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Summary 

Objectives: The main objective is to develop and validate a reference information model 

(RIM) to support semantic interoperability of pervasive telemedicine systems. The RIM is 

one component within a larger, computer-interpretable "MADE language" developed by the 

authors in the context of the MobiGuide project. To validate our RIM, we applied it to a 

clinical guideline for patients with gestational diabetes mellitus (GDM). 

 

Methods: The RIM is derived from a generic data flow model of disease management which 

comprises a network of four types of concurrent processes: Monitoring (M), Analysis (A), 

Decision (D) and Effectuation (E). This resulting MADE RIM, which was specified using the 

formal Vienna Development Method (VDM), includes six main, high-level data types 

representing measurements, observations, abstractions, action plans, action instructions 

and control instructions. 

 

Results: The authors applied the MADE RIM to the complete GDM guideline and derived 

from it a domain information model (DIM) comprising 61 archetypes, specifically 1 

measurement, 8 observation, 10 abstraction, 18 action plan, 3 action instruction and 21 

control instruction archetypes. It was observed that there are six generic patterns for 

transforming different guideline elements into MADE archetypes, although a direct mapping 

does not exist in some cases. Most notable examples are notifications to the patient and/or 

clinician as well as decision conditions which pertain to specific stages in the therapy. 

 

Conclusions: The results provide evidence that the MADE RIM is suitable for modelling 

clinical data in the design of pervasive telemedicine systems. Together with the other 

components of the MADE language, the MADE RIM supports development of pervasive 

telemedicine systems that are interoperable and independent of particular clinical 

applications. 
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1 Introduction 

To realise their full potential, telemedicine systems should be interoperable, particularly 

those for pervasive healthcare. This is made necessary due not only to their diversity and 

highly distributed nature, but also to the dynamic and competitive nature of the wearable 

and mobile technology market.  Indeed, interoperability is also a recognised problem for 

traditional clinical information systems, and as a result, various standards (e.g. SNOMED CT 

and DICOM) have been proposed to address different aspects of interoperability. Of 

particular interest are those which provide a standardised, conceptual model for automated 

interpretation of clinical data, the main ones of which include openEHR and HL7 v3.  

 

In general, these standards distinguish between a reference information model (RIM), which 

captures the generic data types required in a clinical statement, and the domain information 

model (DIM), which is a specialisation of the RIM and specifies the semantic constraints of a 

particular application, e.g. in the form of archetypes. In HL7 v3 the notion of logical domain 

analysis models (DAMs) was also introduced for generating DIMs from a generic, domain-

independent RIM. One such DAM, for Virtual Medical Records (vMRs), was developed to 

support clinical decision support and is comparable to the openEHR RIM. 

 

As part of the MobiGuide project (http://www.mobiguide-project.eu/), which aimed to 

provide pervasive and personalised clinical decision support to patients, the HL7 vMR model 

(first release) was adopted to support interoperability between the back-end servers of 

hospitals and the wearable healthcare technologies of patients. It was observed however [1, 

2] that the HL7 vMR model was unable to capture all the necessary data requirements, and 

the solution of extending the vMR data types and relaxing their definitions was proposed 

and demonstrated. However, to best support the exchange of data in the special case of 

wearable and mobile healthcare technologies, the authors believe a more appropriate 

alternative might be to develop a new RIM based specifically on the requirements of 

pervasive healthcare systems. 
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In particular, unlike clinical information systems for which openEHR and HL7 are intended, 

pervasive healthcare systems are required to: 

- Provide clinical support to patients in a free-living setting. 

- Handle data streams (e.g. from sensors). 

- Account for the possibility of delayed and/or out-of-order arrival of data. 

- Process low-level sensor data which may not have an immediate clinical interpretation. 

 

Therefore, as part of our research arising from the MobiGuide project, we developed a new, 

alternative RIM for pervasive healthcare systems which forms part of our larger, computer-

interpretable MADE language for modelling and specifying their required clinical 

functionality. To develop this language (including the RIM), we adopt a combination of 

model-driven and formal methods approaches, specifically by: 

1) Basing the language on a conceptual framework that we previously developed to model 

the disease management process. 

2) Specifying the language formally using the Vienna Development Method (VDM) [3, 4]. 

The conceptual framework allows us to abstract away from application-specific details, 

whilst the formal VDM specification provides opportunity for unambiguous mathematical 

description of the language that enables rigorous analysis, validation and verification using 

the Overture Tool (http://www.overturetool.org).  

 

In Section 3, we present an overview of the underlying conceptual framework and a detailed 

description of the resulting RIM. Although the RIM was in practice specified using VDM (with 

the support of the Overture Tool), the MADE RIM is presented here using the equivalent 

mathematical notation in Table 1 as well as the standard notation in predicate calculus and 

set theory; details of the original VDM specification can be found in Appendix A in the 

supplementary material. Likewise, the same notation is used in place of VDM in Section 4, 

where we summarise the results of validating our RIM by applying it to a clinical guideline [5] 

for patients with gestational diabetes mellitus (GDM). The resulting VDM specification of the 

complete GDM DIM is detailed in Appendix B in the supplementary material. Finally, the 

discussion and conclusions are found in Sections 5 and 6. 
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Table 1 Mathematical notation and its corresponding VDM syntax for specifying the MADE 

RIM and the GDM DIM, excluding the standard notation in predicate calculus and set theory.  

 

 

2 Objectives 

The main objective is to develop a RIM to support the exchange of clinical data in pervasive 

telemedicine systems. The RIM is validated by applying it to a GDM guideline, deriving from 

it the appropriate DIM. 

 

3 Methods 

3.1 Model of Pervasive Telemedicine Systems 

Together with colleagues from MobiGuide, we previously developed and demonstrated a 

conceptual framework, the MADE framework [6, 7], for modelling the disease management 
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process with the aim of supporting distribution of clinical function in telemedicine systems. 

Conceptually, the MADE framework does not prescribe which clinical functions must be 

performed automatically or manually, but it is nonetheless designed to facilitate application 

on telemedicine systems, which are data-driven and distributed by nature. In particular, the 

MADE framework captures the data flow in disease management like those of [8, 9], with 

the data items being operated on by a network of four types of concurrent processes, 

namely:  

- Monitoring (M), the process of making observations about the patient. 

- Analysis (A), the process of making assessments about the state of the patient. 

- Decision (D), the process of deciding on the appropriate therapeutic plan. 

- Effectuation (E), the process of performing the decided plan. 

 

The conceptual model was concretised as shown in Figure 1 to identify the data types 

relevant for pervasive telemedicine systems. As is the case for the conceptual model, no 

assumption is made in Figure 1 about any particular data capture mechanism, including 

whether such data items would be automatically generated or manually inserted by the 

user. Thus although many sensors embody a Monitoring process in practice, the term sensor 

is used in this context to simply refer to a device that converts a physical stimuli into an 

appropriate signal for proceeding by a Monitoring process.  

 

Similar to openEHR and HL7 vMR, our model also captures the notions of observations about 

the patient and instructions to be executed. However, because the target context of use is a 

free-living setting, concepts pertaining specifically to patient-clinician encounters, e.g. 

appointments and supply orders, are outside the scope of the MADE model. Furthermore, 

two types of instructions are distinguished in accordance with the intrinsic differences 

between internal "reasoning" and external "actuating" processes. In fact, assessments and 

therapeutic decision-making are also considered to be different in nature, reflecting the 

different types of knowledge required, namely declarative and procedural knowledge 

respectively [10].  
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3.2 MADE Data Types 

As implied in Figure 1, there are six main data types in the MADE RIM, representing 

measurements, observations, abstractions, action plans, action instructions and control 

instructions. These high-level data types are in turn constructed from a combination of 10 

primitive data types, namely Id, Boolean, Nominal, Enumerated, Count, Proportion, 

Dimensioned, DateTime, Duration and Schedule, all of which adopt conventional semantics. 

For example, the data type Dimensioned represents quantities that are characterised by a 

real-number magnitude (e.g. 4.5) and a unit (e.g. mmol/L). 

 

 

Figure 1 Data flow diagram of the MADE model for pervasive telemedicine systems ([*] 

denotes multiplicity). 

 

3.2.1 Measurements 

One of the six high-level MADE data types represents measurements, which are data items 

that result from the detection of physical stimuli in the environment and do not have an 

immediate clinical interpretation. Examples include accelerometer, magnetometer and 

goniometer data from which measures of the patient's motor function can be derived [11]. 

In the MADE model, all such measurements are quantified using a dimensioned number and 

are associated with a valid date-time, which indicates when the measurement holds, i.e. the 

instant of measurement. Furthermore, as with other MADE data types, all measurements 

include an identifier to distinguish between different sensed physical stimuli as well as a 

transaction date-time which, as opposed to a valid date-time, indicates when the data item 
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is known to the system. Thus if a patient’s blood glucose level is measured at 10:00 but 

entered into the system two hours later at 12:00, then the measurement’s valid and 

transaction time would be 10:00 and 12:00 respectively. 

 

Therefore, using the notation presented in Table 1, the measurement data type can be 

specified as follows: 

 

Measurement = MeasurementType × TransactionDateTime × ValidDateTime × 

Dimensioned, where 

MeasurementType = Id, 

TransactionDateTime = DateTime and 

ValidDateTime = DateTime 

 

3.2.2 Observations 

The result of processing measurements by a Monitoring process is an observation, which is a 

low-level fact about the environment that has a direct clinical interpretation but, as shown in 

Figure 1, still requires further analysis for clinical decisions to be made. In the MADE model, 

two types of observations are distinguished: 

 

Observation = ObservedProperty | ObservedEvent 

 

Observed properties are observations about the physical objects in the environment, e.g. 

blood glucose level. Like measurements, observed properties are only valid at a specific time 

point, thus they also comprise a single valid date-time stamp. However, they need not be 

quantified using dimensioned values. Blood type, for example, may be categorised into A, B, 

AB or O, whilst urinary ketone levels may be ranked into --, -, +/-, + or ++. Thus the value of 

different observed properties may be of differing types as specified below: 

 

ObservedProperty = PropertyType × TransactionDateTime × ValidDateTime × 

PropertyValue, where 

PropertyType = Id and 
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PropertyValue = Boolean | Nominal | Enumerated | Ordinal | Count | Proportion | 

Dimensioned 

 

The second type of observation (viz. observed event) relates to events which occur in the 

environment, such as the patient following exercise therapy from 7:00 to 8:00. Unlike 

observed properties, these observations can only be characterised by a Boolean value 

indicating whether the corresponding event occurred or not. Thus the properties of events, 

e.g. exercise intensity, are captured in the MADE model by the observed properties of the 

objects involved. Furthermore, as exemplified by the exercise example, observations relating 

to events are associated with a pair of date-time stamps marking the start and end time of 

an event; in the simple case of instantaneous events, these two date-time stamps are equal: 

 

ObservedEvent = EventType × TransactionDateTime × ValidDateTimeRange × 

Boolean, where 

EventType = Id and 

ValidDateTimeRange = DateTime × DateTime such that 

 (ݒ)π2 ≥ (ݒ)ValidDateTimeRange. π1 : ݒ ∀

 

3.2.3 Abstractions 

Observations are transformed by Analysis processes into higher-level, more meaningful 

abstractions by means of a combination of the following two procedures: 

1) Mapping individual values of observed properties onto more abstract values, such as 

categorising a blood glucose observation into hypoglycaemia, normoglycaemia or 

hyperglycaemia. 

2) Combining multiple observations together such that the final result is either a summary 

statistic or an abstract value that is valid over an extended time period, such as detecting 

multiple hyperglycaemic episodes in the past week. 

 

Therefore, abstractions are modelled to also contain a valid date time range and an 

abstraction value which can be of any numerical or categorical data type: 
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Abstraction = AbstractionType × TransactionDateTime × ValidDateTimeRange × 

AbstractionValue, where 

AbstractionType = Id and 

AbstractionValue = PropertyValue 

 

3.2.4 Action Instructions 

To specify the action plans of a Decision process, it is useful to first specify the outputs of an 

Effectuation process (viz. action and control instructions) since they form the main 

constituents of an action plan. In the MADE model, two different types of actions (and 

therefore action instructions) are distinguished: 

 

ActionInstruction = HomogeneousAction | CulminatingAction 

 

Firstly, actions are referred to as homogeneous if they do not have a clear end-point and can 

be divided into sub-parts that retain the same overall properties, for example a continuous 

activity such as running on a treadmill. Therefore, the corresponding instructions are 

characterised by a starting date-time stamp, a rate at which the action should be performed 

(e.g. running at 7 kph) as well as a duration (e.g. for 20 minutes): 

 

HomogeneousAction = ActionType × TransactionDateTime × StartDateTime × Rate × 

Duration, where 

ActionType = Id, 

StartDateTime = DateTime and 

Rate = Dimensioned 

 

Unlike homogeneous actions, culminating actions have a clear end-point which must be 

achieved, such as administering 30 units of basal insulin in the evening. Although 

instructions for such actions also have a target start date-time, they exhibit a well-defined 

target goal state instead of a duration and rate: 
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CulminatingAction = ActionType × TransactionDateTime × StartDateTime × GoalState, 

where 

GoalState = PropertyValue  

 

3.2.5 Control Instructions 

Control instructions are used to determine when a process should execute. In the MADE 

model, all processes are assumed to be pre-existent and thus can only be re-scheduled 

and/or paused or resumed by a control instruction. Furthermore, to allow correct temporal 

ordering of multiple control instructions irrespective of any potential transaction delays, 

these control instructions are also characterised by a valid date-time stamp to indicate when 

they should be effected: 

 

ControlInstruction = TargetProcess × TransactionDateTime × ValidDateTime × 

(Schedule | ੄ੋੂੂ) × (Status | ੄ੋੂੂ), where 

TargetProcess = Id, 

Schedule = (RepeatPattern × RepeatInterval) | ਷ੜ੧ੑ੩  | ੄੕੦੕੢, 

RepeatPattern =  ℘(DateTime), 

RepeatInterval = Duration | ੄੕੦੕੢ and 

Status = ੆ੑ੥੣੕੔ | ੈ੥ਫ਼ਫ਼ਖ਼ਫ਼੗ such that 

∀ ܿ : ControlInstruction ¬(π4(ܿ) = ੄ੋੂੂ ∧ π5(ܿ) = ੄ੋੂੂ) 

 

As specified above, control instructions may contain a special ੄ੋੂੂ  element in place of a 

new schedule or a new status for the target process, which indicates that the target process 

should continue to operate under its existing schedule or status as appropriate. However, 

since control instructions would serve no function if both their schedule and status are 

absent (i.e. if both are ੄ੋੂੂ), the extra condition on control instructions ensures that each 

must contain a new schedule or a new status for the target process or both.  

 

Furthermore, in the MADE model, all processes run continually unless instructed otherwise 

by a control instruction. Thus a schedule in the MADE RIM comprises a set of starting date-

time stamps (i.e. the repeat pattern) as well as a duration (i.e. the repeat interval) which 
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indicates when to repeat (if ever). Sentinel values ਷ੜ੧ੑ੩੣ and ੄੕੦੕੢ indicate that the target 

process should, respectively, run at each time stamp and never run. 

 

3.2.6 Action Plans 

As noted by [12], disease management processes may involve complex workflows 

comprising sequential, parallel, iterative and/or cyclical activities. However, as implied in 

Section 3.1, we model pervasive telemedicine systems to operate on cyclic parallel plans, 

which, through the use of the appropriate schedules, can also be transformed into 

sequential and non-cyclical plans. Therefore, without loss of functionality, an action plan is 

modelled as containing a set of scheduled control and action instructions, each specifying 

when a different concurrent MADE process or physical action should be executed: 

 

ActionPlan = PlanType × TransactionDateTime × ValidDateTime ×  

 ℘(ScheduledControl | ScheduledHomogeneousAction | 

ScheduledCulminatingAction) where 

PlanType = Id, 

ScheduledControl = TargetProcess × (Schedule | NULL) × (Status | NULL), 

ScheduledHomogeneousAction = ActionType × Schedule × Rate × Duration and 

ScheduledCulminatingAction = ActionType × Schedule × GoalState such that  

 and ((݆ = ݅ ⇒ (݆)π1(݅) = π1) (݌)π4 ∋ ݆ ,݅ ∀) ActionPlan : ݌ ∀

∀ ݇ : ScheduledControl ¬(π2(݇) = ੄ੋੂੂ ∧ π3(݇) = ੄ੋੂੂ) 

 

The first condition on an action plan ensures that each of its scheduled control and action 

instruction refers to a different target process or action type. In other words, there cannot 

be more than one instance of the same type of action or control instruction in the action 

plan, which prevents the occurrence of internal inconsistencies such as scheduling the same 

process simultaneously to always and never execute. Furthermore, like that for control 

instructions, the second condition ensures that scheduled control instructions must contain 

a new schedule or a new status or both. 
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4 Results 

The MADE RIM presented in Section 3 was formalised using VDM with the Overture Tool, the 

results of which can be found in Appendix A in the supplementary material. Furthermore, 

the MADE RIM was applied to a clinical guideline for GDM (self) management [5] which was 

developed as part of the MobiGuide project and is represented as a collection of semi-

formal workflows comprising 51 different action points and 33 decision points. Based on this 

semi-formal representation, we derived a MADE GDM DIM containing 61 archetypes in total, 

specifically 1 measurement, 8 observation, 10 abstraction, 18 action plan, 3 action 

instruction and 21 control instruction archetypes. In this section, we present a summary of 

our experience of deriving the MADE archetypes, using as an illustration a simplified but 

exemplary case from the guideline relating to the detection of ketonuria, i.e. the presence of 

urinary ketones (Figure 2). The VDM specification of the GDM DIM is detailed in Appendix B. 

 

Start

End

Measure 
urinary ketone

levels daily

More than two
 positive values 

in the past 
one week?

All ketonuria
 values negative 

in the past 
two weeks?

Sufficient 
carbohydrates 

consumed?

Increase dinner
carbohydrates

intake

Monitor 
ketonuria

twice-weekly

Notify patient 
of non-

compliance

Y N

N Y

Y

N

 

Figure 2 Simplified extract of a workflow from the GDM guideline [5]. 

 

From our experience, there are six generic patterns for deriving the MADE archetypes from a 

clinical guideline (in the form of a workflow). Firstly, we observed that for each unique 

measurement action in the guideline, a corresponding observation archetype could be 

derived. For example, the guideline grades urinary ketone levels into --, -, +/-, + and ++, thus 

we can derive the following archetype from the action to measure urinary ketone levels in 

Figure 2: 
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UrinaryKetone <: ObservedProperty, such that 

∀ ݇ : UrinaryKetone (π1(݇) = ੋ੢ਖ਼ਫ਼ੑ੢੩ ੁ੕੤੟ਫ਼੕ ∧ π4(݇) ∈ {–‒, –, +/–, +, ++}) 

 

Secondly, from each condition in a decision point we can derive either a new abstraction 

archetype (with two possible values) or, if multiple decision points pertain to the same 

observation, an additional value in the archetype's value space. Thus from the simplified 

example in Figure 2, the following two abstraction archetypes were derived: 

 

Ketonuria <: Abstraction, such that 

∀ ݇ : Ketonuria (π1(݇) = ੁ੕੤੟ਫ਼੥੢ਖ਼ੑ ∧ π4(݇) ∈ {੆੟੣ਖ਼੤ਖ਼੦੕, ੄੕੗ੑ੤ਖ਼੦੕, ਷੦੕੢ੑ੗੕}) 

 

CarbohydratesSufficiency <: Abstraction, such that 

∀ ܿ : CarbohydratesSufficiency (π1(ܿ) = ਹੑ੢੒੟੘੩੔੢ੑ੤੕੣ ੉੥੖੖ਖ਼੓ਖ਼੕ਫ਼੓੩ ∧  

 π4(ܿ) ∈ {੉੥੖੖ਖ਼੓ਖ਼੕ਫ਼੤, ਿਫ਼੣੥੖੖ਖ਼੓ਖ਼੕ਫ਼੤}) 

 

Similarly, we observed that the actions and decision points thereafter which follow another 

decision point represent the instructions and action plan resulting from that particular 

decision. For example, the decision in Figure 2 to monitor ketonuria twice per week can be 

represented as the following sub-type of an action plan, in which the existential quantifier ∃ 

is used to specify that each instance of this action plan must contain a scheduled 

instruction ݅ that: 

1) Is of type ScheduledControl (݅ : ScheduledControl) for controlling the ketonuria 

monitoring process, and  

2) Contains a schedule comprising a repeat pattern and a repeat interval (π2(݅) : 

RepeatPattern × RepeatInterval),  with the former containing 2 elements and the latter set 

to weekly (thus enforcing the target process to run twice each week).  

 

KtnTwiceWeeklyPlan <: ActionPlan such that 

∀ ݉ : KtnTwiceWeeklyPlan (π1(݉) = ੁ੕੤੟ਫ਼੥੢ਖ਼ੑ ੊੧ਖ਼੓੕ ੍੕੕ਜ਼ੜ੩ ੆ੜੑਫ਼ ∧  
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 ∃ ݅ ∈ π4(݉). ݅ : ScheduledControl ∧ π1(݅) = ੃੟ਫ਼ਖ਼੤੟੢ ੁ੕੤੟ਫ਼੥੢ਖ਼ੑ ∧  π2(݅) : 

RepeatPattern × RepeatInterval ∧ | π1(π2(݅))| = 2 ∧ π2(π2(݅)) = ੍੕੕ਜ਼ੜ੩ ∧ π3(݅) = 

ੈ੥ਫ਼ਫ਼ਖ਼ਫ਼੗)) 

 

However, not all elements in the workflow can be transformed directly to MADE archetypes. 

In particular, we modelled notifications, which account for 15 out of the 51 action points in 

the guideline, implicitly by modelling the triggering abstractions and/or action plans; 

examples are Ketonuria and CarbohydratesSufficiency for the non-compliance notification. 

 

Similarly, decision conditions which relate to a specific therapeutic step are captured 

implicitly by specifying the appropriate control instructions. For example, although not 

detailed in Figure 2, the patient's carbohydrates intake during dinner should only be 

increased once, thus we include an extra control instruction that can be used to disable the 

second and subsequent decisions to change (specifically increase) the carbohydrates intake: 

 

DinnerWorkflowControl <: ControlInstruction such that 

∀ ݅ : DinnerWorkflowControl (π1(݅) = ਹ੘ੑਫ਼੗੕ ਺ਖ਼ਫ਼ਫ਼੕੢ ੍੟੢ਜ਼੖ੜ੟੧) 

 

Finally, unlike the other five high-level MADE data types, measurement archetypes do not 

have an equivalent in clinical guidelines. This can be expected as measurements do not have 

a direct clinical interpretation by definition and are therefore derived from technical instead 

of medical knowledge. For the MobiGuide project, we observed that only one GDM 

measurement archetype was needed, namely for accelerometer data to compute physical 

activity levels; all other observations are either directly produced by the sensors (e.g. blood 

glucose levels) or manually inserted into the system (e.g. urinary ketone levels). 

 

Due to the interactions between different workflows in the GDM guideline, it should also be 

noted that the required archetypes are occasionally more complex than suggested by the 

simplified example. Decisions in one workflow may, for example, have a ripple effect on 

other workflows, whilst tightly coupled clinical concepts may be conveniently merged into a 

single concept, which was found to be the case for the ketonuria and carbohydrates 
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sufficiency abstraction in the example above. Nevertheless, despite these complexities, a 

complete MADE DIM was successfully derived for the GDM guideline. Furthermore, like the 

RIM and the rest of the mathematical model of the MADE language, the GDM DIM was 

successfully formalised using VDM and verified using the Overture Tool. An example 

fragment of a VDM specification, which corresponds to the simplified action plan above to 

monitor ketonuria twice per week is: 

 

KtnTwiceWeeklyPlan = ActionPlan 

inv plan ==  

  plan.#1 = mk_token("Monitor Urinary Ketones Twice Weekly Plan") and 

  exists i in set plan.#4 & 

    if not is_(i, ScheduledControl) then false 

    elseif not is_(i.#2, RepeatPattern * RepeatInterval) then false 

    else i.#1 = mk_token("Monitor Ketonuria") and card i.#2.#1 = 2 and  

         i.#2.#2 = WEEKLY and i.#3 = <Running>; 

 

5 Discussion 

In general, employing a RIM allows the designed system to be less dependent on details 

specific to particular clinical applications and, consequently, be easier to maintain. However, 

this implies that the RIM should be able to capture all possible data requirements for any 

possible clinical application, which by its nature, is impossible to validate in advance or in the 

general case. Nevertheless, to maximise the potential applicability of the MADE RIM, we 

base the RIM on a conceptual model that not only captures the generic disease management 

process but is also adapted for pervasive telemedicine systems.  

 

The resulting MADE RIM was formalised using VDM and was successfully tested in this study 

by deriving a MADE DIM from a complete guideline for GDM patients. In the future, it will be 

validated further using other clinical applications, but notwithstanding its potential wide 

applicability, there are three other factors in particular as discussed below which ought to be 

considered to maximise the overall appropriateness of the MADE RIM. 
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5.1 Derivation of a MADE DIM 

Our experience indicates that deriving the appropriate MADE archetypes from clinical 

knowledge is not guaranteed to be a trivial task. For example, as exemplified by the GDM 

guideline, clinical knowledge is often expressed in terms of control flow to reflect the nature 

of the clinical decision-making process, but due to the data-driven nature of pervasive 

healthcare systems, it must be converted to a data flow representation for the MADE RIM. 

As a result, certain guideline elements can only be modelled implicitly, such as decisions 

which are conditional on specific therapeutic steps. 

 

Furthermore, we observed that a significant proportion of actions in the GDM guideline 

involve notifications to the patient and/or clinician to perform a task manually, which are 

currently not modelled explicitly in the MADE RIM. One solution would be to extend the 

MADE data flow model, but we could argue that these notifications are not clinically relevant 

per se but merely serve as indications of an underlying, clinically relevant situation, such as 

the detection of positive ketonuria. Thus by excluding the notifications from the MADE 

model, we retain a clear separation between the clinical concerns of the RIM (e.g. which 

clinical circumstances require attention) and the technical concerns of the system design 

(e.g. the content and modality of any necessary notification). 

 

5.2 Quality Awareness in the MADE RIM 

One potential future improvement to the MADE RIM is to extend it with quality-of-data 

(QoD) awareness properties. Due to the uncontrolled nature of the daily living environment, 

clinical data may suffer from noise and many other sources of error, including measurement 

errors due to movement artefacts or from incorrectly positioned sensors. Therefore, to 

ensure the best clinical support for the patient, it is advantageous to take such potential 

inaccuracies into account when processing data items, which points to the inclusion of an 

appropriate QoD model in the MADE RIM. An example in the AI domain is the use of 

quantified probabilities and utility functions, but in the clinical domain, a multi-dimensional 

measurement of QoD may be more appropriate, such as that by [13] which encompasses 

accuracy, dependability, cost, timeliness and quality-of-evidence.  
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5.3 Interoperability with Clinical Information Systems 

Since the MADE RIM is designed specifically for pervasive telemedicine systems, it does not 

aim to replace the function of existing standards in clinical information systems, including 

openEHR and HL7. As a result, in order to store the MADE data items in such systems, which 

may be necessary due to legal and ethical reasons for example, a systematic procedure must 

also be developed for translating between the MADE RIM and standards in use. 

 

A comparison between the specifications of the different models reveals that the MADE data 

types can be mapped onto the existing openEHR RIM and HL7 vMR DAM as shown in Table 

2. However, it has been shown [1, 2] that the openEHR and HL7 data types are in any case in 

need of extension to capture all the necessary data requirements in pervasive healthcare 

systems. For example, [1, 2] demonstrated that transaction times should be added to vMR 

clinical statements; this holds also for openEHR classes. 

 

Table 2 The correspondence between the data types in the MADE RIM and those in the 

openEHR RIM and HL7 vMR DAM. 

 

 

6 Conclusions 

 As part of research arising from the MobiGuide project, we developed the MADE RIM for 

pervasive telemedicine systems comprising six main data types: Measurement, Observation, 

Abstraction, Action Plan, Action Instruction and Control Instruction. The MADE RIM is based 
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on a generic data flow model of disease management to ensure application independence 

and has been successfully validated against a clinical guideline. In the future, we plan further 

validation of the MADE RIM’s general applicability in the clinical domain, including 

application to other guidelines. 

 

Apart from guiding the design of the MADE RIM, the adoption of our data flow model also 

has implications for the design of telemedicine systems which implement the MADE RIM. 

Specifically, telemedicine systems are assumed and should therefore be designed to be data-

driven and to execute a network of concurrent processes during operation. In fact, the 

MADE RIM represents a milestone in the development of a more generic and extensive 

computer-interpretable language for specifying required clinical functionality in terms of 

MADE processes, the main objective of which is to support the development of a wide range 

of interoperable and application-independent telemedicine solutions. 

 

In future work, quality-awareness will be incorporated in the MADE RIM to address the 

consequences of the uncontrolled and noisy nature of the free-living setting and the ethical 

requirement to provide medically appropriate support in all circumstances. Furthermore, 

translation between the MADE RIM and existing standards will be investigated further to 

support interoperability with standards-based clinical information systems. Since clinical 

knowledge is often expressed in terms of control flow, a systematic methodology will also be 

developed to ensure the correct and complete derivation of the MADE DIM for any specific 

application. 
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