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Abstract: Model-based design is a promising technique to improve the quality of software and the efficiency of the software development
process. We are investigating how to efficiently model embedded software and its environment to verify the requirements for the system
controlled by the software. The software environment consists of mechanical, electrical and other parts, modelling it involves learning how
these parts work, deciding what is relevant to model and how to model it. It is not possible to fully automate these steps. There are general
guidelines, but given that every modelling problem differs, much is left to the modeller’s own preference, background and experience. Still,
when the next generation of a system is designed, the new system will have common elements with its previous version. Therefore, lessons
learned from the current model could inform future models. We propose a framework for identifying the non-formal elements of knowledge,
insights and a model itself, which can support modelling of the next system generation. We will present the application of our framework on

an action research case — modelling mechanical parts of a paper-inserting machine.
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1. Introduction

Embedded software is part of a larger, composite system that
contains mechanical, electrical and other parts in addition
to software parts. We call the parts of the composite system
outside the embedded software the plant. The purpose of
the embedded software is to control the plant, so that the
composite system exhibits a desired behaviour. The prob-
lem investigated in this paper is how to model the embedded
software and the plant so that we can prove, or convinc-
ingly argue, that the embedded software controls the plant
correctly.

Plant modelling cannot be fully formalized and automated
because the process is complex and unpredictable, which
stems from the following two issues:

(1) ‘Elements of the plant that need to be represented in the
model are not known in advance’. Modellers go through
a process of discovery to determine what elements should
go into the model. They engage in an iterative learn-
ing process while talking to other engineers (domain ex-
perts), examining existing documentation and designing
the first versions of the model. In this process they also
need to check whether they understand correctly how
the plant works.

(2) ‘Non-formal parts of the modelling process leave too
large a scope for possible models’. The modelling ac-
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tivity is a combination of formal and non-formal steps.
The latter leave modellers with many, possibly equally
suitable, solutions. Given the number of unknowns and
the partially non-formal nature of the modelling process,
the experience of the modeller is very important to make
this process efficient.

Domain knowledge acquisition and other non-formal
steps of model design, by their nature, are such that they
cannot be solved with a mathematical formula, an expert
system, or a modelling language. Different languages and
approaches offer varying guidelines on how to build a model,
but because every problem is different, many decisions
remain open and are left to the modeller. What were good
modelling decisions and what the designer needed to know
about the plant is often known a posteriori.

Still, when the next generation of a system is designed,
the new system will have common elements with its previ-
ous version. Therefore, the plant-modelling problems will
also have common elements. Lessons learned from the first
model could inform future models. To narrow the gap be-
tween general guidelines and concrete plant-modelling steps,
we propose to focus on a class of modelling problems and
make explicit some of the knowledge, insights and modelling
steps in form of explicit guidelines that can be used in a
similar modelling problem in the future.
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Suppose, we have a model of a plant designed from scratch.
Some time has been spent to design the model that suits its
purpose in a given context and more time has been spent
to validate the model’s adequacy. The question is how the
knowledge and experience invested in this process could be
reused when a similar model is built, one which is the next
generation of the system, but where the organizational con-
text remains the same. The old model cannot be directly
reused because system requirements and some of the system
parts will change. What can be reused are modelling knowl-
edge and some of the design decisions.

Currently, the problem in modelling is that this knowledge
transfer rarely takes place, if ever. Usually, only the model is
delivered to its users and the knowledge accumulated during
modelling is lost. This is particularly problematic nowadays,
when work is outsourced to temporarily hired consultants or
to companies at long distances: implicit knowledge is imme-
diately lost when the contract is complete. This knowledge
transfer is critical for two reasons: to shorten the time for
modelling and to preserve uniformity of modelling decisions.

To assist with this necessary knowledge retention, we pro-
pose a framework that specifies what elements of a model
should be extracted for reuse. Recording some of the mod-
elling decisions and reusing them makes the future models
less dependant on a modeller’s personal style. To identify
elements of our framework, we have to solve two problems:

(1) What are the non-formal elements of a modelling
method that can be reused?

(2) How to acquire this knowledge if it has not already been
recorded during modelling?

We will solve these problems using a concrete example
from an action research study, and we will then make some
generalizations. Our generalization can serve as conceptual
framework to extract reusable modelling elements in differ-
ent cases. Before we present the case and the framework, we
will review the work of others in the area of modelling meth-
ods, reuse-oriented software design and problem orientation.
In the remaining sections, we will show what elements from
these different approaches we combined to create a solution
optimized for the plant-modelling problem.

This paper is the extended version of the paper (Marincic
et al., 2010) in which we briefly presented the action case in
which we analyzed modelling as a leap from a non-formal
world to the formal one. In this paper, we will review the work
of others that deals with modelling and will discuss to what
extent they address methods focused on the reuse of plant
description for the purpose of software verification. We will
also present our action case in more detail, and will extend
the analysis of reusable modelling decisions.

2. Related work

2.1. Object-oriented method

One widely accepted modelling and design approach is ob-
ject orientation (OO). Besides languages and tools, it offers
methodological support for modelling. The methodology
provides guidelines for dealing with complexity and recogniz-
ing different structures during classification and abstraction
(Booch et al., 2007). There are many examples that illustrate
good modelling practices within OO. Furthermore, phases
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in the modelling process are distinguished, such as analy-
sis, system design and object design; general guidelines for
structuring the process further are given (Rumbaugh et al.,
1991). These steps are not presented in the form of a cook-
book, given that ‘the design of [complex] systems involves an
incremental and iterative process’ (Booch et al., 2007). The
process itself is supported by the Unified Modelling Lan-
guage (UML - Unified Modeling Language, 2011).

Some of the elements of the OO approach can be used
as methodological support for methods other than the OO
method. However, the steps and best practices of the OO
methodology are focused on the software, not the plant mod-
elling.

The OO approach is designed to be reusable. After all,
the idea of design patterns in software engineering was con-
ceived as an OO programming method. Patterns document
design solutions for recurring problems in software design.
A pattern describes a problem and its context, the elements
of the solution and the trade-offs between applying different
patterns (Gamma et al., 1995). In their collection of common
software design problems, Coad et al. (1995) present patterns
together with problem solving strategies. Design patterns are
not only solutions that need to be instantiated, they also
explicitly represent (a part of) experts experience.

Some parts of the modelling knowledge and some of the
model elements extracted for reuse in modelling the next
system generation may be represented as patterns. How-
ever, making decisions on what to reuse and how to extract
reusable model elements for the next system generation is not
supported by design patterns and pattern languages.

2.1.1. SysML As a software design and modelling tool,
UML has its limitations when it comes to modelling the
components that surround software. The OMG’s Systems
Modeling Language (SysML - Open Source Specification
Project, 2011) overcomes these limitations. SysML intro-
duced new diagrams, modified some of the existing ones
and abandoned the diagrams that are useful for software but
not system modelling. As UML’s extension, SysML is based
on the OO concept, and it can be used in combination with
other approaches.

Researchers in the simulation modelling community see
the future role of SysML similar to the role of UML mod-
els in software design. Huang et al. (2007) propose using
SysML as a language for developing a system description
that will serve as basis for the automatic generation of simu-
lation models. Paredis and Johnson (2008) recognize SysML
as a framework to integrate different domain-specific models;
they developed a graph-transformational approach to trans-
late SysML models into corresponding simulation models.
However, SysML offers no methodological guidance for sys-
tem analysis; its role is to serve as a precise notation for
system engineers.

2.2. Reuse-based software engineering

Apart from design patterns there other techniques have been
developed for software reuse. A software reuse technique that
aims to increase development efficiency in the long term is
product-line engineering. It exploits commonalities between
the related set of products, investing initially in defining what
these commonalities are (Mili et al., 2002). An important
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concept in this approach is variability — it addresses the dif-
ferences between similar products in an established common
platform (Pohl et al., 2005).

Product-line engineering addresses software reuse, not the
plant model reuse. Also, it requires commitment of the or-
ganization to reuse from the very start of the development.
Commonalities of the systems, their software, requirements
specifications, design decisions, test data and architectures
are established in advance. When looking at reusability of
the plant models we do not assume this commitment, but
we focus on extracting knowledge from an already existing
system and reusing it in the future.

Both practice and research acknowledge the importance
of organizational and economical, besides technical factors
(Miliet al., 2002). We, too, take into account that a wide solu-
tion space for a modelling problem is restricted by pragmatic
constraints, some of which come from organizational fac-
tors. However, we focus on a very small part of these factors
that influence directly modelling decisions.

2.3. Capturing, reusing and managing architectural
knowledge

Members of the software architecture community recog-
nize architectural knowledge as a valuable asset for building
and maintaining quality systems. They have been develop-
ing methods for preserving knowledge and for capturing the
rationale behind architecture design decisions.

Architecture design decisions and plant modelling both
consist of formal and non-formal steps; also, in both of the
activities, some of the decisions and part of the knowledge
that the designers accumulate stay implicit. Therefore, the
insights on types of architectural knowledge (Kruchten ez al.,
2006) are a useful starting point for our own analysis of
practical issues of plant modelling knowledge reuse.

If we would replace the word ‘architecture’ with the
phrase ‘plant model’ in the literature on architecture de-
cisions, we would get questions and problems relevant for
plant modelling. However, a thorough analysis of types of
architecture decisions, like, for example, the ontology pro-
posed by Kruchten (2004), reveals the concepts and issues
different than those in the plant modelling. This is be-
cause the perspective of architecture decisions differs too
much from plant modelling decisions. Therefore, we can-
not take over the solutions offered by the architecture
community.

2.4. Design rationale

Design rationale is ‘justification behind decisions’ (Dutoit
et al., 2006). The techniques to elicit and document the de-
sign rationale offer argumentation structure, categorizations
and ontologies. The arguments in one of the approaches,
IBIS (Issue-Based Information Systems), address issues and
arguments, pros and cons of positions. QOC (Questions, Op-
tions, and Criteria) addresses, as its name suggests, questions,
options and criteria, but also assessments, arguments and
decisions (Dutoit et al., 2006). In the area of system and
software architecture, ontologies are proposed (Kruchten,
2004). Our focus is slightly different; we look into what kind
of concrete modelling decisions need to be explained. For
example, if we cannot map the model components to the sys-
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tem components, i.e. if there is no isomorphism relationship
between a model and system component, we recommend to
explain why the two structures are equivalent regarding the
property and behavior of interest.

2.5. Problem orientation

The problem frames technique (Jackson, 2000) offers a
framework to analyze the system requirement and the plant
while designing software specification. The modelling prob-
lems we are looking at all fall into the category of a ‘required
behaviour’ problem frame. The first steps in decomposing the
problem into domains coincide with the system decomposi-
tion we look at in our work, but we are focused on modelling
steps, rather than on requirements analysis for software de-
sign.

Colombo et al. (2007) propose and evaluate using SysML
as a language for the problem frames technique for require-
ment analysis. The problem frames technique compensates
SysML’s lack of methodological support for domain descrip-
tion. At the same time, SysML offers the adequate linguis-
tic support that the problem frames technique misses. This
approach structures domain modelling and problem analy-
sis for the software solution design. Given that it combines
SysML and problem frames, this approach could offer a
notation for the elements we identify, but the methodolog-
ical support we offer is of a slightly different scope (plant
modelling) than the one for the problem frames (plant and
requirements analysis for software design).

Based on the problem-oriented perspective, Hall et al.
(2008) developed a problem-oriented approach (POE) for
software development. They address the problem that Turski
(1986) described as a gap between software (a formal entity,
for which we can derive a correctness proof) and the applica-
tion domain (the non-formal world, which cannot necessarily
be described in a single linguistic system and cannot have its
properties mathematically proven). This, in essence, is the
same problem we start from, the only difference is that we
deal with models, not software.

The POE approach offers conceptual framework based on
the problem frames technique. It classifies software design
activities and relevant entities. The conceptual framework is
formally described to provide clarity and preciseness, but it
also represents domain descriptions and the outcome of de-
sign activities in a language or notation (Hall ef al., 2008).
This way, both non-formal and formal steps of software de-
sign are supported with a formal framework which defines
design steps such as different types of problem transforma-
tions and elements of the problem domain.

The POE framework accommodates recording problem
progression in a tree-like structure. Decisions that lead to the
solution as well as dead-ends can be recorded, in formal or
informal language or notation. The framework can be used
for justification of design decisions, as a design-rationale-
storing tool (Nkwocha et al., 2010). Another application is in
safety-oriented software engineering, where it can structure
building of an assurance case simultaneously with design
activities (Hall et al., 2007).

Our framework is non-formal and it does not support
recording progression from the problem to the solution; in-
stead it structures the analysis after a model has been con-
structed. Also, even though software design and software
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Figure 1: A classification of modelling activity to learning, modelling and model validation activity.

modelling have decisions that overlap, we focus only on mod-
elling of a plant.

3. A framework for reusing modelling elements

To explore what kind of non-formal modelling decisions are
reusable, we first have to define what non-formal modelling
decisions are. Therefore, before we present our framework,
we will discuss non-formal aspects of modelling process.

3.1. Modelling process

Modelling is an intellectual process that allows a modeller to
understand a system, moving from the stage of exploring a
problem in general to designing the solution. During prob-
lem analysis, knowledge about the plant and the modelling
problem is acquired. At this stage, the modeller has already
created her own decompositions of the system, abstractions
and initial ideas about the model. These derive both from the
information provided by domain experts and the modeller’s
previous experience, education and personal preferences. The
modeller does not model the system, per se, but rather the
knowledge acquired about the system.

During the process of learning, modellers first recognize
known problems for which they know a solution (Cross,
2001). If the problem cannot be matched to known solutions,
the solution space must be further explored. The problem
can be decomposed in many ways into known problems, and
many solutions to known problems can be discovered.

Figure 1 shows the classification of activities in modelling.
It contains the same elements as Hall and Rapanotti’s (2008)
design cycle. While Hall and Rapanotti (2008) place an or-
der on these activities, we examine and further classify each
process separately, focusing exclusively on modelling that is
required for software testing and verification.
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In a previous work, two authors (Mader and Marincic)
classified the modelling decisions identified in Figure 1 in the
form of questions that a modeller must answer while design-
ing a model (Mader et al., 2008). These questions identify
classes of non-formal modelling decisions in form of the fol-
lowing questions:

What is the purpose of the model?

What is the quality criteria for the model?

What is the object of modelling?

What is the structure being modelled?

What is the mathematical domain of the model?

What idealizations and simplifications are applied?

What are the pragmatic factors that influence modelling de-
cisions?

3.2. Reusable modelling decisions

We used the classifications described in sub-section 3.1 to
analyze a concrete model and to establish what modelling
decisions can be reused. Based on this analysis, we pro-
pose a general framework for reusability analysis of mod-
elling decisions. It can be seen as a method to extract
reusable modelling decisions, knowledge and experience. The
framework elements are as follows:

Reusable modelling steps and knowledge
Reusable decompositions
System decomposition(s) represented in a model
Model decomposition
Reusable solution specifications

Reusable knowledge about modelling plant processes
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Requirements for the model
The system requirements to analyze with the model
The purpose of the model
Pragmatic limitations
Reusable modelling strategies
Model elements that do not follow the structure

Model elements that appear only in the model and not
in the system

Dependence on the software’s behaviour
Modelling assumptions

Modelling Experience
Alternative modelling decisions
Solutions that did not work

Model stakeholders

3.2.1. Reusable modelling steps and knowledge When decid-
ing what modelling decisions and knowledge to extract from
the current model, the modeller does not know how the next
system generation will look like. It is the modeller’s subjec-
tive estimation, based on the information received from the
model stakeholders, what modelling decisions are worth the
effort of preserving for future reuse.

If the system component, modelling language and the
model requirements do not change, the part of the model
describing the component can be directly reused in a future
model. But, if any of the above elements change, the model
component can no longer be directly reused. However, this
does not preclude reusing some modelling decisions. They
are as follows: the structures assigned to the system and the
model (decompositions), solution patterns and the knowl-
edge about the processes performed by components.

Reusable decompositions. In textbooks, we find examples
of neatly organized diagrams representing physical compo-
nents, functions, processes, etc. In practice, many decompo-
sitions exist at the same time without having one of them
established as the decomposition that everyone in the com-
pany refers to. System decompositions in an organization are
reflected in the directory tree of a shared project repository,
roles assigned to engineers in different teams that they form
and in the different abstraction levels they use when design-
ing or analyzing a system. Often, a diagram mixes different
decompositions as well as different abstraction levels.

The modeller can assign her own structures or adopt ex-
isting ones. Often, the model structure follows the system
decomposition. Even if the individual components change,
the high-level system and model decompositions may be
reusable. If the modelling language allows for hierarchical
structures, then the model can follow both the system hier-
archy and the decompositions on different hierarchy levels.

Reusable solution specifications. For recurring modelling
problems, solutions can be saved using generic, language-
independent solutions. Many modelling problems for mecha-
tronic systems are solved using a state-based paradigm. If a
modelling language changes in the future, but not the state-
based paradigm, then the statecharts can be used to docu-
ment the solution. The modeller should bear in mind that dif-
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ferent state-based languages have different semantics (Harel
& Naamad, 1996).

Reusable knowledge about modelling the plant processes.
Many commercially produced mechatronic systems rely on
changes in the components to stay competitive in the mar-
ket. Mechanical components are designed to be smaller, or
of a different shape and layout. In cases of systems that ma-
nipulate products, often the processes that these components
perform stay the same, because they are a part of the overall
system requirements that define how the products should be
manipulated. Knowledge about the processes, as well as the
general knowledge about how components interact may be
relevant in the future system generations.

3.2.2. Requirements for the model What parts of the system
will be modelled and how, is determined by the following
factors: the requirements of the system that are examined or
analyzed with the model, the purpose that the model has to
fulfill, the quality requirements for the model and pragmatic
limitations that the stakeholders impose.

System requirements to examine/analyze with the model. In
formal verification, the system requirements are defined ex-
plicitly (and formally). When using other modelling tech-
niques, the requirement is not formally defined; the modeller
or the model users examine whether the model behaves as
expected and whether it possesses certain properties. When
designing plant simulation models for testing purposes, ver-
ifiers define non-formally what requirements they want to
test. In all these cases, the requirement usually refers to the
plant elements that are not directly connected to the soft-
ware. It is the modeller’s task to find causal relationships
between the signals on sensors and actuators and the plant
elements behaviour that leads to the desired behaviour for
the plant elements specified with the requirement.

Purpose. The obvious purpose of a verification model is to
examine whether the system satisfies its requirements. But,
the modeller also must examine in a larger context the pur-
pose of the model to determine what parts of the software
and the plant to model and with what degree of accuracy.
If the model’s purpose is to show that the requirement is
fulfilled even when certain faults are present, than we have
models made for fault tolerance requirements. If the model
is designed to support testing, like the model from our case
study, then care has to be taken that the plant model that
has to be designed is at least somewhat independent from
the software’s behaviour.

Sometimes a model used for one purpose can be easily
adapted or used for another purpose. Knowing the model’s
purpose prevents false assumptions that a model adequate
for one purpose is automatically adequate for another one.

Pragmatic limitations. Pragmatic limitations such as hard-
ware or software resources, processing power, time or knowl-
edge available in the company, narrow down the solution
space. Some of these limitations can lead to suboptimal mod-
elling decisions. We propose to document them modelling
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decisions so that the model can be improved in the future if
some of the limiting factors change.

3.2.3. Reusable modelling strategies Modelling strategies
provide a rationale for certain classes of modelling decisions.
The classes of modelling decisions that we recommend to
explain are as follows:

Model components that do not follow the system structure.
A model represents its target system adequately if it shares
the relevant properties with the system or, we can say, if it
mimics the system. This is achieved by having some kind
of similarity between the model and the system. It can be
an isomorphism, partial isomorphism or homomorphism
between system and model components. In practice, model
structure can diverge from the identified system structure.
Also, there can be additional elements in the model that
cannot be traced back to any of the system components.
An additional argument for the model’s adequacy may be
necessary to explain the modeller’s decisions to the model
stakeholders.

Model elements that are adequate under certain assumptions
about the software. 1deally, the model of a plant would show
the plant independent of the software, with all its possible
behaviours. However, in practice, this would make the model
too complex. So, compromises are made, and the model is de-
signed with many assumptions about the software behaviour.
For future reuse, these assumptions should be recorded: what
seems to be an obvious assumption in the present may not
be in the future. Also, while some assumptions may be obvi-
ous within any given organization, this internalized cultural
knowledge will be lost if the modelling task is given to a new
person or outsourced to another organization.

Model elements that are adequate based on the assumptions
about the other parts of the system. Assumptions are made
not only on the software, but also on the behaviour of the
surrounding components and the system environment. Some
of these conditions should be recorded and checked to see
if they still hold for the components of the next system
generation.

Model elements that are not optimal. These elements may
have been taken over from an old model that had been made
for a different purpose, or for the requirements that were
dropped. Some of the modelling solutions may be simpler
or better, so we propose to evaluate the solutions that derive
from the old requirements.

3.2.4. Reusable modelling experience

Solutions that did not work. Documenting some of the
‘dead-ends’ in the search for the solution for the modelling
problem can save time in the future. A modeler must sub-
jectively decide which of the ‘dead-ends’ are worth docu-
menting, though those that are not obvious deserve special
attention.
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Alternative modelling decisions. These are the decisions that
were considered but later abandoned. Different modelling
choices mean that some trade-offs are made, so recording
what are the advantages and disadvantages of these alter-
native modelling solutions would save time when the next
generation system is modelled.

3.2.5. Model stakeholders Assessing a model for future
reuse requires understanding the modelling problem, mod-
elling decisions and the pragmatic constraints on the model.
Moreover, it is necessary to get the domain experts’ estima-
tion of changes in future system generations. To gather all
the necessary information, the analyst will have to talk to all
the stakeholders of the model. The modeller inside an or-
ganization most probably knows who the stakeholders are,
but for an external modeller this is an important piece of
knowledge.

In Section 4, we will show what these decisions are using
a concrete example.

4. Case study

4.1. The goal of the case study and its relevance for our
research questions

The goal of the case study was to find out what non-formal
modelling decisions can be re-used. We started with our
high-level classification of modelling decisions and used it
in the model analysis. We adapted the elements of our classi-
fication into a framework for capturing re-usable modelling
decisions.

Our task was to analyze a plant model made for a system
that was under development at a time. More precisely, our
task was to, based on the existing model, design a handbook
that would assist modelling the plant for the next system
generation. To gather the necessary data, we interviewed the
designers of the plant model and the model’s stakeholders:
the project manager, the head of the software department,
mechanical engineers, the system integrator and test engi-
neers. To elicit the modellers’ knowledge, we asked for the
rationale of their modelling decisions as well as the history of
the model development. We also had a hands-on experience
with the model.

We performed the case study in a company (Neopost-
Technologies, 2011) that develops, produces and distributes
different types of mailroom equipment and document sys-
tems. The users of document systems are companies that
send a lot of paper mail on a daily basis, such as insur-
ance companies, post offices, and banks. One such ma-
chine, the inserter, is shown in Figure 2. The inserter
automatically folds paper sheets and inserts them into
envelopes.

The inserter is a typical example of a system whose me-
chanical elements’ connection and synchronization are rele-
vant for the software verification. Our research is aimed at
these types of the machines, and the case studies we per-
formed include a lab-made sorter of blocks and a printer.
These are all the devices manipulating products (papers,
blocks), highly modularized, controlled by real-time em-
bedded software. Also, both the printer and the inserter
are designed and produced in large companies that have
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Figure 2: The inserter folds paper sheets and inserts them in
envelopes.

subsidiaries in different countries, and that have large soft-
ware development departments.

The company in our case has a matrix organizational
structure. There is a division to the departments responsible
for mechanical, electrical and software parts, respectively, as
well as the system engineering department. Orthogonal to
this division, teams are assigned to different projects. The
head of the project is responsible for managing different
product development phases, whereas the head of a depart-
ment is responsible for providing relevant expertise to differ-
ent projects.

One of the emergent benefits of the simulation model we
analyzed is that it brought together different domain experts
in the early phases of the development. Their communica-
tion is crucial in these early stages, and shortens the time to
integrate components once they are designed and produced.
Compared to integration time of previous systems, where a
simulation model did not exist, integration time of a cur-
rent system was significantly reduced which saved additional
costs and prevented significant delays.

4.2. System description

The inserter works as follows. The operator places documents
(paper sheets) and envelopes in appropriate feeders. Through
the user interface, he specifies options (recipes) for manip-
ulating documents. A recipe defines how many documents
will be inserted in each envelope, whether the paper sheets
will be folded, and if so, how; a document can be folded in
half or into thirds (in Z or C shape). An example of a recipe
is: ‘Select three documents from the first feeder, fold them in
half and insert them into an envelope’. Recipes are combined
into scenarios, which automate further the inserter’s work.
The diagram in Figure 3 shows the inserter’s modules.
Each module has its own function, which is to perform a
certain process on a piece of paper or an envelope. The ar-
rows in the diagram represent the flow of the documents and
envelopes through the system. In the feeder, rollers (small
plastic wheels) pull out the first document on the pile. The
rollers and a transport belt move the document forward and
bring it to the collator. The collator collects the documents
that belong to the same envelope and collates them. After
that, the documents are moved to the folding position. A
stroke of a long, thin, sharp-edged arm folds the documents.
In the meantime, the rollers of the envelope feeder pull out the
top envelope. The rollers along the envelope transportation
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Figure 4: Inserter’s high-level architecture and the concept of
the emulator.

path bring the envelope to the flap moistener. The flap is first
turned up and then moistened with a stroke of a brush. When
the envelope takes the position in the inserting module, its
upper side is slightly lifted, to facilitate document insertion.
Folded documents are then inserted in the envelope, the flap
is closed and the rollers move the envelope with documents
towards the exit.

Every process performed on documents and envelopes is
the result of controlled movements of mechatronic parts.
Rollers, folding arm, brush and many other system parts are
connected to actuators that move them. Along the system,
sensors are placed to signal the presence or absence of mate-
rial in front of them. Based on sensor readings, the control
software sends signals to actuators.

The high-level system architecture is shown on the left
side of Figure 4. The System Controller executes oper-
ator requests and recipes, forwarding them to the Em-
bedded Controller. The Embedded Controller controls the
plant.
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4.3. Plant and control integration

When a new generation of the inserter is designed, some
mechanical parts, or even whole modules, are re-used from
the old inserter generation. Some parts, conversely, are com-
pletely re-designed. Radical design results in significant im-
provements of functionality or performance, which is impor-
tant for competitiveness in the market. At the same time, it
brings unanticipated problems and issues (Vincenti, 1990).
Some problems are related to the integration of the con-
trol software and the plant. If the integration comes at a
later stage of the project, solving these problems might need
parts, modules or even concepts to be reworked, which causes
delays.

The plant and the controller together deliver the inserter’s
desired behaviour. It is therefore important to enable their
concurrent development. When the control software and
plant are designed at the same time, mechanical and software
engineers communicate during early development stage, and
problems related to plant and control software integration
arise early enough to be resolved on time.

The problem is that in the early development stages the
plant exists only in sketches and computer-aided design
(CAD) drawings. Interaction with the plant via sensors and
actuators is the essence of the control software; therefore,
without the plant, control software cannot be tested.

4.4. The plant model

To enable concurrent engineering of the plant and the con-
trol software from early development phases, the company
designed the plant simulator (emulator) to test the control
software. Figure 4 shows the comparison of the inserter ar-
chitecture and the architecture of the testing setup. The em-
ulator (M1) is a digital signal model of the plant, sensors
and actuators (P). Digital signals represent plant processes,
such as document transport and paper folding, and the be-
haviour of the sensors that detect documents. The signals
that emulate plant processes are functions of the signals that
the software sends to the actuators. The signals that emulate
the sensor behaviour are functions of the signals that emulate
plant processes. These functions are specified with LabView
(LabView, 2011) diagrams (®) and they define the emulator
behaviour.

We analyzed the LabView model. The programmable
hardware (emulator) is just the execution of the specifica-
tion, in a way similar to the computer hardware’s execution
of a computer program. The model could have been just as
well implemented as a simulator, describing the plant with
software; for our research question this would not make any
difference.

To specify the digital circuits behaviour, a high-level spec-
ification language, called G-language, is used, in LabView
tool. This diagram is a sort of data flow diagram. The Lab-
View specification of the emulator specifies the behaviour of
digital circuits. At the same time, it represents the flow of
papers and envelopes through the inserter, movement of dif-
ferent physical parts and sensors’ reaction to papers and en-
velopes. LabView compiles the diagram-based specification
to the program for the hardware. We consider this transfor-
mation correct, and only address the graphical model of the
system.
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LabView allows to specify models using state machines,
via its state machine pattern. The plant modeller did not use
it, but designed his own state machine pattern, specialized for
the problem in hand. The modeller first informally specified
state machines (the model components) and then translated
them to LabView diagrams. (Appendix A shows the feeder
state machine and LabView diagram).

Designing the plant for the first time took significant time
and effort. The modeller spent a lot of time learning about the
plant, trying out different modelling solutions and finding
the optimal one. He did not document his insights and knowl-
edge progression, due to time-pressure. The model-based
testing improved communication between departments and
shortened the integration time, so it will be used in the future.

How the new generation of inserters will look like, when
it will be developed, which parts will be incrementally and
which radically designed, is not known yet. The modeller will
most probably be another software architect either from in-
side or outside the company. Finally, the tools and languages
used now, may not be the choice next time.

The handbook we will present supports modelling of the
next inserter generation. It is based on the analysis of the ex-
isting inserter model and the estimation of the changes in the
next system generation. As such, the handbook is useful for
a concrete case of inserter modelling, or a family of inserters.
Possibly, the handbook is useful for a state-based modelling
of similar machines, such as printers. But, some of the print-
ers’ components and processes are completely different than
an inserter’s components and maybe modelling them has its
own characteristics not covered by the handbook.

Our aim, however, is not to deliver a universal modelling
handbook, but to show how the framework we described in
Section 3 can be used as a method to design a handbook for
modelling a highly decomposable mechatronic system.

The inserter modelling handbook proposes the current
model elements suitable for re-use, part of the knowledge and
experience gathered during designing the current model and
principles followed in modelling the current model. We rep-
resented the re-usable model elements with state machines,
as this is the modelling paradigm followed in the company.

4.5. The handbook — reusable modelling steps and knowledge

4.5.1. High-level system and model decomposition The in-
serter simulation model has to follow the system structure.
It is often the case that a structure of a model follows a
modelled system decomposition. If the modelling language
allows for hierarchical structures, then the model can fol-
low the system hierarchy as well as the decompositions on
different hierarchy levels.

The diagram in Figure 3 is one of many diagrams (decom-
positions) used in communication between engineers in the
company. The feeder refers to a physical component in which
papers are initially stored, but when talking about a collator,
it is seen as collating function in one occasion, and as a set of
mechanical parts in the other. In the same diagram, there is
a block called ‘“Transport’, which refers to the row of rollers
that move documents or envelopes, from the feeder to the
collator. But, the rollers that move documents between the
collator and inserter, between the folder and inserter, etc. are
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Figure 5: Diagram of the mechanical plant parts and document
and envelope paths in the model.

considered to be elements of a lower abstraction level and
therefore not explicitly represented in the diagram.

The plant modeller had to find a suitable system decom-
position to be represented in the model, and it is shown in
Figure 5. The transport path in this high-level model de-
composition stops at the collator. In the actual inserter, the
transport path continues all the way to the exit, but in the
model its remaining parts are encapsulated in the collator,
inserter and folder. How the papers are manipulated within
these four components may change in the future, whereas the
part of the path, from the feeders to the selector is unlikely
to change. Therefore, the high-level structure of the model is
the recommended structure for the future models.

4.5.2. Reusable solution specifications — paper transport and
paper path  The paper path is the least likely component to
change. The current model of the path is designed in Lab-
View, but it is based on the state machines that the modeller
first informally designed and then translated them into the
data flow (LabView) model. We chose to document these
state machines (and not the Lab-View diagrams) and present
them as reusable modelling solutions, for two reasons. First,
LabView may not be the modelling language when the next
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Figure 6: A segment of the document path contains a sensor
at the beginning of the segment.

inserter generation is modelled. Second, the state-based ap-
proach is well adopted in the company and both mechanical
and software engineers use them in communication about
certain system aspects.

The path (model) consists of the following components:

¢ Track models a piece of the paper path not longer than the
length of the paper.

— Simple track

— Track with a slip — models slip of the rollers — rollers
are rolling, but the paper is not moving

— Feeder — this is a special type of a track, that on
trigger reads the parameters of the model user. These
parameters define the length and thickness of the
paper in the feeder.

e Sensor — every track begins at the spot where the sensor is.
The sensor senses the presence of the material in front of
it. In the model, if the sensor breaks, it stays blocked in its
current state. Depending on what the state is, it continues
to represent either presence or absence of the material in
front of it, no matter whether actually there is something
in front of it or not (it stays stuck showing the last correct
value).

¢ Adder — paper moving from one feeder will be joined by
the paper coming out from another feeder. The way they
join assumes that the software will make sure that they
overlap on the two-thirds of their length or more.

e Switch — models the point on the path where there are two
possible ways to take. A switch works like a railway switch
— it moves the track towards one path or the other.

e Selector — selector is the place where two tracks merge into
one.

Together with every diagram, we provided the vocabulary
that defines what each state means, event, action and variable
represents. For example, the variable ‘length’ refers to the
length of a single paper or two papers joined together, or it is
an envelope length. We also documented a rationale for some
of the design decisions and modelling assumptions made
while modelling. For example, one of the assumptions is the
minimal length of an overlap between two A4 papers coming
from the two feeders. Some of the diagrams are shown in
Figures 6, 7(a), 7(b), 8 and 9.

Every state machine came with a short description
of the system components and aspects they represent.
Also, we documented properties of documents (papers, en-
velopes, etc.) that are relevant for the plant modelling.
These include thicknesses, lengths, types of envelops, etc.

Expert Systems, July 2013, Vol. 30, No. 3 193



Triggerin /

TrackLengthCounter
TrackLength + Slip /
TriggerOut

(a) Track state machine

SeparationCounter = nrPulses

& PH = Low /
SeparationCounter :

Triggerin &
~(FixPH1 = Low)/

Track
Occupied

PD edge /

TrackLengthCounter ++

FixPH1 = High /
SeparationCounter := 0,

LengthCounter := 0

Sensor
Off

PaperLengthCounter = nrPulses
& FixP1 = Normal / TriggerOut

FixPH1 = low

Sensor On

PD edge /
PaperLengthCounter ++

(b) Sensor state machine

Figure 7: State machines of a sensor and a track combined together to represent a path segment.

Triggerin1

alTrack > joinlength /

Paper 1
PD edge and C{
VirtualTrack ++,

TriggerIn2 & ~Triggerin1 /

VirtualTrack > joinlength

Paper 2

gdge & CL ON/
alTrack ++, n2++

nl++ DataOut = Dataln1 DataOut = Dataln2
Triggerln2 / Triggerin1 & Triggerin2 / Triggerin1/
4 B!
A y 4
Joined, Joined Joined,
paper 1 first at the same time paper 2 first
11 =1£(n1); DataOut.length = 12 = f(n2);
DataOut.length = max ((Dataln1.length, DataOut.length =
max ((Dataln1.length — 1), Dataln2.length) max ((Dataln2.length —12),
Dataln2.length) + I1; Dataln1.length) + 12;
N~ J

| VirtualTrack > joinlength /
21

Figure 8: Adder represents the part of the document segment path where two documents merge.

Adding designations and definitions is important, as it
makes explicit what the model represents (Jackson, 1995).
Without them, different modellers could interpret the model
differently.

4.5.3. Reusable knowledge about modelling the plant pro-
cesses The paper path will most likely stay the same, but
the collator, folder and inserter components may change. In
fact, it is desirable that some of these components change to
make the inserter smaller, faster or of a different shape. Cre-
ative solutions and radical changes introduced by mechanical
engineers into new generations of inserters are essential for
their competitiveness in the market.

If the physical components change, the high-level pro-
cesses that they perform will stay the same — inserting pa-
pers into envelopes consist of collating, folding, inserting,
flap moisturising, regardless the changes of the physical parts
that execute these processes. The sub-processes, however, may
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change, given that the high-level processes are executed by
different physical parts. Therefore, we did not generalize the
model components that describe the inserter’s physical com-
ponents and sub-processes, but we extracted the questions
that the modeller had to answer when modelling them. These
questions mark the modeller’s search for the solution. They
are shown in Figure 10.

4.6. The handbook — requirements for the model

We recorded the main pragmatic factors that limited the solu-
tion space. They influenced modelling decisions significantly,
and it might be that in the future, some of these conditions
could no longer be present.

For example, the modelling language was chosen for the
following reasons: engineers were already familiar with it,
it provided visualization, and graphical modelling kept the
focus on the plant (C-like simulation language made software
engineers think in terms of the software, not the plant.)
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Questions to guide learning about new system parts

Functional and physical decomposition

What is the system functional decomposition?

Which physical part performs which function?

Does one mechanical part perform two functions at the same time?

of a document

If so, what is it?

Components and sub-components positions upon arrival and leave
Is the initial and end position of a component relevant?

What are other relevant properties of each physical component
upon document arrival and leave?

How is a document moved from one component to another?

Is it a joint activity of two components, or only one of them?

Speeds and speed ratios

Is the speed ratio of two mechanical components relevant?
Is the component speed relevant and is it constant?

Timing

Can certain movements be modelled as zero-time events?

Clutches

more than one component?

Is each component moved by a different clutch, or one clutch moves

Software dependence

software cannot observe them?

Are there sub-functions performed without assistance of the software?
What are the relevant phenomena that need to be described, but

Figure 10: Questions to answer when learning about the new solutions in the inserter design.

Another important factor were limited hardware resources
which resulted in a number of sub-optimal solutions. We
recorded them, as in the future the modeller will have more
resources at hand.

4.7. The handbook — reusable modelling strategies

We documented creative solutions and modelling ‘tricks’ the
modeller invented to prevent the model becoming too com-
plex. The complexity was determined by two factors. The
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first was the number of hardware circuits that implemented
the emulator specification. The requirement was to design
an emulator that would not require purchase of additional
hardware elements. The second factor was the cognitive com-
plexity. It was the modeller’s subjective assessment of how
complex the model can become and still remain intellectu-
ally manageable.

Model elements that do not follow the structure. The start-
ing idea was to design a model that follows the structure
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(b) The real model and the system that the model would represent if it were isomorphic

Figure 11: Diverging from isomorphic structure to save hardware elements.

of the system as closely as possible. This way the design
decisions can be justified by the isomorphism between the
model and the system. However, sometimes due to the lan-
guage or other pragmatic constraints, it was not possible to
achieve this. We looked for these model elements because
they required creativeness to solve problems and to model
the system differently. We also recorded the justification of
these decisions, an argument how a model component that
does not follow the ‘ideal’ structure still represents the system
correctly.

An example of such deviation is the layout of the feeders in
the model. The distribution of the feeders in the real system
is shown on the left side of the Figure 11(a). The natural
way to design the solution would be the structure shown
the right side of the Figure 11(a). This model would follow
the layout of the feeders but, due to very short distances
between papers, virtual tracks would have to be introduced
in the model, so that the movement of each paper can be
described. Isomorphism would not be achieved and these
virtual tracks would require usage of additional hardware
elements.

Instead, the structure shown in Figure 11(b) is used. This
structure suggests the layout of the feeders shown on the
right side of the Figure 11(b), which is not the structure
of the feeders in the modelled inserter. However, given that
the overlap between an envelope and a paper sheet is not
possible (the control does not allow it), the whole component
adequately describes the movement of the documents.

Model elements that appear only in the model and not in the
system. Some of the model elements do not represent any
physical part or a process in the system. Still, they are intro-
duced in the model for various reasons. Sometimes a mod-
elling language has constraints that require adding additional
elements, or the system property needs to be expressed in
terms of the model components that do not have their match
in the system. Inventing these solutions requires creativity.
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In the emulator specification, one such element is a sen-
sor. Every segment in the model has a sensor placed at
the beginning of the track, whereas in the plant, sensors
are not positioned at all these places. But, for modelling
the document transport with the desired accuracy, placing
‘sensors’ at the beginning of each and every segment was
necessary.

System elements not present in the model. A model is an
abstraction of a system, which means that many system el-
ements will not be described with the model. For example,
in the emulator, the component that moistens envelope flaps
is not represented, as this process is controlled mechanically,
and therefore invisible to the control software.

A special case of a system element that is not present
in the model is the motor. It is present in the model, but
‘in person’ rather than being modelled. Modelling the motor
would require too many hardware elements, so it was cheaper
to place the actual motor at the modelling setup. In the
modelling setup, the motor does not have any load, so its
current is scaled down.

Dependence on software behaviour. Ideally, a plant model
is independent from the software specification, but in prac-
tice this would result in a too complex, too big, and in-
comprehensible model. What assumptions on the software
to make to simplify the plant model is the modeller’s
decision.

In the case of the emulator, the modeller used the fact that
the control forces the feeders’ rollers to move the papers in
such a way that the papers either overlap at least two-thirds
of their length or do not overlap at all. Without these as-
sumptions, the paper path would have to be described with
many more elements, and this would require more hard-
ware, and possibly would result in a model too complex to

grasp.
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| Stakeholders | Goals (G) and Constraints (C)
Head of System : Shorten time to market by shortening integration time.
Engineering : The model has to be cheap in time, cost and human resources.
Dept. : Make modelling faster for future projects.

: Make better models in future projects.

Head of Software
Engineering
Dept.

: Shorten time to market by shortening integration time.

: The model has to be cheap in time, cost and human resources;
: Model has to be adequate - to represent the plant so that

the results obtained from it are meaningful.

QRO 0

Project leader

G: Finish each phase on time as planned.
G: Design the model as soon as possible.

Modeller G:Make a model of the plant with the tools
suitable for the chosen kind of model.
C: Modelling some parts would take too many
hardware resources.

Software G: Develop the software and test it.

Developers C: Not experienced in language used for

programming hardware.

Validation and

G: Test and verify the software.

verification.

Verification C: Not experienced in language used for

Engineer programming hardware.

Mechanical G: Deliver the mechanical part.

Dept. C: Not concerned about the models used for software

C: They have not made the plant yet.

Figure 12: Stakeholders, their goals and the constraints they give on the model.

4.8. The handbook — record of solution exploration (reusable
modelling experience)

The modeller tried out some solutions that turned out not
to work. To save time next time, we recorded the solution
ideas and explanation as to why it did not work. For ex-
ample, choosing the path segment length with respect to
the paper length took many tries until the optimal solution
was found.

There were equally good solutions, and the modeller chose
one of them. We documented those other solutions, in case it
turns out they suit the problem more next time. For example,
in the part that represents inserter and folder, some of the
elements belong to both modules, so in the model, they could
just be represented in either of modules.

Not all the model parts were optimally designed. Some
of the modelling decisions were taken from previous ver-
sion of the system which went through significant changes.
Some of the elements that were optimal for the system as it
was before the changes were not optimal any more, but were
left due to time pressure. We highlighted what these decisions
are, having in mind that the modeller of the future system
will not only have our guidelines but also the old model at his
disposal. Therefore, we highlighted the decisions that might
have to be reconsidered.

4.9. Model stakeholders

The table in Figure 12 shows the stakeholders of the emulator
we analyzed. The stakeholders represent roles that also reflect
the company’s organizational structure.
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The main sources of information about the inserter, its
components and processes are mechanical and software en-
gineers. Requirements for the model come from both heads
of departments as well as the project leader. Some practical
limitations are also coming from software engineers.

5. Discussion and conclusion

Our framework distinguishes different classes of plant-
modelling decisions and modelling knowledge suitable for
reuse. The main classes are as follows: reusable modelling
steps and knowledge, requirements for the model, re-usable
modelling strategies and a record of the solution exploration
(modelling experience). In addition, to ellicit the require-
ments for the model itself, it is necessary to determine who
the model stakeholders are.

The research we presented in this paper is part of the re-
search that explores what the non-formal elements of plant
modelling are, and what establishes stakeholders’ trust that
the model is adequate. Researchers of design call the non-
formal elements ‘creative’ elements and they explore in gen-
eral what they are. Our goal is to identify these steps for the
plant modelling. As a result, non-formal modelling elements
become explicit. When these steps are made explicit they can
be reviewed, evaluated and discussed. Our framework also
can be seen as an explicit description of non-formal mod-
elling aspects.

In software engineering, there is a lot of work in automat-
ing the modelling process. Only those steps and decisions that
can be formalized can be automated. Our research focuses
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Figure 13: Feeder state machine implemented in LabView.

on those steps that cannot be formalized. Before pushing the
button of a system that will design the model, there are many
things that the modeller has to do on her own. We explore
the generic elements of these decisions, and their relations to
each other. Our work, therefore, complements the work on
formalization and automatization.

Other methods address some elements similar to those of
our framework. Our contribution is to collect and adjust the
elements relevant to plant modelling, in contrast to software
modelling, architecture design or software reuse. Moreover,
where more general guidelines are little specific for the appli-
cation domain and leave a lot of decisions to the modeller, we
support the process of modelling such that it becomes more
efficient and less dependent on the modeller’s experience.

Of all the related work the POE framework is most similar
to our approach. However, design is explored there on a more
general level, it is not specified for plant modelling. Moreover,
the design steps in the POE approach are formalized, which
we did not do in our framework. This is due to the fact
that many of the steps are inherently non-formalizable, and
additionally, in the case study presented, there was no need
for further formalization.

We represented our handbook in natural language, state
machine diagrams, tables and sketches. The natural language
descriptions may be ambiguous, and the plan for future work
is to use a more standardized and less ambiguous notation
such as SysML.

Appendix A

The feeders in the inserter machine are modelled as tracks
with sensors, as shown on Figures 6, 7(a) and 7(b). Tracks in
the rest of the document path pass the data about documents
that move along them, while feeders state machines start
with this data defined by the modeller in form of the model
parameters.

feedength({counts)
SeparationDist{counts)

Reset - SeparationSensor
FD - FeederExitSync
Clutch - DataCut

FeederParams
Parameters

Figure 14: Feeder module in LabView.

198 Expert Systems, July 2013, Vol. 30, No. 3

Figure 13 shows the implementation of a feeder in Lab-
View. LabView allows hierarchies, therefore on a higher ab-
straction level tracks are combined into the path. On this
level, combination of state machines looks like data-flow di-
agram, with modules like the one on Figure 14, with data
about documents passing from one track to the next.
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