motivation they have,
which may be related to the performance of a P300-based
BCI [33].

The second part of our analysis showed that the amount of
control largely explains the amount of fun one experiences.
Although fun is dependent on the amount of control, at a
certain point an optimum is reached. Our analysis showed that
in our experiment after 96.73% of accuracy the fun decreases.
This could be explained by the concept of flow [34], where
challenge is related to skills in which an optimum exists where
a state of flow is achieved. In this state of flow the skills of
the user and the challenge asked from the user are both high
and in balance. If the skill increases, the user would shift
into boredom, if on the other hand the challenge increases,
the user shifts into anxiety or frustration. This is related to
the results we see in our data. Users have a certain skill of
controlling the hamster and have a varying amount of control
(the challenge), up to a certain point this challenge is more
suited to their skill, until the optimum is reached. After this the
fun decreases and general user experience shifts into boredom.
This explanation is also supported by some user comments, for
example, “This is the third time I played this game, and the
hamster listened quite well. Especially if your first hamster
were never obeyed anything [sic], a well-listening hamster is
almost boring.” This mechanism of shifting toward boredom
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could therefore be the reason the amount of fun participants
experienced is decreasing after the optimum. At the other
end of the scale, the concept still holds: users reported being
frustrated through the respective item in the questionnaire, as
well as through the open question while playing the game
with a low amount of control, for example, “I haven’t quite
forgiven hamsters after the last game even though this one
was better” and “Frustration thy name is hamster. You know
he was perfectly happy in his cage...” This is also what is often
seen in BCIs, if the recognition accuracy is too low, the BCI
is just a frustration to the user. It might give the user false
hope that leads to frustration.

As in almost all of HCI research, the results in this pa-
per, especially the point for the highest amount of fun, are
based on just this game with which we used to experiment.
Using another game would probably yield another optimum
at a different amount of control. Probably even using other
level layouts would alter this result. However, we show that
this effect is apparent in this particular setting. The game
mechanics also included obstacle-like enemies in the harder
levels, which upon collision would send you back to the
beginning of the level (resetting one’s progress). This means
our simulation also includes the effects of making an error
and users experiencing the cost of an error when using a real
BCI. Without the possibility of making errors that have such a
high cost, the challenge would probably be smaller as one will
eventually get to the end of the level. Trying to anticipate on
erroneous movements (and steering clear of the obstacles) is
part of the challenge in the last two levels. A smaller challenge
with the same amount of control could decrease frustration
for the low accuracy conditions and increase boredom (and
decrease fun) for the high accuracy conditions. We think
that therefore the optimum could shift to the left in such
a game.

Still, the game can be quite challenging, even with perfect
control, when there is a motivation to finish as quickly as
possible. In games that are simpler, for example, that only use
two classes for navigation, or are less challenging in game
play, the optimum probably shifts to the lower end of the
control scale. Games with some kind of BCI control often only
have one dimension of control, so the previous is especially
applicable to these kinds of games.

Our results show that in the lower levels of control, the
accuracy has an important influence on the user experience.
While a higher accuracy leads to a better user experience in
the lower parts, the better the accuracy gets, the less influence
it is going to have on the user experience. In this particular
game, we estimated this critical point to be around 96.73%
(although around 86% one can already see the effect in the
data). In comparison to state-of-the-art BCIs this is a very
high accuracy. There are, however, some tradeoffs that have to
be made in designing and implementing a BCI. The tradeoff
between speed and accuracy is an important issue for this
discussion. The longer the BCI gets to measure the EEG of
the respective mental task, the higher the chance it will make
the right decision. However, this sacrifices speed. Another
common tradeoff is the number of classes used in a BCI.
While we tried to simulate a five-class (four directions + no

operation) often BCIs are still implemented with a two- or
three-class operation that results in a less complex game with
either a 1-D control or a timed sequential control in which a
direction to walk toward has to be chosen based on a timer. In
the first case, the accuracy of classified results will be higher
than in a four/five-class interaction, but the richness of the
interaction will be lower. This could mean that the point where
either an optimum is reached or plateauing sets in will be lower
than the point we found in our study. Therefore, it might not
be worthwhile striving for the highest possible accuracy at
the cost of other factors that might have a bigger influence
on the user experience. In the second case, the richness of
interaction might be higher because of more possible actions,
but the sequential selection of commands could increase the
latency of the interaction to a point where it might be just a
frustration for the user.

Overall, in our results, the exact point at which added
accuracy does not improve the user experience anymore is
not that important; however, the finding that there is such a
point at all, is. We think these findings could be an advocacy
for not only optimizing for accuracy but taking other factors
into account as well. Even outside the field of BCI this finding
could be useful. Essentially in all modes of interaction where
uncertainty is a factor, like physiological computing or gesture-
based interfaces a tradeoff exists between system response
time and accuracy. Although recognition accuracies might be
higher or lower and interaction options might be more diverse
than in a typical BCI, the effect we found might be present in
these interaction methods as well.

Until now, no perfect BCI has existed. However, according
to our findings a perfect BCI controlled game might not
be a system that is only optimized for accuracy. At some
point accuracy does not influence the fun anymore and other
factors start to become more important. Therefore, turning
the shortcomings of a BCI into a challenge for the user, a
challenge outside of the game itself, might be a possible way
to create a fun game.
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