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Abstract—This paper proposes a new measure of node centrality
in social networks, the Harmonic Influence Centrality (HIC), which
emerges naturally in the study of social influence over networks.
Using an intuitive analogy between social and electrical networks,
we introduce a distributed message passing algorithm to compute
the HIC of each node. Although its design is based on theoretical
results which assume the network to have no cycle, the algorithm
can also be successfully applied on general graphs.

Index Terms—Centrality measures, distributed algorithms,
message passing, opinion dynamics, social networks.

I. INTRODUCTION

A KEY issue in the study of networks is the identification of
their most important nodes: the definition of prominence

is based on a suitable function of the nodes, called centrality
measure. The appropriate notion of centrality measure of a node
depends on the nature of interactions among the agents situated
in the network and the potential decision and control objectives.
In this paper, we define a new measure of centrality, which we
call Harmonic Influence Centrality (HIC) and which emerges
naturally in the context of social influence. We explain why in
addition to being descriptively useful, this measure answers
questions related to the optimal placement of different agents
or opinions in a network with the purpose of swaying average
opinion. In large networks approximating real world social
networks, computation of centrality measures of all nodes can
be a challenging task. In this paper, we present a fully decen-
tralized algorithm based on message passing for computing the
HIC of all nodes, which converges to the correct values for trees
(connected networks with no cycles), but can also be applied to
general networks.

Ourmodel of social influence builds on recent work [1], which
characterizes opinion dynamics in a network consisting of stub-
born agents who hold a fixed opinion equal to zero or one (i.e.,
type zero and type one stubborn agents) and regular agents who
hold an opinion and update it as a weighted average of
their opinion and those of their neighbors. We consider a special

case of thismodel, where afixed subset of the agents are type zero
stubborn agents and the rest are regular agents. We define the
HIC of node as the asymptotic value of the average opinion
when node switches from a regular agent to a type one stubborn
agent. This measure hence captures the long run influence of
node on the average opinion of the social network.

The HIC measure, beside its natural descriptive value, is also
the precise answer to the following network decision problem:
suppose you would like to have the largest influence on long run
average opinion in the network and you have the capacity to
change one agent from regular to type one stubborn.Which agent
should be picked for this conversion? This question has a precise
answer in terms of HIC; the agent with the highest HIC should be
picked.

Although the HIC measure is intuitive, its centralized compu-
tation in a large network would be challenging in terms of its
informational requirements that involve the network topology
and the location of type zero stubborn agents. We propose here a
decentralized algorithm whereby each agent computes its own
HIC based on local information. The construction of our algo-
rithm uses a novel analogy between social and electrical net-
works by relating the Laplace equation resulting from social
influence dynamics to the governing equations of electrical
networks. Under this analogy, the asymptotic opinion of regular
agent can be interpreted as the voltage of node , when type zero
stubborn agents are kept at voltage zero and type one agents are
kept at voltage one. This interpretation allows us to use properties
of electrical circuits and provide a recursive characterization of
HIC in trees. Using this characterization, we develop a so-called
message passing algorithm (MPA) for its solution, which con-
verges after at most a number of steps equal to the diameter of the
tree. The algorithm we propose runs in a distributed and parallel
way among the nodes,which do not need to know the topology of
the whole network, and has a lower cost in terms of number of
operations with respect to the centralized algorithm recently
proposed in [15]. Although originally designed for trees, our
algorithm can be employed in general networks. For regular
networks with unitary resistances (corresponding to all agents
placing equal weights on opinions of other agents), we prove that
this algorithm converges (although not necessarily to the correct
HIC values). Moreover, we show through simulations that the
algorithm performs well also on general networks.

A. Related Works

In social science and network science there is a large literature
on defining and computing centrality measures [6]. Among the
most popular definitions, we mention degree centrality, node
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betweenness, information centrality [11], and Bonacich central-
ity [3], which is related to the well-known Google PageRank
algorithm. These notions have proven useful in a range of
applications, but are not universally the appropriate concepts
by any means. Our interest in opinion dynamics, thus motivates
the choice to define a centrality measure for our purposes.

As opposed to centralized algorithms, the interest for distrib-
uted algorithms to compute centrality measures has risen more
recently. In [7], a randomized algorithm is used to compute
PageRank centrality. In [14], distributed algorithms are designed
to compute node and edge betweenness on trees, but are not
suitable for general graphs.

MPAs have been widely studied and are commonly used in
artificial intelligence and information theory: they have demon-
strated empirical success in numerous applications including
low-density parity-check codes, turbo codes, free energy
approximation, and satisfiability problems (see e.g., [10] [4]
[13] [8]). In such algorithms, nodes are thought as objects with
computational ability which can send and receive information
from their neighbors.

Interesting connections between MPAs and electrical net-
works are discussed in [12]. Moreover, electrical networks have
also been put in connection with social networks: two notable
cases are the notion of resistance distance [5] and the characteri-
zation of random walk betweenness in [9].

B. Paper Outline

In Section II, we review our model of opinion dynamics with
stubborn agents and we define our problem of interest, that is the
optimal placement of a stubborn agent. In Section III, we review
basic notions of electrical circuits and explain their connection
with social networks. Section IV is devoted to apply this
electrical analogy on tree graphs and to study the optimal
placement problem in this important case. Next, in Section V,
we describe the MPA to compute the optimal solution on trees,
while in Section VI we consider its extension to general graphs:
we provide both theoretical results, in Section VI-A, and numer-
ical simulations, in Section VI-B. Final remarks are given in
Section VII.

C. Notation

To avoid possible ambiguities, we here briefly recall some
notation and a few basic notions of graph theory which are used
throughout this paper. The cardinality of a (finite) set is
denoted by and when , we define its complement as

. A square matrix is said to be non-
negative when its entries are non-negative, substochastic
when it is non-negative and for every row , and

stochastic when it is non-negative and for every .

We denote by a vector of whose entries are all 1. An
(undirected) graph is a pair , where is a finite set,
whose elements are said to be the nodes of and is a set of
unordered pairs of nodes called edges. The neighbor set of a node

is defined as . The cardinality of
the neighbor set is said to be the degree of node . A
graph in which all nodes have degree is said to be -regular. A
path in is a sequence of nodes such that

, for every . The path is said
to connect and . The path is said to be simple if for

. A graph is connected if any pair of distinct nodes can be
connected by a path (which can be chosen to be simple). The
length of the shortest path between two nodes and is said to be
the distance between them, and is denoted as . Conse-
quently, the diameter of a connected graph is defined to be

. A tree is a connected graph
such that for any pair of distinct nodes there is just one simple
path connecting them. Finally, given a graph and a
subset , the subgraph induced by is defined as

, where .

II. OPINION DYNAMICS AND STUBBORN AGENT PLACEMENT

Consider a connected graph . Nodes in will be
thought as agents who can exchange information through the
available edges . Each agent has an opinion

R possibly changing in time N. We assume a split-
ting with the understanding that agents in are
stubborn agents not changing their opinions, whereas those in
are regular agents whose opinionsmodify in time according to

the consensus dynamics

where for all and for all and for
all . The scalar represents the relative weight that agent
places on agent ’s opinion.Wewill assume that only uses the

available edges in , more precisely, our standing assumption
will be that

A basic example is obtained by choosing for each regular
agent uniform weights along the edges incident to it, i.e.,

for all and . Assembling opinions
of regular and stubborn agents in vectors, denoted by and

, we can rewrite the dynamics in a more compact form as

where the matrices and are non-negative matrices of
appropriate dimensions.

Using the adaptivity assumption (1), it is standard to show that
is a substochastic asymptotically stable matrix (e.g., spectral

radius < ). Henceforth, for with the
limit opinions satisfying the relation

which is equivalent to

where is the identity matrix of appropriate dimension.
Notice that is always
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non-negative and is nonzero, if and only if there exists a path in
connecting the regular agent to the stubborn agent and not
touching other stubborn agents. Moreover, the fact that is
stochastic easily implies that for all

: asymptotic opinions of regular agents are thus convex
combinations of the opinions of stubborn agents.

In this paper, we will focus on the situation when
and assuming that for all

, while , i.e., there are two types of stubborn
agents: one type consisting of those in set that have opinion 0
and the other type consisting of the single agent that has opinion
1. We investigate how to choose in in such a way to
maximize the influence of opinion 1 on the limit opinions. More
precisely, let us denote as the asymptotic opinion of the
regular agent under the above stubborn configuration, and
define the objective function

Notice that the subset itself is actually a function of ,
however we have preferred not to indicate such dependence to
avoid too heavy notations. The Optimal Stubborn Agent Place-
ment (OSAP) is then formally defined as

In this optimization problem, for any different choice of , the
block matrices and change and a new matrix inversion

needs to be performed. Such matrix inversions
require global information about the network and are not feasible
for a distributed implementation. In this paper, we propose a fully
decentralized algorithm for the computation of asymptotic opi-
nions and for solving the optimization problemwhich is based on
exploiting a classical analogywith electrical circuits. Under such
analogy, we can interpret as the voltage at node when
nodes in are kept at voltage 0, while is kept at voltage 1. This
interpretation results to be quite useful as it allows to use typical
“tricks” of electrical circuits (e.g., parallel and series reduction,
and glueing).

In order to use the electrical circuit analogy, we will need to
make an extra “reciprocity” assumption on the weights
assuming that they can be represented through a symmetric
matrix R (called the conductance matrix) with non-
negative elements and > iff by imposing

The value can be interpreted as a measure of the
“strength” of the relation between and . For two regular nodes
connected by an edge, the interpretation is a sort of reciprocity in
the way the nodes trust each other. Notice that when is
not used in defining the weights, but is anyhow completely
determined by the symmetry assumption. Finally, the terms
when do not play any role and for simplicity, we can
assume they are all equal to 0. By the definition (6) and from
matrix , we are actually defining a square matrix R .

Compactly, if we consider the diagonal matrix R
defined by , where is all ones vector with
appropriate dimension, the extension is obtained by putting

. The matrix is said to be a time-reversible
stochastic matrix in the probability jargon. The special case of
uniform weights considered before fits in this framework, by
simply choosing , where is the adjacency matrix of
the graph. In this case, all edges have equal strengths and the
resulting time-reversible stochastic matrix is known as the
simple random walk (SRW) on .

III. THE ELECTRICAL NETWORK ANALOGY

In this section, we briefly recall the basic notions of electrical
circuits and we illustrate their relation with our problem. A
connected graph together with a conductance matrix

R can be interpreted as an electrical circuit, where an
edge has electrical conductance (and thus
resistance ). The pair will be called an elec-
trical network from now on.

An incidence matrix on is any matrix
such that and iff . It is immediate to see that
given , the th row of has all zeroes except and

: necessarily one of themwill be and the other one and
this will be interpreted as choosing a direction in from the node
corresponding to to the one corresponding to . Define

R to be the diagonal matrix, such that
if . A standard computation

shows that .
On the electrical network , we now introduce current

flows. Consider a vector � R , such that � : we interpret
as the input current injected at node (if negative being an

outgoing current). Given and �, we can define the voltage
R and the current flow R in such a way that the

usual Kirchoff and Ohm’s law are satisfied on the network.
Compactly, they can be expressed as

�

Notice that is the current flowing on edge and sign is
positive iff flow is along the conventional direction individuated
by on edge . Coupling the two equations we obtain

� which can be rewritten as

�

where is the so-called Laplacian of . Since
the graph is connected, has rank and .
This shows that (7) determines up to translations. Notice that

, for every such that . For this reason,
in analogy with the Laplacian equation in continuous spaces,
is said to be harmonic on . Clearly, given a subset

and a R which is harmonic on , we can always
interpret as a voltage with input currents given by
� which will necessarily be supported on .
Actually, is the only voltage harmonic on and with
assigned values on .
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It is often possible to replace an electrical network by a
simplified one without changing certain quantities of interest.
An useful operation is gluing: if we merge vertices having the
same voltage into a single one, while keeping all existing edges,
voltages, and currents are unchanged, because current never
flows between vertices with the same voltage. Another useful
operation is replacing a portion of the electrical network con-
necting two nodes , by an equivalent resistance, a single
resistance denoted as which keeps the difference of voltage

unchanged. Following our interpretation of (6),
we see as measuring of the strength of the relation
between two nodes , . Two basic cases of this operation consist
in removing nodes of degree two by adding resistances (series
law) and replacing multiple edges between two nodes with a
single one having conductance equal to the sum of the various
conductances (parallel law). These techniques will be extensive-
ly used in deriving our algorithm.

A. Social Networks as Electrical Networks

We are now ready to state the relationship between social and
electrical networks. Consider a connected graph , a
subset of stubborn agents , and a stochastic time-reversible
matrix having conductance matrix . Notice that relation (2)
can also be written as

�

for some suitable vector � R (where � represents the initial
opinions of the stubborn agents). Comparing with (7), it follows
that can be interpreted as the voltage at the regular
agents when stubborn agents have fixed voltage or,
equivalently, when input currents � are applied to the
stubborn agents. Because of (8), the vector is said to
be the harmonic extension of and the function defined in
(4) the HIC.

Thanks to the electrical analogy as we can compute the
asymptotic opinion of the agents by computing the voltages in
the graph seen as an electrical network. From now on, we will
stick to this equivalence and we will exclusively talk about an
electrical network with a subset of nodes at
voltage 0. For any , denotes the voltage on such
that for every and . Using this
notation and the association between limiting opinions and
electric voltages provided in (7) and (8), we can express the
HIC of node as

Consider the following simple example.
Example 1 (Line Graph): Consider the electrical network

, where is the line graph .
Moreover, assume and . Then, the
induced voltage satisfies , and thus .

The following result, which is an immediate consequence of
(8), provides a formula that is useful in computing the voltages.

Lemma 1 (Voltage Scaling): Consider the electrical network
and a subset . Let be the voltage that is

0 on and 1 on . Let be another voltage, such that
if and . Then, for every node

it holds

IV. THE ELECTRICAL ANALOGY ON TREES

The case when the graph is a tree is very important to us,
since we are able to prove a number of useful results on the
solution of theOSAP problem and it will play a pivotal role in the
introduction of our MPA for general graphs. To begin with, we
establish some useful notation and basic results.

In the foregoing, we assume to have fixed a tree , a
conductance matrix and the subset of 0 voltage nodes.
We next define subsets of nodes of the given tree, which enable
us to isolate the effects of the upstream and downstream neigh-
bors of a node in computing its harmonic centrality and its
voltage. Given a pair of distinct nodes , we let < denote
the subset of nodes that form the subtree rooted at node that does
not contain node . Formally

<

We also define > < , < > ,
> < , and < < > . Fig. 1 illustrates these

definitions.
The induced subtrees is denoted using the same apex < and

so on; similarly the HIC of the nodes on each of the trees above is
denoted as < and so on. Finally, we use the notation <

to denote the effective resistance inside < between <

(considered as a unique collapsed node) and node . We will
conventionally interpret this resistance as infinite in case

< . Analogously, we define > < .

Given a pair of distinct nodes , consider the two
voltages and . If we restrict them to < , we may
interpret them as two voltages on < which are 0 on and take
values in node , respectively, and . It
follows by applying Lemma 1 that

<

Moreover, can be computed through effective resis-
tances replacing the circuit determined by the subtree < by an
equivalent circuit represented by a line graph with three nodes

, , and as in Fig. 2.We recall that collapsing all nodes of in
a single node is possible as they all have the same voltage.
Moreover, by definition, the edge has resistance < ,

while has resistance . Therefore, as the current flowing

along the two edges is the same, Ohm’s law yields

< <
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yielding

<

<

(equal to 1 in case < ). From relations (10) and (11),
later on we will derive iterative equations for the computation of
voltages on a tree. In the rest of this section, we prove some
properties of the OSAP on a tree, which provide significant
simplifications at the computational level.

A. Nodes in can be Assumed to be Leaves

A first general remark to be made is that nodes in break the
computation of the HIC into separate noninteracting compo-
nents. Indeed, the induced subgraph is a forest composed
of subtrees . For every ,

define the set as the set of type 0 stubborn nodes that are
adjacent to nodes in in the graph , that is

Then, define the tree , which is therefore the tree

augmented with its type 0 stubborn neighbors in the original
graph . An example of this procedure is shown in Fig. 3. The
following result shows that it is sufficient to compute the HIC on

the subtrees ; in its statement we denote by the HIC

function on .

Proposition 2 (Tree Decomposition): For every ,
and for very

Proof: Given , the voltage is zero for every
such that the (unique) path from to goes through a type 0
stubborn node. This implies that , for every

. This observation proves the result. ◽

Thanks to this property as it is sufficient to study the HIC on
the subtrees and then compute

Consequently, we will assume from now on that stubborn
agents are located in the leaves, without any loss of generality.

B. Further Properties in Case of Unitary Resistances

In this paragraph, we present a number of results characteriz-
ing the OSAP in the special, but important, case when all
resistances are equal (without further loss of generality, we set
their value to be one). We recall that the social interpretation of
this case is when all edges expressing relationship among regular
nodes have equal strength.

Before proceeding, let us first consider the trivial situation in
which there is only one type 0 stubborn (which is a leaf of ,
without loss of generality). In this case, themaximizer of in is
the node adjacent to the node in . Indeed, let be the node in
and its unique neighbor: then for all , that is

, which is obviously the largest achievable value.
In order to deal with more than one stubborn, we need the
following preliminary result.

Lemma 3: Let be a tree with unitary resistances
and . Let be the voltage such that and

. Then, the effective resistance between and
satisfies

Proof:Consider the simple path connecting
to in . By Example 1, we clearly have that .
Therefore

◽

We are now ready to state and prove the main result of this
section, which provides a set of necessary conditions for a node
to be a solution toOSAP: provided there are at least two stubborn,
the solution lies on a path connecting two of them and is a node of
degree at least three, unless all paths connecting two stubborn are
made of nodes of degree two.

Theorem 4 (Necessary Conditions for OSAP): Consider the
OSAP problem (5) over a tree with all unitary
resistances. Assume that is a subset of leaves and that

. Define

Then,

Fig. 2. Subtree equivalently represented as a line graph.

Fig. 1. Example of tree presenting the notation of the subsets of .
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Moreover, if , then

Proof: Let . Then, there exists such that every
path from to contains .We claim that > , proving
that the optimum must belong to . Harmonic influences can be
computed as follows

< <

>

<

< >

We can then observe that, as a consequence of the scaling
formula (10)

<

<
<

while, clearly, <
< . These inequalities

prove the claim.
Next, we need to prove that the optimal node has degree larger

than two, that is, it belongs to (provided this set is not empty).
Consider a path between two nodes in and amaximal string of
consecutive nodes of degree two in this path, denoted as

. Let be the two nodes such that
. For any , consider and

notice that, because of formula (10), there hold

<

>

Combining these equations with Example 1, we can compute

< > <

< >

Since, by (11), <

<
and >

>
, we

deduce that

<

<
<

>

>
>

Notice that the above expression naturally determines an
extension for R and it is straightforward to compute
that

< < <

<

> > >

>

Since Lemma 3 implies that < < and
> > , this second derivative is non-negative

and then is convex in .We conclude that the value in or
in of the HIC is greater or equal than the value on the nodes
having degree two. By this statement, the proof is complete. ◽

As a consequence of the necessary conditions in Theorem 4, in
order to solve the OSAP it is sufficient to compute the HIC only
on a subset of nodes, which can be much smaller than the whole
node set of the social network. Example of the effectiveness of

Fig. 4. Three different trees: blue nodes are stubborn and the ones with green stripes are the candidate solutions.

Fig. 3. Tree with type 0 stubborn nodes in blue, together with its decomposition according to Proposition 2.
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this result are provided in Figs. 3 and 4, where the candidate
nodes to solve problem (5) are pictured with green stripes: in the
former example, the candidates are reduced from 22 to 4.

V. MESSAGE PASSING ON TREES

In this section, we design anMPA,which computes theHIC of
every node of a tree in a distributed way. We begin by outlining
the structure of a generalMPAon a tree. Preliminarily, define any
node in the graph as the root. In the first phase, messages are
passed inwards: starting at the leaves, each node passes a
message along the unique edge toward the root node. The tree
structure guarantees that it is possible to obtainmessages from all
other neighbor nodes before passing the message on. This
process continues until the root has obtained messages from
all its neighbors. The second phase involves passing the mes-
sages back out: starting at the root, messages are passed in the
reverse direction. The algorithm is completed when all leaves
have received their messages.

Next, we show how this approach can be effective in our
problem. Take a generic root node and, for every

, notice the following iterative structure of the subtree
rooted in and not containing :

< <

This relation, together with (10), yields

<

<

<

Forthermore, (11) yields

<

<

where, we conventionally assume that < and

if < . On the other hand, also effective
resistances < admit an iterative representation. Indeed, re-
place < with the equivalent circuit consisting of nodes: , ,
, and all the nodes . Between and , there are

parallel (length 2) paths each passing through a
different and having resistance < (see

Fig. 5). Therefore, using the parallel law for resistances we
obtain

<
<

The three relations (12), (13), and (14) determine an iterative
algorithm to compute at every node starting from leaves
and propagating to the rest of the graph. More precisely, define

< , and to be thought as mes-
sages sent by node to node along the edge . From (12),
(13), and (14), we easily obtain the following iterative relations

Notice that a node can only send messages to a neighbor
after it has received messages and from all its
neighbors but . Iteration can start at leaves (having just one
neighbor) with the following initialization step

where we denote by a vector indexed in which has entry 1

if and entry 0 elsewhere.Notice that each regular agent can
finally compute by the formula

Clearly this algorithm terminates in finite time, because as
soon as a node has received all messages from its neighbors, it
can compute the correct value of the HIC. It is then interesting to
estimate the convergence time of the algorithm, in terms of
number of steps, as well as the number of messages to be sent by
the nodes and the number of operations to be performed.

Proposition 5 (Complexity of MPA): Consider the MPA
defined in (15) and (16) on tree . Then

1) the algorithm converges after at most steps;
2) the number of messages (triples) sent by node is ;
3) the number of messages (triples) sent in the whole network

is not larger than ;
4) the number of operations performed by each node is ;
5) the number of operations in the whole network is

.

Fig. 5. Equivalent representation of parallel paths between and .
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Proof: The time before converges is clearly equal to the
distance between and the furthest leave; then, the first claim
follows. It is immediate to observe that, if we count a triple as a
message, the number of messages sent by each node is . Then,
across the whole network, we have
messages, because is a tree. The number of operations for each
node to compute a message for a neighbor is proportional to

. As node has to compute different messages, the
computational cost for a node is of the order . The last
claim follows by summing over all the network. ◽

A centralized algorithm to compute the HIC in any connected
network was proposed in [15]. Being centralized, this algorithm
requires full knowledge of the topology of the graph. The
computational complexity of the algorithm [15] is

. As , provided denotes

the largest degree, on graphs with bounded degrees the MPA
has a much smaller complexity . The main draw-
back of MPA is its limitation to trees. In the Section VI, we will
work toward removing this restrictive assumption.

VI. MESSAGE PASSING ON GENERAL GRAPHS

MPAs are commonly designed on trees, but also implemented
with some modification over general graphs. In many cases, the
application is just empirical, without a proof of convergence.We
will see in this section how to apply theMPA to every graph, with
suitablemodifications in order tomanage the new issues. Namely,
we design an “iterative” version of theMPA of Section V, which
can run on every network, regardless of the presence of cycles.
We show that for regular graphs with unitary resistances, this
algorithm converges (but not necessarily to the correct HIC
values as we demonstrate next). We also present simulation
results that show the algorithm effectiveness in computing the
HIC on families of graphs with cycles.

We let the nodes send their messages at every time step, so that
we denote them as

The dynamics of messages are

(where are the edge resistances) if and

otherwise. The initialization is

By these definitions of messages, we have defined the MPA
for general graphs. Additionally, we should define a termination
criterion: for instance, the algorithm may stop after a number of
steps which is chosen a priori. At every time , each agent can
compute an approximate by the formula

This new algorithm clearly converges to theHIC if the graph is
a tree, and the convergence time is not larger than the diameter of
the graph. Otherwise, the algorithm is not guaranteed to con-
verge: furthermore, if the algorithm happens to converge, then
the convergence value may be different from the HIC.

In order to illustrate the issues caused by the presence of
cycles, we can use the so-called computation trees [13], which
are constructed in the following way. Given a graph , we focus
on a “root” node, and for all N, we let the nodes at distance
from the root (the level of the tree) be the nodeswhosemessages
reach the root after iterations of the MPA. Note that if the graph

is a tree, the computation tree is just equal to ; otherwise, it
has a number of nodes which diverges when goes to infinity. As
an example, Fig. 6 shows the first four levels of a sample
computation tree. In our MPA, each node is computing
its own HIC in the computation tree instead than on the original
graph. As the number of levels of the computation tree
diverges, the computation procedure may not converge, and—if
converging–may not converge to the harmonic influence in the
original graph.

A. MPA on Regular Graphs

Section VI-A is devoted to prove the following convergence
result.

Theorem 6 (Convergence of MPA): Consider a connected
graph with unitary resistances and . Assume,
moreover, that for all nodes . Then, the MPA
algorithm described by (17), (18), and (19) converges.

We start analyzing the behavior of the variables, which is
independent from the variables. Notice that under the assump-
tions of Theorem 6, the relations (17b)–(18b) simplifies to

Lemma 7: Under the assumptions of Theorem 6, there exist
numbers satisfying, for all , the fixed
point relations

and such that as for all .
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Proof: We already know that the sequence is
bounded, for all and for all .
Notice now that for all . On the
other hand, it is immediate to check, from expression (20), that the
following inductive step holds true:

This implies that is a decreasing sequence for all
: we thus get convergence to a limit satisfying (21).

Finally, to show that < for all , we notice that

Iterating this argument and being the graph connected, we
obtain the absurd statement that for and some

.
We can actually say more on the limit numbers .

Lemma 8: Under the assumptions of Theorem 6, the numbers
s defined in Lemma 7 satisfy the bounds

<

Proof:Forevery , define .
From (21), we can easily obtain the iterative relation

Suppose that

Clearly, by Lemma 7, we have and we easily
obtain the relation

which yields . Suppose by contradiction that and
notice that inequalities in (22) would yield

and

Iterating this argument, we easily obtain the result that there is
no path from nodes in to , contradicting the fact that is
connected. ◽

Finally, we analyze the behavior of the sequences .

Proposition 9: Under the assumptions of Theorem 6, there
exist numbers satisfying, for all , the
fixed point relations

and such that as for all .
Proof: It is convenient to gather the sequences into a

vector sequence R and rewrite the iterative relation in
(17a) as

where R is given by

We know from Lemmas 7 and 8 that converges to a
matrix R with non-negative elements and satisfying
the row relations

Fig. 6. Graph and computation trees of an MPA from root 1: (a) original graph, (b) computation tree (first iteration), (c) computation tree (second iteration),
(d) computation tree (third iteration), and (e) computation tree (fourth iteration).
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Notice that is an asymptotically stable substochastic matrix
such that

<

Straightforward calculus considerations thenyield convergence
of . ◽

B. Simulations

We have performed extensive simulations of our algorithm on
well-known families of random graphs such as Erdős–Rényi and
Watts–Strogatz, obtaining very encouraging results. First, the
algorithm is convergent in every test. Second, in many cases the
computed values of HIC are very close to the correct values,
whichwe can obtain by the benchmark algorithm in [15]. In order
to make this claim more precise, we define two notions of error.
We denote by the correct HIC of node and by the
output of the algorithm in node after steps.We define themean
deviation error at time step as

Additionally, as we are interested in the OSAP problem, we
are specially concerned about obtaining the right ranking of the
nodes, in terms of HIC. We thus define the mean rank error at
time step as

where for a function R, we denote by the
position of in the vector of nodes, sorted according to the values
of .

We now move on to describe some simulation results in more
detail. As the stopping criterion, we ask that the mean difference
between the output of two consecutive steps is below a threshold,
chosen as .As the topology of the graphs,we choose random
graphs generated according to the well-known Erdős–Rényi
model: G is a graph with nodes such that every pair of
nodes is independently included in the edge set with probability
(for further details see [2]). For simplicity, all resistances are set
equal to one.

First, we consider an example of Erdős–Rényi random graph
with and ; nodes 1, 2, and 3 are stubborn in . In
spite of the presence of several cycles in the sampled graph, the
algorithm finds the maximum of the HIC correctly; see Fig. 7.
Fig. 8 plots the mean deviation error and the mean ranking error
as functions of time steps in the same experiment: after just four
steps the ranking error reaches a minimum value. Note that
although the obtained ranking is not entirely correct, the three
nodes with highest HIC are identified and the HIC profile is well
approximated.

The true HIC is smaller than the approximated one and the
deviation error is localized on some node. These facts, which can
be widely observed in our simulations, can be explained by
thinking of the computation trees as in Section VI. Indeed, for

each node the MP algorithm actually computes the HIC on the
computation tree rooted in . The computation tree is closer to the
actual graphwhen the node is farther from cycles or it belongs to
fewer of them; then also the computed HIC will be closer to the
true one. Moreover, when the number of iterations grows the
computation tree has an increasing number of nodes: even if they
are far from the node considered, they contribute to overestimate
its centrality.

Next, we also present simulations on larger Erdős–Rényi
random graphs: we let and consider (A)

and (B) . It is known [2] that in the regime of
case (A), the graph is guaranteed to be connected for large , while
in case (B) the graph, besides being connected, has many more
cycles and its diameter is smaller. We plot the time evolution of
the error for cases (A) and (B) in Figs. 9 and 10, respectively. In
both cases the node with the higher HIC has been correctly
identified by the MPA, and the mean ranking error is below 3.

In all these examples, the deviation error first decreases and
then slightly increases as a function of time. This observation
corresponds to the evolution of the computation trees: first
they grow to represent relatively well the neighbourhood of the
neighbors, but after a certain number of steps too many “ghost”
nodes are included, thus worsening the computed approximation.

In order to stress the accuracy of our results, we can compare
the HIC computed through the MPA to other centralities, which
can be computed in a distributed way and may be considered as

Fig. 7. Comparison between the actual values of in the nodes of an Erdős–
Rényi graph with 15 nodes and the values estimated by the MPA. Degree and
eigenvector centralities are also shown.

Fig. 8. Mean deviation error and mean ranking error of the MPA as functions of
time steps on the same graph as in Fig. 7. The stopping condition is reached after
13 steps.
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reasonable approximations of the HIC. The first naive option is
the degree centrality, that is, the number of neighbors. This is
exactly what the MPA computes after one time step and the
results in terms of deviation and rank error can be read on Figs. 8,
9, and 10. The experiments indicate that degrees are in general
insufficient to describe the HIC and can at best be used as rough
approximations. A second option is the eigenvector centrality:
our experiments show it to be an unreliable approximation of the
HIC, as it gives fairly largemean rank errors of 1.9, 18.7, and 9.1,
respectively, for the three experiments shown before. Similar
observations on degree and eigenvector centralities can be drawn
from Fig. 7, which includes the node-by-node values of degree
and eigenvector centralities (the latter is re-scaled by the maxi-
mum of the true HIC).

These measures are inadequate to our problem for the follow-
ing main reason: both the degree centrality and the eigenvector
centrality evaluate the influence of a node within a network, but
they do not consider the different role of stubborn nodes, treating
them as normal nodes.

VII. CONCLUSION

In this paper, we have proposed a centralitymeasure on graphs
related to the consensus dynamics in the presence of stubborn
agents, the HIC: this definition of centrality quantifies the
influence of a node on the opinion of the global network.
Although our setting assumes all stubborn except one to have
the same value, the approach can be extended to more complex

configurations, as discussed in [15]. Thanks to an intuitive
analogy with electrical networks, which holds true for time-
reversible dynamics, we have obtained several properties of HIC
on trees. As an application of these results, we have proposed an
MPA to compute the node which maximizes centrality. We have
proved the algorithm to be exact on trees and to converge on any
regular graph. Furthermore, numerical simulations show a good
performance of the algorithm beyond the theoretical results.
Further research should be devoted to extend the analysis of
the algorithm beyond the scope of the current assumptions to
include general networks with cycles, varied degree distribu-
tions, and directed edges.
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