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Multiscale Segmentation via Bregman Distances and Nonlinear Spectral Analysis∗
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Abstract. In biomedical imaging reliable segmentation of objects (e.g., from small cells up to large organs) is
of fundamental importance for automated medical diagnosis. New approaches for multiscale seg-
mentation can considerably improve performance in case of natural variations in intensity, size, and
shape. This paper aims at segmenting objects of interest based on shape contours and automati-
cally finding multiple objects with different scales. The overall strategy of this work is to combine
nonlinear segmentation with scales spaces and spectral decompositions. We generalize a variational
segmentation model based on total variation using Bregman distances to construct an inverse scale
space. This offers the new model to be accomplished by a scale analysis approach based on a spectral
decomposition of the total variation. As a result we obtain a very efficient, (nearly) parameter-free
multiscale segmentation method that comes with an adaptive regularization parameter choice. To
address the variety of shapes and scales present in biomedical imaging we analyze synthetic cases
clarifying the role of scale and the relationship of Wulff shapes and eigenfunctions. To underline the
potential of our approach and to show its wide applicability we address three different experimental
biomedical applications. In particular, we demonstrate the added benefit for identifying and classi-
fying circulating tumor cells and present interesting results for network analysis in retina imaging.
Due to the nature of underlying nonlinear diffusion, the mathematical concepts in this work offer
promising extensions to nonlocal classification problems.
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1. Introduction. In mathematical imaging the problem of segmentation refers to the pro-
cess of automatically detecting regions, objects, or patterns of interest. This is of particular
importance in biomedical imaging for cell or organ quantification as well as in materials sci-
ence and engineering. The main goal of this work is to present a new multiscale segmentation
method combining variational inverse scale space methods with nonlinear spectral analysis.
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Figure 1. Minimal examples where multiscale image segmentation could offer added value.

Image segmentation. The task of image segmentation can sometimes be addressed by sim-
ple methods which are solely based on intensity or histogram thresholds. However those meth-
ods quickly fail in more complex experimental scenarios, where challenges in terms of different
sizes, intensities, contrasts, or uncertainties like noise occur. Thus, a class of commonly used
mathematical techniques to overcome some of the difficulties are nonlinear variational meth-
ods. In general there are two different ways of describing a region, either by its edge or by the
interior of the region. Therefore two main concepts of addressing segmentation by an energy
minimization problem evolved in the previous decades: edge-based and region-based segmen-
tation. While edge-based segmentation separates regions based on discontinuity information
[40, 41, 19], region-based segmentation separates by similarity measures within the regions.
In this paper we focus on a region-based approach.

The proposed method in this work is mainly built upon the Chan–Vese (CV) model [24].
For a given image function f : Ω → R the domain Ω ⊂ Rd should be separated into two
regions Ω1 and Ω2 := Ω \ Ω1 via the following variational energy minimization method,

(1)

∫
Ω1

(f(x)− c1)2dx+

∫
Ω2

(f(x)− c2)2dx+ α · Per(C) −→ min
C,c1,c2

,

where C is the desired contour separating Ω1 and Ω2 and ci stands for a desired average
intensity value within region Ωi. Per(C) denotes the length of the contour C separating Ω1

and Ω2 and can be controlled via a regularization parameter α > 0. An easy example is the
image f given in Figure 1(a) where the domain Ω can be segmented with respect to foreground
and background. In contrast to simple histogram thresholding methods this holds true even
in the case of strong noise if the parameter α is chosen adequately. A generalization of this
model was introduced in [59] and in [23] the model has also been extended to vector-valued
images like color images. Recently in [66] an extension of the CV model that can handle
artifacts and illumination bias in images has been proposed.

Challenges/Questions. The CV model is very useful in segmenting regions of interest which
have very similar intensity values, e.g., Figure 1(a). However, automatically detecting single
objects based on their size is more challenging. Even with a varying parameter α controlling
the contour length (forward scale space), it is, for example, not possible to detect the smallest
object as a singleton. A similar challenge occurs when segmenting separate objects due to
their intensity values, e.g., Figure 1(b). Increasing the number of constants ci to four is
suboptimal because we usually a priori don’t know the number of objects. Varying a threshold
or parameter α could lead to a correct segmentation but the estimated intensity constants
c1, c2 will likely be incorrect. Hence, is it possible to automatically detect multiple scales in a
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nonlinear variational image segmentation model, for instance, with respect to different object
sizes or object intensities? Can the segmentation of an image automatically be decomposed
with respect to those scales?

Many region-based segmentation methods only use constraints on the contour length or
curvature as regularization. However, in view of shape optimization and dictionary learning
an approach that could also automatically separate objects with respect to their shape (cf.
Figure 1(c)) would be very interesting. Hence, what is the role of geometric shapes in a
multiscale segmentation approach?

Scale space methods. In the previous decades there has been a continuous interest in the
analysis of different scales and the construction of scale spaces in imaging. In general it is
desired to automatically detect all scales present in an image and simultaneously determine
which scales are informative and contribute most to the image. For segmentation this problem
is addressed in the fundamental works by Witkin [61] and Koenderink [42]. In relation to
those, several methods to detect and analyze interesting scales have been proposed; see, for
example, [44, 60, 58, 45, 31, 43]. The underlying scale space that is examined is defined by a
linear diffusion process. A drawback of those approaches is that linear diffusion smoothes edge
information and is therefore, in general, not suitable for applications where one is interested in
retaining sharp edge information. Especially in biomedical image applications this is often the
case. Therefore, those theories were extended to nonlinear diffusion processes; see [49, 48, 27].
A drawback of these approaches is that their analysis of scales is not fully automatic and can
only be used in a forward approach, thus going from fine to coarse scales and then trying
to find a backward relation. In this work we concentrate on nonlinear diffusion processes for
segmentation where scale automatically relates to intensity and size.

A prominent example of a variational method for nonlinear diffusion is the Rudin–Osher–
Fatemi (ROF) model [50]. With increasing regularization parameter α a sequence of func-
tionals generates a nonlinear forward scale space flow that filters signals from fine to coarse.
However in this process the total variation regularization functional is known to lead to a
systematic contrast loss in the filtered image u [46], whereas the main discontinuities in the
signal remain at their position in the domain. To tackle the problem of intensity loss Osher et
al. proposed in [50] an iterative contrast enhancement procedure based on Bregman distances.
This approach is known to generate a nonlinear inverse scale space flow generating filtered
signals from coarse to fine and with improved quality. This idea was successfully applied to
more general inverse problems [16, 13, 9].

Spectral methods. Recently Gilboa [32, 33] developed a framework to detect scales based
on the nonlinear total variation diffusion process. The total variation is known to retain
edge information while smoothing the signal apart from the edges. In this framework scales
are detected based on a spectral decomposition of the given image into total variation (TV)
eigenfunctions [46]. This concept does not only hold true for higher-order regularization
functionals [52, 54, 9] but, more generally, for convex, one-homogeneous functionals J with
corresponding nonlinear eigenvalue equations [15, 17] of the following form,

λu ∈ ∂J(u),

where ∂J(·) denotes the subdifferential of J . When minimizing, for instance, the total varia-
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tion J , those eigenfunctions u simply lose contrast whereas the overall structure of the function
remains the same. The magnitude of contrast loss is related to the eigenvalue λ. The eigen-
functions shape is determined by the chosen norm in the TV functional which can be adapted
to the application of interest. In this way signals are not linearly smoothed to overcome scales
but are step-by-step transformed to a composition of nonlinear eigenfunctions at coarser scales.
A spectral response function can be used to examine which scales have a strong contribution
to the original signal and to design filters of certain scales. Moreover, such a spectral method
can be combined with forward and inverse scale space approaches [17].

Main contribution. In this paper we will extend the idea of (inverse) scale space methods
known for nonlinear diffusion processes to segmentation and shape detection problems.
• First goal: A novel inverse multiscale segmentation method based on Bregman iterations.

• Second goal: An adaptive regularization parameter strategy for α (independent of c1, c2).

• Third goal: A spectral analysis for segmentation regarding shapes of eigenfunctions.
A TV-based forward scale space for segmentation can easily be derived from the CV model
via an increasing regularization parameter. We extend this framework by an inverse scale
space for segmentation, still based on the CV model and therefore on a nonlinear diffusion
process. For this purpose, we make use of Bregman iterations, among others well known for
improving TV denoising results. The relation between the forward scale space and the inverse
scale space is examined. Both iterative strategies are accomplished by a spectral transform
and response function, which are used to easily examine scales and to filter certain scales.
Since our method uses the TV as a nonlinear diffusion process, we can make use of relatively
easy and fast numerical and parallel implementation schemes developed in recents years.

Organization. This work is organized as follows. In section 2.1 we start with a revision
of the segmentation model by Chan and Vese including its convexification. Together with
a revision of the iterative denoising strategy using Bregman iterations in section 2.2, the
combination of those two concepts forms the first ingredient of our new inverse scale space
method for multiscale segmentation introduced in section 2.3. An interesting interpretation
of the method as an adaptive regularization method is presented in section 2.4. Section 3
deals with nonlinear spectral methods and contains the second main ingredient of our new
approach. In section 3.1 we start with a brief summary of generalized nonlinear TV functionals
addressing different eigenshapes and continue in section 3.2 with recent works by Gilboa
et al. solving related nonlinear eigenvalue problems in imaging. In section 3.3 we extend
those ideas from nonlinear image denoising to image segmentation. In section 4 we describe
the numerical realization of our approach using primal-dual convex optimization methods.
In section 5 we first illustrate the strengths and limitations of our multiscale segmentation
method by studies on synthetic datasets with a certain focus on eigenfunctions and shapes.
Moreover, we underline the potential and wide applicability by three different biomedical
imaging applications. Its reliable performance is demonstrated on real fluorescence microscopy
images that contain circulation tumor cells, with various shapes and sizes, among white blood
cells and debris in section 5.4. Additionally, we present results on electron microscopy images
suffering from inhomogeneous backgrounds in section 5.5 and interesting results on network-
like shapes representing vascular systems in section 5.6. We end with a conclusion and an
outlook for future possible perspectives in section 6.
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2. Modeling segmentation with inverse scale spaces. In the following section we will
shortly describe the model by Chan and Vese [24] for segmentation and the adaption of the
ROF model for denoising using Bregman distances [50]. Afterwards we will introduce our
novel Bregman-CV model for segmentation and show some advantages of our model.

2.1. Globally convex segmentation. The idea of the CV model has originally been de-
rived from the more general model for image segmentation introduced by Mumford and Shah
[47]. Here, one seeks for a solution of the variational energy

JMS(u,C) =

∫
Ω
|f(x)− u(x)|2dx+ α · Per(C) + β ·

∫
Ω\C
|∇u(x)|2dx −→ min

u,C
,

where u is a differentiable function that is allowed to be discontinuous on C. C describes the
union of the boundaries and thereby represents the contour defining the segmentation. Thus,
u is a smooth approximation of the original image f and is composed of several regions Ωi.
Within each region Ωi, u is smooth. If we restrict this model so that u is composed of only
two regions Ω1 and Ω2 we derive with β →∞ the CV model for segmentation,

JCV(c1, c2, C) =

∫
Ω1

(f(x)− c1)2dx+

∫
Ω2

(f(x)− c2)2dx+ α · Per(C) −→ min
C,c1,c2

.

Here, ci is the intensity value of u within the corresponding region Ωi. These values need to
be determined together with the contour C. Note that in comparison to the original model
we omit the area regularization term (cf. (1)).

The contour C can be indirectly represented via a level-set function Φ [51] with

C = {x ∈ Ω : Φ(x) = 0}

and Φ(x) being positive if and only if x ∈ Ω1. Together with the Heaviside function

H(Φ(x)) =

{
1 if Φ(x) ≥ 0,

0 if Φ(x) < 0,

and its regularized version Hε this results in

JCV2(c1, c2,Φ) =

∫
Ω

(f(x)− c1)2Hε(Φ(x))dx+

∫
Ω

(f(x)− c2)2(1−Hε(Φ(x)))dx

+ α ·
∫

Ω
|∇Hε(Φ(x))|dx −→ min

Φ,c1,c2
.

The contour C evolves during minimization until it reaches a minimum which, in the ideal
case, describes the object boundaries. Besides the original minimization strategy by gradient
descent, several minimization methods to solve the CV model have been developed; see, for
example, [37, 63, 5, 6]. One disadvantage of the model is its nonconvexity which makes the
solution depend on the used initialization. With a badly chosen initialization the minimization
might get stuck in a local minimum that corresponds to a bad or meaningless segmentation.
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For a better understanding of the relation between the nonlinear denoising model by
Rudin, Osher, and Fatemi [55] and the CV segmentation model we use the TV defined as

(2) TV (u) := sup
g∈C∞0 (Ω;R2)
||g||∞<1

∫
Ω
u∇ · g dµ with BV (Ω) := {u ∈ L1(Ω)|TV (u) <∞}.

The TV of a characteristic

u(x) =

{
1 if x ∈ Ω1 ∪ C,
0 if x ∈ Ω2,

corresponds to the contour length |C| which can be shown by the coarea-formula. Therefore
we can formulate the segmentation problem as

(3) JCV 3(c1, c2, u) =

∫
Ω
u
(
(f(x)− c1)2 − (f(x)− c2)2

)
dx+ α TV (u) −→ min

u∈BV (Ω),c1,c2
u(x)∈{0,1}

.

For fixed c1, c2 the solution of (3) corresponds to the solution of an ROF problem with a
binary constraint [14]

(4) min
u∈BV (Ω)
u(x)∈{0,1}

1

2
||u(x)− r(x)||22 + α TV (u)

with r(x) = (f(x)− c2)2−(f(x)− c1)2+ 1
2 .

The regularization parameter α in the segmentation model (3) has the role of a scale
parameter, meaning that α determines the scale of the objects that are segmented. The CV
model describes a forward scale approach, thus a small parameter α corresponds to small
scales that are segmented. An increased regularization parameter results in a solution where
the smaller scales are not segmented but only larger ones. The meaning of scale is determined
by the regularization functional, in this case the TV. The TV encodes a measure of the contour
length as well as the height of piecewise constant areas. One disadvantage is that due to the
one-homogeneity of TV our method cannot distinguish between height and contour length.
Thus, a small object with a bright intensity can have the same scale as a large object with a
less bright intensity. For more details see section 5.

Convexification. The CV segmentation model (3) as well as the binary ROF model (4)
are both not convex. Even for fixed values of c1 and c2 both models are nonconvex due to
the binary constraint on u. As mentioned before, this might result in local instead of global
minimum solutions. Approaches to overcome this difficulty and find global minima of the CV
model are presented, for example, in [21, 11, 35, 12]. In [21] the authors showed that global
minimizers of (3) for any given fixed c1, c2 ∈ R can be found by solving

(5) JCV 3(c1, c2, v) =

∫
Ω
v((f(x)− c1)2 − (f(x)− c2)2)dx+ α TV (v) −→ min

v∈BV (Ω), v(x)∈[0,1]

and defining u(x) := v∗(x) ≥ µ for a.e. µ ∈ [0, 1].
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Thus, the binary constraint can be relaxed and combined with a thresholding. Here, the
variational model to solve is convex, though not strictly convex. One should bear in mind
that the found solution is therefore not unique. Yet solutions of (5) are close to binary even if
the constraint is relaxed. Thus for most choices of µ we derive the same solution which means
that the choice of µ has only a very limited impact on our method. Therefore we don’t see
any disadvantages when choosing the global but not unique minimum u(x) := v∗(x) ≥ 0.5. A
fully convex formulation (including the constants c1 and c2) of problem (3) can be found in
[12]. This method is computationally less efficient and currently we don’t think that, in our
method, the advantages of full convexity outweigh the increased computational time.

2.2. Inverse scale space for TV denoising. Before introducing our new segmentation
model in the following subsection we will first recall some properties of the well-known ROF
model [55] and its extension by Bregman distances introduced in [50]. To denoise an image
corrupted by additive Gaussian noise, [55] proposed to solve the nonlinear variational problem

(6)
1

2
||u− f ||22 + α TV (u) −→ min

u∈BV (Ω)

referred to as the ROF model. Similar to the CV model this generates a forward scale space
flow regarding the scale parameter α. An increased parameter α leads again to a solution
u where fine scales are removed and vice versa. The TV regularization functional is known
to lead to a systematic contrast loss in the denoised image u [46]. To tackle this problem
Osher et al. proposed in [50] an iterative contrast enhancement procedure based on Bregman
distances. Instead of using the TV regularization functional as before, information about the
solution u that we gained from a prior solution of problem (6) is included. Therefore, problem
(6) is replaced by a sequence of variational problems

(7) uk+1 = argmin
u∈BV (Ω)

1

2
||u− f ||22 + α Dpk

TV (u, uk).

The regularization Dpk
TV (u, uk) := TV (u)−TV (uk)−〈pk, u−uk〉 is the Bregman distance of u

to the previous iterate uk with respect to the TV. pk ∈ ∂TV (uk) is an element in the subdif-
ferential of the total variation of the prior solution uk. Although this subdifferential might be
multivalued, the iterative regularization algorithm automatically selects a unique subgradient
based on the optimality condition. For k = 0 we set u0 = p0 = 0. The iterative strategy of
this model is as follows: We start with a large parameter α that results in an oversmoothed
solution u1 that consists of only large scales. In every iteration step finer scales are added back
to the solution. Thus, the scale parameter that determines the range of the scales present in u
is the iteration parameter k. In contrast to the forward approaches presented before, a small
k corresponds to coarse scales and a large k to very fine scales. Therefore, the Bregman-ROF
denoising approach is an inverse scale space approach. The authors showed that this strategy
leads to enhanced contrast of the final solution ukmax compared to the solution of (6). Hence,
solving (7) instead of (6) with increasing α is not only an inverted way of detecting scales.
This method rather allows for a detection of solutions which cannot be obtained by an ade-
quate choice of α in the original ROF model.
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2.3. Bregman-CV segmentation model. In the following section we will introduce our
new inverse scale space approach for segmentation. It is based on the similarity of the ROF
functional and the CV functional shown in (4). Similarly to the Bregman-ROF denoising
problem we replace the TV regularization by an iterative regularization based on Bregman
distances. Thus, the resulting novel segmentation model is given by

uk+1 = argmin
u∈BV (Ω)
u(x)∈[0,1]

∫
Ω
u
(
(f − c1)2 − (f − c2)2

)
+ α Dpk

TV (u, uk).

By inserting the definition of the Bregman distance Dpk
TV (u, uk) := TV (u) − TV (uk) −

〈pk, u− uk〉 and ignoring the parts independent of u we derive the following model,

(8) uk+1 = argmin
u∈BV (Ω)

∫
Ω
u
(
(f − c1)2 − (f − c2)2

)
+ χ[0,1](u) + α (TV (u)− 〈u, pk〉)

with pk ∈ ∂TV (uk), p0 = 0, and χ[0,1](u) = 0 if u(x) ∈ [0, 1] and equal to infinity elsewhere.
The range of the scales present in uk+1 is again determined by the iteration index k. This model
is an inverse scale space approach, thus a small k corresponds to a large scale segmentation
and vice versa.

By the definition of the Bregman distance pk ∈ ∂TV (uk), where the subdifferential is
multivalued. Therefore we need to determine a rule to choose pk. One way is to derive an
update strategy based on the optimality condition of (8) (cf. [50]):

0 =
(
(f − c1)2 − (f − c2)2

)
+ qk+1 + αpk+1 − αpk (opt.cond.).

Here, qk+1 is an element in the subdifferential of the characteristic function χ[0,1](uk+1). The
subdifferential of a characteristic function is a normal cone and is in our case given by

qk(x) ∈


(−∞, 0] if uk(x) = 0,

{0} if 0 < uk(x) < 1,

[0,∞) if uk(x) = 1.

Thus, we can choose qk = 0 and neglect it from here on. The update strategy for pk+1 is then
given by

(9) pk+1 = pk −
1

α

(
(f − c1)2 − (f − c2)2

)
= −k + 1

α

(
(f − c1)2 − (f − c2)2

)
.

This update is independent of uk, thus it is a pointwise constant update in every iteration.

2.4. Interpretation as an adaptive regularization approach. One important question is
whether solutions of this model are in some sense improved compared to the solutions of the
original CV model. We mentioned before that Bregman iterations lead to a contrast enhance-
ment when applied to the ROF functional and that solving the CV model corresponds to
solving a binary ROF. Yet, one should bear in mind that a contrast enhancement is mean-
ingless in the case of a binary image since the contrast is already determined by the binary
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(a) Linearly spaced α’s from 50 to 1. (b) “α’s” resulting from 50 Bregman
steps with α = 50.

Figure 2. Comparison between linearly spaced regularization parameters and the automatically chosen
parameters in the Bregman-CV model.

constraint. This is supported by the following observation: when inserting (9) into (8) we get

uk+1 = argmin
u∈BV (Ω)
u(x)∈[0,1]

∫
Ω
u
(
(f − c1)2 − (f − c2)2

)
+ α (TV (u)− 〈u, pk〉)

= argmin
u∈BV (Ω)
u(x)∈[0,1]

∫
Ω
u
(
(f − c1)2 − (f − c2)2

)
+

α

(k + 1)
TV (u).

With this, it is straightforward to see that all solutions u ∈ BV (Ω) derived by the Bregman-
CV model can also be found by the original CV model. Nevertheless, there are advantages
to using the iterative update strategy. In Figure 2(b) the resulting α̃ = α

k+1 for α = 50 and
50 Bregman iterations are shown. It is obvious that in the first iterations the decrease of
the regularization parameter is much larger compared to later iterations. This is reasonable
since first the large scales are reconstructed and in later Bregman iterations the finer scales
are incorporated in the result. Making large steps with α in large scales and becoming finer
is therefore a reasonable strategy. A large decrease in the later iterations would probably
miss some scales in-between while in the first iterations too small steps are not reasonable.
With this strategy the problem of automatically choosing the regularization parameter is less
severe. By choosing a large α and performing multiple Bregman iterations, a broad spectrum
of scales is detected. Yet one should bear in mind that a strategy to automatically detect
important scales is needed for a fully automated framework.

3. A spectral method for multiscale segmentation. The analysis of eigenvalues and
spectral decomposition is a well-known theory in the field of linear signal and image process-
ing (see, e.g., [39] or [57] for a more recent overview). Since nonlinear regularization became
popular in recent years, there is a growing interest in generalizing this theory to nonlinear
operators. In [10] Benning and Burger examined singular values for nonlinear, convex regu-
larization functionals and in [32, 33] Gilboa transferred the idea of spectral decompositions to
the nonlinear TV functional and related operators. The general idea is to examine solutions
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(a) Solution of the ROF model for dif-
ferent α.

(b) Solution of the inverse Bregman-ROF
model for different Bregman iterations.

Figure 3. Solutions of the ROF and Bregman-ROF model in the case the signal is a TV eigenfunction.
Different regularization parameters are given: α in the forward scale (left) and Bregman steps in the inverse
scale space (right).

of the nonlinear eigenvalue problem

(10) λu ∈ ∂J(u),

where ∂J denotes the subdifferential of a (one-homogeneous) convex functional usually repre-
senting regularization in inverse imaging problems. By transferring solutions of (10) to sparse
peaks in a spectral domain, advanced filters enhancing or suppressing certain image compo-
nents can easily be designed. This concept was first introduced for the TV functional and
later generalized to one-homogeneous functions and analyzed in [15, 34, 17].

In the case of a one dimensional signal the eigenfunction of the TV corresponds to a single
block with constant height; see Figure 3. When increasing the regularization parameter in the
ROF model (6), i.e., when minimizing the TV of this block signal, the block looses it height
but the edges remain at the same position (cf. Figure 3(a)). Therefore all signals can be seen
as the original signal multiplied by a scalar and are eigenfunction of the total variation. The
same holds true for solutions of the Bregman-ROF model (7). The only difference is that
now eigenfunctions of the TV functional (blocks) are reshaped with an increasing number
of Bregman iterations instead of removed (see Figure 3(b)). This reflects the inverse scale
approach of the Bregman-ROF model. Different to our novel approach, the Bregman updates
in the Bregman-ROF model cannot be reformulated as an adaptive regularization parameter
choice. As far as we know it is not entirely clear how the forward and inverse TV flow for
denoising relate to each other.

3.1. Generalized definition of the TV. In the previous paragraph we mentioned that
in the one dimensional case the eigenfunction of the TV functional is a block with constant
height. If we want to proceed to the two dimensional case the eigenfunctions are not as clearly
defined as in the one dimensional case. Different than before we now have the freedom to
choose the norm body that is used within the infinity norm in the TV definition (2). This
choice determines the shape of the eigenfunctions. To reflect this dependence on the chosen
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Table 1
Examples for γ and the corresponding Frank diagrams Fγ and Wulff shapes Wγ . The Wulff shape corre-

sponds to the shape of the eigenfunctions of the TVγ functional.

γ(x) Fγ Wγ

γ = ‖ · ‖1

γ = ‖ · ‖2

γ = ‖ · ‖∞

norm in the TV definition we introduce a generalized version of the TV definition:

(11) TVγ(u) := sup
g∈C1

C(Ω;Rd)

g(x)·n<γ(n) ∀n∈Rd

−
∫

Ω
u∇ · gdx.

Here, γ : Rd → R is a convex, positively one-homogeneous function such that γ(x) > 0 for
x 6= 0. If u is a function in W1,1(Ω) the primal definition of (11) is given by

TVγ(u) :=

∫
Ω
γ(∇u)dx.

In both definitions the choice of γ determines the shape of the eigenfunctions. We refer to

Fγ := {z ∈ Rd : γ(z) ≤ 1}

as the Frank diagram and the corresponding Wulff shape is defined as

Wγ :={z ∈ Rd : z · x ≤ γ(x) for all x ∈ Rd}

=

{
z ∈ Rd : γ∗(x) := sup

x∈Rd

z · x
γ(x)

≤ 1

}
.

Note that from definition (11), together with the definition of the Wulff shape, we can conclude
that g(x) ∈ Wγ . Therefore, for every choice of γ, functions with the same shape as the Wulff
shape are eigenfunctions of TVγ (see [29, Theorem 4.1]). The Frank diagram Fγ and the Wulff
shape Wγ for the three most common choices of γ are presented in Table 1. For simplicity we
will omit the subscript γ in TVγ from here on, but we will come back to it in the numerical
results in section 5.

3.2. Spectral analysis for nonlinear functionals. In the following section we will first
review the basic ideas of spectral TV analysis before transferring those ideas to segmentation
in the next section. The idea to decompose an image based on the basic TV elements was
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presented by Gilboa in [32, 33]. These basic TV elements, called eigenfunctions of the TV
functional, are all functions u ∈ BV (Ω) that solve the nonlinear eigenvalue problem

(12) λu ∈ ∂TV (u).

In the previous section we already presented some examples of TV eigenfunctions (see, e.g.,
Figure 3 and Table 1). A more general description of these eigenfunctions in case γ is isotropic
is given in [7]. Bellettini, Caselles, and Novaga showed that all indicator functions 1C(x) of a
convex and connected set C with finite perimeter Per(C) which admit

(13) ess sup
p∈∂C

κ(p) ≤ Per(C)

Area(C)
,

where Area(C) denotes the area of C and κ the curvature of ∂C ∈ C1,1 are solutions of (12)
and therefore eigenfunctions. Obtaining an analog condition for anisotropic, smooth, and
strictly convex choices of γ is straightforward but more challenging in the case of nonsmooth
or non-strictly-convex choices of γ. Candidates of these shapes are presented in [8]. In [29]
Esedoglu and Osher gave an example of a TV eigenfunction for γ = ‖ · ‖1 that is not a Wulff
shape (see section 5.3 for more details).

In order to detect eigenshapes at different scales in a given signal f , a scale space approach
is needed. One way to define a scale space based on the TV is given by the TV flow [2, 3, 7,
16, 56]. The TV flow arises when minimizing the TV with the steepest descent method and
is defined as

(14)
ut(t, x) = −p(t, x) for p(t, x) ∈ ∂TV (u(t, x)),

u(0, x) = f(x)

with Neumann boundary conditions. For f(x) = 1C(x), with C defined as above, the unique

solution of (14) is u(t, x) = (1 − λCt)+
1C(x) with λC = Per(C)

Area(C) (cf. [7]). Hence, the time

derivative ut(t, x) is given by the original signal multiplied by a scalar and u is an eigenfunction.
To obtain a suitable framework to decompose or filter images based on these eigenfunctions,
Gilboa proposed to define a spectral framework that transforms eigenfunctions to peaks in
the spectral domain. If u(t, x) is a solution of (14) the TV spectral transform and spectral
response can be defined as

(15) φ(t, x) = utt(t, x) · t and S(t) = ||φ(t, x)||L1(Ω).

Note, that there are alternative definitions of the spectral response presented in [15].
Another approach to constructing a forward scale space is based on the variational ROF

problem. Instead of solving (14) the ROF model

(16) min
u∈BV (Ω)

1

2
||u(x)− f(x)||22 + t · TV (u)

is solved for different regularization parameters. Hence, t is the (artificial) time variable that
determines the scale comparable to t in the TV flow approach (14). One drawback of this
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approach is that there is no clear rule for the choice of different t’s. The spectral transform
and response function can be equivalently defined as in (15).

A third, but significantly different, scale space approach is an inverse scale approach. The
inverse scale space flow is defined as

(17)
ps(s, x) = f(x)− u(s, x) for p(s, x) ∈ ∂TV (u(s, x)),

u(0, x) = p(0, x) = 0.

Thus, the flow is now defined on the dual variable p ∈ ∂TV (u) and s is the time variable
determining the scale. Note that in [18] it was shown that the iterative Bregman-L2-TV
model (7) can be associated with a discretization of (17) for 1

α → 0. As (17) is an inverse
approach the time variable t can be associated with 1

s . In this case the spectral transform and
response functions are defined as

(18) φ(s, x) = us(s, x) and S(s) = ||φ(s, x)||L1(Ω),

where u(s, x) is the solution of (17). Note that, for small s, φ(s, x) now measures changes in
the coarse scales. See [15] for more details.

With all three approaches we are able to transform a signal to the spectral domain and
detect different scales based on TV eigenfunctions. If we assume that φ(t, x) is integrable over
time, the original signal f can be reconstructed via

f(x) =

∫ ∞
0

φ(t, x)dt+ f̄ ,

where f̄ is the average of f . Filters can be defined with φH(t, x) = H(t)φ(t, x) via

fH(x) =

∫ ∞
0

φH(t, x)dt+H(∞)f̄ .

3.3. Spectral response of multiscale segmentation. In section 2.3 we presented two
variational models to detect segmentations of a given image f at different scales. To decompose
the segmentation into different scales and detect important scales or clusters of scales in the
segmentation we want to transfer the idea of spectral analysis based on the TV (cf. section 3.2)
to segmentation. Therefore we need to find a suitable transformation of the segmentation u
to the spectral domain and vice versa. Note that our goal is not to reconstruct the original
signal f or filtered versions of f but the reconstructed function should be a segmentation
itself. To do so we make use of the idea that eigenfunctions of the TV functional should
be transformed to peaks in the spectral domain. In the following we will derive this spectral
transform function for a forward scale space and an inverse scale space approach. To represent
the forward scale space we associate the regularization parameter α in the convex version of
the original model by Chan and Vese (5) with the artificial time variable t. That means, we
solve

(19)

∫
Ω
u((f(x)− c1)2 − (f(x)− c2)2)dx+ t · TV (u) −→ min

u∈BV (Ω), u(x)∈[0,1]
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(a) Evolution of u in (19). (b) Evolution of u in (20).

Figure 4. Illustration of the evolution of u ∈ {0, 1} over time at a fixed point when f is a TV eigenfunction
shown for the forward (a) and inverse scale space approach (b). Note, due to the binary constraint on u
the evolution of u is already a step function, i.e., u(x) is either part of the segmentation (u(x) = 1) or not
(u(x) = 0).

for different t’s. This is comparable to the variational approach in (16). So far, we could not
find a forward scale space representation that can be associated with a flow on u comparable to
the TV flow. One difficulty is that the optimality condition of this model, i.e., 0 = (f − c1)2−
(f − c2)2 + αp with p ∈ TV (u), has no direct dependence on u. The inverse scale space
representation is based on the Bregman-CV model we introduced in (8). The optimality
condition in each step of the iterative Bregman-CV strategy is given as

0 =
(
(f − c1)2 − (f − c2)2

)
+ α (pk − pk−1) with pk ∈ TV (uk) ∀ k.

The resulting equation

pk − pk−1
1
α

= (f − c2)2 − (f − c1)2

can be interpreted as a discretization with step size 1
α of

(20)
ps(s, x) = (f(x)− c2)2 − (f(x)− c1)2 with p(s, x) ∈ ∂TV (u(s, x)),

p(0, x) = 0.

Again, s is the time variable that is inverse to the time variable t in (19). We refer to this
flow as the inverse scale space segmentation flow. Note that within this flow description there
is no direct dependence on u but u is only indirectly given by p ∈ ∂TV (u). Yet, when looking
for solutions of this flow at different times s, we solve the Bregman-CV model for multiple
Bregman iterations and there the corresponding u is available.

To transform the eigenfunctions to peaks in the spectral domain we define the spectral
transform function as follows:

(21) φ(t, x) =

{
−ut(t, x) (forward case),

ut(t, x) (inverse case).

This definition is motivated by Figure 4 where the evolution of TV eigenfunctions over time
in (19) and (20) is illustrated. We can see that the first derivative (in a distributional sense)
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is a peak at that time point where the eigenfunction vanishes or appears, respectively. For
the spectral response function we use the definition

(22) S(t) = ||φ(t, x)||L1(Ω)

introduced by Gilboa [32, 33]. Here, the influence of certain scales to the segmentation is
encoded. Using this function φ and assuming integrability over time we can get the following
back transformation,

f seg(x) =

∫ ∞
0

φ(t, x)dt,

where f seg(x) := (f − c2)2 − (f − c1)2 + 1
2 <

1
2 is the result of the simple clustering problem

minu(x)∈{0,1}
∫

Ω u
(
(f(x)− c1)2 − (f(x)− c2)2

)
dx. By choosing a function H with H(t) ∈

{0, 1} certain scales of interest can be filtered via

(23) f seg
H (x) =

∫ ∞
0

φH(t, x)dt with φH(t, x) = H(t)φ(t, x).

With this framework we can easily segment an image and simultaneously detect important
scales in this segmentation instead of using the spectral TV analysis as in section 3.2 and
segmenting separately. Moreover, using the filtering approach we can easily construct seg-
mentations of only certain scales by filtering (cf. (23)). Examples are shown in section 5.

4. Numerical methods. Our novel approach introduced in the two previous sections con-
sists of two parts. First we have to solve the Bregman-CV model (8) introduced in section 2.3.
Afterwards we can analyze the detected scales using the spectral response function (22) in-
troduced in section 3.3. Therefore an efficient solution of the Bregman-CV model is required.
In the following section we will give a very brief introduction into primal-dual optimization
schemes and then show how this can be used to solve (8). We close the section by a speed
comparison between a MATLAB and a parallelized C/MEX implementation of our code.

4.1. Primal-dual optimization methods. To solve nonlinear problems of the form

(24) min
x∈X

F (Kx) +G(x)

with F and G being proper, convex, lower-semicontinuous functions, primal-dual optimization
methods became very popular in the last years. Instead of minimizing the primal problem
(24) they make use of the primal-dual formulation of this problem given by

(25) min
x∈X

max
y∈Y

〈Kx, y〉+G(x)− F ∗(y)

with G : X → [0,+∞] and F ∗ : Y → [0,+∞] being the convex conjugate of F . By updating
in every iteration step a primal and a dual variable these methods are able to avoid some
difficulties that arise when working on the purely primal or dual problem. One example is the
minimization of variational methods with TV regularization. If the gradient is zero, the TV
functional is not differentiable which leads to problems in purely primal minimization schemes
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like gradient descent. Some examples for primal-dual minimization algorithms are the PDHG
algorithm [65], a generalization of PDHG by Esser, Zhang, and Chan [30], the split Bregman
algorithm by Goldstein and Osher [36], Bregman iterative algorithms [62], the second-order
CGM algorithm [22], and inexact Uzawa methods [64].

In [20] Chambolle and Pock proposed an algorithm which can be seen as a generalization
of PDHG as well. This algorithm was originally proposed by Pock et al. in [53] to mini-
mize a convex relaxation of the Mumford–Shah functional. The efficient first-order primal-
dual algorithm to minimize general problems of the form (25) is presented in Algorithm 1.
(I + σ∂F ∗)−1 and (I + τ∂G)−1 are the resolvent operators of F ∗ and G, respectively, which
are defined through

y = (I + τ∂G)−1(x) = argmin
y

{
‖y − x‖2

2τ
+G(y)

}
.

Algorithm 1. First-order primal-dual algorithm by Chambolle and Pock [20].

Parameters: τ, σ > 0, θ ∈ [0, 1]
Initialization: n = 0, x0 ∈ X, y0 ∈ Y, x̄0 = x0

Iteration:

for (n ≥ 0) do
1. yn+1 = (I + σ∂F ∗)−1(yn + σKx̄n).

2. xn+1 = (I + τ∂G)−1(xn − τK∗yn+1).

3. x̄n+1 = xn+1 + θ(xn+1 − xn).

4. Set n = n+ 1.

end for

return xn

4.2. Numerical realization Bregman-CV. In order to use Algorithm 1 to solve the con-
straint problem (8) we reformulate the problem into

(26)

∫
Ω
u
(
(f − c1)2 − (f − c2)2

)
+ id[0,1](u) + α (TV (u)− 〈u, pk〉) −→ min

u∈BV (Ω)

with pk ∈ ∂TV (uk) and p0 = 0. id[0,1](u) is the indicator function of the interval [0, 1] defined
as 0 if u ∈ [0, 1] and ∞ otherwise. To derive a minimization strategy based on Algorithm 1
we set x = u, K(u) = ∇u, and

F (u) = ‖u‖1 and G(u) = id[0,1](u) +

∫
Ω
u
(
(f − c1)2 − (f − c2)2 − αpk

)
.

The convex conjugate of F (u) = ‖u‖1 is given by F ∗(g) = δP (g) with P = {g : ‖g‖∞ ≤ 1}
and

(27) δP (g) =

{
0 if g ∈ P,
∞ if g /∈ P.
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Together with (25) we derive the primal-dual variant of (26):

(28) 〈∇u, g〉+ id[0,1](u) +

∫
Ω
u
[
(f − c1)2 − (f − c2)2 − αpk

]
− αδP (g) −→ min

u
max
g
.

The resolvent operators for G and F ∗ are defined through

u = (I + τ∂G)−1(ũ) = Proj[0,1]

[
ũ− τ

(
(f − c1)2 − (f − c2)2 − αpk

)]
= max

(
0,min

(
1, ũ− τ

(
(f − c1)2 − (f − c2)2 − αpk

)))
(29)

and

(30) g = (I + σ∂F ∗)−1(g̃) = Proj{{g:‖g‖∞≤1}} (g̃ij) .

Note that the L∞ norm ‖g‖∞ is in the discrete setting defined as ‖g‖∞ = maxi,j{γ∗(gi,j)},
where the choice of γ determines the shape of the eigenfunctions of the TV functional. For
γ = ‖ · ‖`p with p = 1 the unit ball defined by

{(x, y) ∈ Ω|max{|x|, |y|} ≤ 1}

is a TV eigenfunction; similarly for p = 2 when the unit ball is defined by{
(x, y) ∈ Ω|

√
|x|2 + |y|2 ≤ 1

}
and for p =∞ when the unit ball is defined by

{(x, y) ∈ Ω|(|x|+ |y|) ≤ 1} .

However these are not the only eigenfunctions. With (29) and (30), we derive the primal-
dual algorithm presented in Algorithm 2 to minimize (8). Note that we are not updating the
constants c1 and c2, but start with a good estimate and leave it fixed. To a certain extent
the varying regularization parameter can compensate for an error in those constants. Some
examples are presented in section 5.

We implemented two versions of the code, the first one is written in MATLAB and the
second one is written in C and called via MATLAB using the MEX interface. For speed com-
parisons we’ve tested both code versions (always with 1 Bregman iteration) on two different
machines. First, a MacBook Pro with an Intel Core i5 processor with two cores of 2.6 GHz and
8 GB of memory (solid graphs in Figure 5) and the second machine was a Dell Linux work-
station with in Intel Xeon processor with 16 cores of 2.6 GHz and 32 GB of memory (dashed
graphs in Figure 5). Moreover, we ran the C/MEX code with and without parallelization
using openMP. The results of our speed test can be seen in Figure 5. We see that, especially
for large images, the computational time is significantly decreased when using the C imple-
mentation (yellow and green graphs) compared to the pure MATLAB code (blue graphs).
All C versions behave very similarly for small images but deviate for larger images. Without
parallelization the C code is slightly faster on the Mac (solid yellow graph). When activating
openMP and parallelizing parts of the code the computational time could be further improved
for both computers. The difference is much more significant when using the computer with
more cores. For the Mac we see a speed-up of about 30 percent (solid green graph) for large
images while on the Linux computer (dashed green graph) we could achieve a speed-up of
about 65 percent compared to the C implementation without parallelization.
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Algorithm 2. First-order primal-dual algorithm to solve (8).

Parameters: data f , reg. param. α ≥ 0, τ, σ > 0, θ ∈ [0, 1], maxIts ∈ N, maxBregIts ∈ N
Initialization: l = 1, u01 = 0, p0 := 0, ū0 = u0

Iteration:

while
(
k < maxBregIts

)
do

1. Set n=0.

while
(
n < maxIts

)
do

a) gn+1 = Proj{{g:‖g‖∞≤1}} (gn + σ∇ūn).

b) un+1 = max
(
0,min

(
1, un + τ∇ · gn+1 − τ

α

(
(f − c1)2 − (f − c2)2 − αpk

)))
.

c) ūn+1 = un+1 + θ(un+1 − un).

d) Set n = n+ 1.

end while

2. Update pk+1 = pk + 1
α

(
(f − c2)2 − (f − c1)2

)
.

3. Set u0k+1 = unk .

4. Set k = k + 1.

end while

return u0k

5. Experimental results. In this section we illustrate the main properties, advantages and
limitations of our novel multiscale segmentation framework via several synthetic experiments
as well as real experiments from biological cell imaging and retina imaging. The main frame-
work that we apply and study throughout this section consists of Algorithm 2, performing the
inverse scale space method Bregman-CV in (8), together with an evaluation of the spectral
response S in (22).

In the first set of segmentation experiments we focus on simple objects (e.g., discs) and
investigate how underlying object intensities and sizes can automatically be detected as multi-
ple scales. In the second part we concentrate on the stability of our method under uncertainty
like noise. In the third part of this section we generalize our study to other simple shapes
(e.g., blocks or diamonds), explore the connection to underlying eigenfunctions of the nonlin-
ear TVγ functional, and the potential for shape detection, respectively, shape optimization.
Finally, we apply our framework to real images obtained from th CellSearch system and other
automatic scanning microscopes used for the enumeration of circulating tumor cells [1] offer-
ing new automatic procedures for tumor cell identification, quantification, and classification.
Moreover, we show potential applications of our algorithm in the field of electron microscopy
of biological samples and retina imaging.

5.1. Multiscale segmentation: Size versus intensity. In this first subsection we start
with the investigation of basic segmentation tasks. We try to find round objects (discs) with
varying scale (e.g., differences in size or intensity) in front of homogeneous backgrounds to
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Figure 5. Comparison of runtimes for MATLAB and C/MEX code. The code was tested on 2 different
computers: a Mac with an Intel Core i5 processor with two cores of 2.6 GHz and 8 GB of memory (solid graphs)
and a Linux computer with an Intel Xeon processor with 16 cores of 2.6 GHz and 32 GB of memory (dashed
graphs). On both computers we have tested a full MATLAB implementation (blue), a C/MEX implementation
without parallelization (yellow), and a C/MEX implementation with parallelization using openMP (green).

verify the basic properties of our model. Since discs are the unit balls of the `2 norm we chose
γ = γ∗ = ‖ · ‖2 in the TV norm (11).

In the first example in Figure 6(a) we can automatically identify four discs with different
diameters (sizes) via the Bregman-CV inverse scale space Algorithm 2. As visualized in Figures
6(b)–(e) the method automatically picks out the discs one by one while iterating (w.r.t t ≈ αk)
through the scale space. At the end, the full foreground-background segmentation is available.
In addition to this, the spectral response (22) of our iterates regarding t, nicely reflects the
sparse occurrence of new contours; see Figure 6(f). Note that in this example the intensity of
peaks decreases due to the different size of each disc. The height of S at each time point reflects
the number of pixels that occurred (or vanished) in the segmentation in this step. In Figure
6(g) we plotted the function

∫
t φ(x, t) · tdt in color coding. To obtain an easily interpretable

visualization we use a gray background. Since the function φ(x, t) for given x is equal to 1
exactly at the time point tx where x occurs in the segmentation and 0 elsewhere,

∫
t φ(x, t) · tdt

corresponds for every point x to tx. We can see that apart from the four time steps where
the four discs appear nearly nothing is appearing in-between, reflecting the sparse behavior of
our methods. Only very few pixels at the object boundaries occur in later iterations which is
caused by discretization inaccuracies. In this way the multiscale approach of our method can
be seen since each color reflects one segmented scale.

The results of the same experiment but now with intensity scales are shown in the next
figure. The four discs in Figure 7(a) all have the same size but vary in their intensity from 0.55
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(a) 1st Bregman it-
eration.

(b) 9th Bregman it-
eration.

(c) 12th Bregman
iteration.

(d) 15th Bregman
iteration.

(e) 22nd Bregman
iteration.

(f) Spectral response S. (g) Color-coded segmen-
tation of multiple scales.

Figure 6. Detection of size scales. Automatic segmentation of discs of different sizes under fixed intensity
(height). Segmentation is visualized via red contour. (a)–(e) Segmentation after different number of Bregman
Iterations. (f) Associated spectral response function S. The number of Bregman iterations is plotted on the
x-axis. Every peak in S corresponds to one object that appears in the segmentation (compare to (a)–(e)). The
decreasing size of the peaks reflects the decreasing disc size.

to 1. Note that in some sense this contradicts the assumption of the CV model that the data
roughly consist of two different intensity levels c1 and c2. Nevertheless our multiscale approach
is able to detect all scales reliably. Like in all our examples we estimated the constants before-
hand as c1 = mean{f(x)|f(x) < 1

2 ·max f(x)} and c2 = mean{f(x)|f(x) ≥ 1
2 ·max f(x)} and

leave them fixed throughout the whole iteration process. Figures 7(b)–(e) visualize the result
of the four Bregman iterations in which the different discs appear. The color-coded result of
multiples scales (

∫
t φ(x, t) · tdt) is shown in Figure 7(g). Again, only a few pixels occur at time

steps apart from the four significant ones. It is remarkable that the first three scales appear
shortly after each other while the last scale appears strikingly later. This can be explained by
the way the regularization parameter is adapted automatically through the Bregman distance
(cf. Figure 2). In later iterations the change in αk becomes smaller so that the time until a
certain object appears is larger compared to the previous iterate. Although this might lead
to late appearance of smaller scales we can thereby guarantee to not miss scale differences in
the finer scales. The late appearance of the last disc is also reflected in the spectral response
function S in Figure 7(f). Again, the response function has a sparse representation and the
last peak occurs delayed. Apart from small variations caused by discretization artifacts the
peaks now have all the same height reflecting their similar size.

Limitations. In the previous two examples we showed how we can reliably detect different
size scales and different intensity scales with our method. One limitation of our approach
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(a) 1st Bregman it-
eration.

(b) 3rd Bregman it-
eration.

(c) 5th Bregman it-
eration.

(d) 10th Bregman
iteration.

(e) 29th Bregman
iteration.

(f) Spectral response S. (g) Color-coded segmen-
tation of multiple scales.

Figure 7. Detection of intensity scales. Automatic segmentation of discs of different intensities (heights)
under fixed size. Segmentation is visualized via red contour. (a)–(e) Segmentation after different numbers of
Bregman iterations. (f) Associated spectral response function S. The number of Bregman iterations is plotted
on the x-axis. Every peak in S corresponds to one object that appears in the segmentation (compare to (a)–(e)).

is the simultaneous detection of size and intensity scales in an image. Figures 8(a)–(c) show
three different data sets, each with a small disc with intensity 1 and a larger disc with intensity
0.68–0.7, respectively. For all three examples we computed the spectral response with fixed
parameters α = 200 and 40 Bregman iterations shown in Figures 8(d)–(f). We can see that in
Figure 8(d) the spectral method was not abl to detect the difference between a large object
with a lower intensity and a smaller object with a high intensity. Both objects appear at
exactly the same point in time. Figures 8(e) and (f) show that already a small increase of
the lower intensity circumvents the problem and both objects are represented as individual
peaks in the spectral response. The height of each peaks reveals which object occurs. Yet we
hope to solve this issue in future versions; solution ideas are presented in the summary and
conclusion section 6.

5.2. Robustness against noise. In this second subsection we investigate the robustness of
our methods with respect to uncertainties like noise. Figures 9(a)–(d) show the same underly-
ing image but with different noise levels. The underlying signal is a binary signal showing four
squares with different sizes. We added Gaussian noise with mean 0 and standard deviation
σ = 0.25, 0.5, 0.75, and 1, respectively. Since squares are the unit balls of the `∞ norm we
chose γ = ‖ · ‖1 and therefore γ∗ = ‖ · ‖∞. The results of our inverse Bregman-CV model
are plotted in terms of the spectral response function S and the color-coded segmentation of
all scales

∫
t φ(x, t) · tdt. Note that we chose the same parameter setting for all four examples

(α = 100 and 30 Bregman iterations). In Figures 9(e)–(h) we can see that the spectral re-



132 ZEUNE, VAN DALUM, TERSTAPPEN, VAN GILS, BRUNE

(a) Data f with in-
tensity of 0.68 (large
disc).

(b) Data f with in-
tensity of 0.69 (large
disc).

(c) Data f with in-
tensity of 0.70 (large
disc).

(d) Spectral response
S for (a).

(e) Spectral response
S for (b).

(f) Spectral response
S for (c).

Figure 8. Scale ambiguity w.r.t. size and intensity. (a)–(c) Three different datasets that differ only in the
intensity of the larger circle (0.68/0.69/0.7). The associated spectral responses S are shown below. (a) together
with (d) shows that out method is not able to reliably distinguish size and intensity scales but only a slight
decrease of the intensity leads to two separate peaks in the spectral response function ((b) together with (e) and
(c) together with (f)).

sponse function has for all noise levels a sparse representation indicating very clearly the four
scales in the underlying signal. It is also remarkable that the peaks are roughly at the same
points in time, shifting only slightly to the right for higher noise levels. This is even more
obvious in the color-coded representation Figures 9(i)–(l). The color bar next to each image
shows that the color coding is consistent over all four examples. Thus, the same colors (see,
for example, Figures 9(i) and (j)) reflect that the objects occur at the exact same iteration
unaffected by the changed noise level. Even in case of high noise (σ = 0.75) only the second
and the fourth largest objects appear one iteration later although the smaller objects are now
affected by an incomplete segmentation. In the case of very high noise (σ = 1) we cannot
perfectly segment the objects; especially, the smaller ones “get lost” in the noise. Neverthe-
less the spectral response function is still close to sparse and for all four objects we reliably
segment most of the object. These results show that our method is very robust to noise and
circumvents to some extent the problem of choosing a good regularization parameter α. The
parameter setting that we used yielded a reliable extraction of all scales in the underlying
signal independent of the noise present in our data.

5.3. Segmentation regarding shapes of eigenfunctions. This subsection is about the
choice of the γ-function and how this choice is reflected in our spectral analysis framework.
As mentioned in section 3.1 by varying γ in the generalized definition of the TV (11) the
shape of the eigenfunctions is changed. In the following two examples we will first show dif-
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(a) Noise level σ = 0.25. (b) Noise level σ = 0.5. (c) Noise level σ = 0.75. (d) Noise level σ = 1.

(e) Spectral response S. (f) Spectral response S. (g) Spectral response S. (h) Spectral response S.

(i) Color-coded segmen-
tation of multiple scales.

(j) Color-coded segmen-
tation of multiple scales.

(k) Color-coded segmen-
tation of multiple scales.

(l) Color-coded segmen-
tation of multiple scales.

Figure 9. Robustness against noise. (a)–(d) show the same underlying binary signal but with different
levels of noise added. Exactly the same model parameters are used to process all 4 datasets. The associated
spectral response functions are shown in (e)–(h) and the color-coded segmentation results are shown in (i)–(l).
We can see that our method is very robust against noise, we only see a slight shift to the right in the spectral
response function for higher noise levels. For high noise levels some artifacts at the objects boundary occur but
we reliably find all 4 objects independently of the noise level.

ferent examples of eigenfunctions that lead to a sparse representation of the spectral response
function. Here we differentiate between eigenfunctions that are Wulff shapes of the chosen γ
function and those that are not. In addition, we investigate what happens if the choice of γ
does not match the shapes present in the image.

In Figures 10(a)–(c) each image shows a composite of eigenfunctions for three different
`p-norm choices for γ (namely, p = ∞, 2, and 1). In each of the images, the input data are
shown together with the final segmentation result in red. The associated spectral responses
are shown below (Figures 10(d)–(f)). We can see that as long as the choice of γ and the
given dataset match (in the sense that the components of f have the same shape as the unit
ball of γ∗ (cf. Table 1)) we get a sparse response function. In Figures 10(g)–(i) the color-
coded segmentation of all scales is shown. We can see that for rectangular shapes ((g) and
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(a) Data f with segmen-
tation shown in red.

(b) Data f with segmen-
tation shown in red.

(c) Data f with segmen-
tation shown in red.

(d) Spectral response S. (e) Spectral response S. (f) Spectral response S.

(g) Color-coded segmen-
tation of multiple scales.

(h) Color-coded segmen-
tation of multiple scales.

(i) Color-coded segmen-
tation of multiple scales.

Figure 10. Varying norm bodies and eigenshapes. Automatic detection of different signals composed of
eigenshapes for different norm bodies. Column one shows the results for γ∗ = ‖ · ‖1, column two for γ∗ = ‖ · ‖2,
and column three for γ∗ = ‖ · ‖∞. (a)–(c) Segmentation results visualized via red contour after 30 Bregman
iterations. Associated spectral response function S is shown in (d)–(f) and the color-coded segmentation in
(g)–(i). With the correct choice of γ all eigenshapes can be detected in a single step.

(i)) no discretization artifacts at the boundary occur. Moreover, we can again use the same
parameter setting for all three data sets. The similar color coding in (h) and (i) indicates that
the objects occur roughly at the same time point independently of their shape and γ. The
data set in the first column is larger than the other ones thus the objects occur earlier and we
need fewer iterations.

In Figures 11(a) and (d) we present two eigenfunctions which are not Wulff shapes. The
round object in (a) fulfills condition (13) and is therefore a TV eigenfunction for γ = ‖·‖2. The
corresponding spectral response function in (b) and the color-coded segmentation in (c) show
that not only eigenfunctions that are Wulff shapes appear in one step but also more general
eigenfunctions. Another example (now for γ = ‖ · ‖1) is shown in Figure 11(d). Esedoglu
and Osher showed in [29] that a rectangle whose contours are parallel to the x- and y-axes,
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(a) TV eigenfunction for
γ = ‖ · ‖2.

(b) Spectral response S. (c) Color-coded segmenta-
tion of multiple scales.

(d) TV eigenfunction for
γ = ‖ · ‖1.

(e) Spectral response S. (f) Color-coded segmenta-
tion of multiple scales.

Figure 11. Reconstruction of eigenfunctions that are not Wulff shapes. (a) and (d) show two TV eigen-
functions that are not Wulff shapes for γ = ‖ · ‖2 and γ = ‖ · ‖1, respectively. The associated spectral responses
are shown in (b) and (e) and the color-coded segmentation results in (c) and (f). It is obvious that eigenfunc-
tions that are not Wulff shapes do have a sparse spectral response representation and appear in one step in the
corresponding segmentation.

respectively, is an eigenfunction of the anisotropic TV functional. This is reflected in the
spectral response function Figure 11(e) and the color-coded segmentation in 11(f) which show
that the rectangle appears in one step although it is not a Wulff shape of the 1-norm. For
natural images, where objects are often not Wulff shapes, this allows objects with various
shapes to appear in one step. Some examples can be seen in subsections 5.4–5.6.

In Figure 12 we investigated how our multiscale approach behaves in the case of shape
mixtures and shapes that do not match the prior shape assumption made in γ. The given data
(Figure 12) consist of different size scales and different sizes with only two objects matching
the prior assumption of round objects (γ = ‖·‖2). Figures 12(b)–(f) show all time steps where
a new scale occurs in the segmentation (shown in red). We can see that the round objects
appear in one step while all other ones appear with rounded edges and reshape over time.
This can be seen more clearly in the color-coded segmentation of all steps shown in Figure
12(h). Especially for the large triangle in the middle we can nicely see how noneigenfunctions
are reshaped over time and how the segmentation is very round at the beginning and then
propagates into the edges. Nevertheless we cannot get clear edges, neither for the triangle nor
for the squares. The spectral transform function is nevertheless close to sparse but due to this
reshaping behavior there is a small signal also between the clear peaks. It might be suitable
to use the `0-norm of S as a measure in order to evaluate if a certain signal matches the
prior shape assumption made. However for this idea the influence of discretization artifacts
as shown in some examples before, would have to be clarified in further detail.
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(a) Given data. (b) Bregman iteration
10.

(c) Bregman iteration 16.

(d) Bregman iteration
18.

(e) Bregman iteration 31. (f) Bregman iteration 41.

(g) Spectral response S. (h) Color-coded segmentation of
multiple scales.

Figure 12. Reconstruction of mixed shapes. Automatic detection of a signal consisting of different size scales
and shapes. The binary signal is shown in (a). In (b)–(f) the segmentation results of the Bregman iterations
where a significant peak in the spectral response S in (g) appeared are shown. The color-coded segmentation is
shown in (h). Here the behavior of the noneigenfunction over time can be seen. They do not appear in one
step but reshape and evolve into the shape of the original signal.

5.4. Fluorescence microscopy images containing circulating tumor cells. In this subsec-
tion we demonstrate how our multiscale segmentation approach can be applied to the analysis
of circulating tumor cells (CTCs). Before presenting some experimental data sets we will first
give a short introduction to CTCs, associated research questions, and challenges for diagnosis
and treatment of cancer patients.

CTCs are cells that dissociate from a primary tumor and invade the blood stream. In
recent literature it was shown that the number of CTCs present in the blood is associated
with the survival chance of a patient and can be used to guide therapy of cancer patients.
The elimination of CTCs indicates effective therapy whereas increase or failure to eliminate
indicates a futile therapy. A challenge in the identification of CTCs is that they are very
rare and therefore difficult to detect among other cells in the pool of blood cells. The gold
standard for CTC enumeration is the CellSearch system and in prospective multicenter studies
a threshold of 5 CTCs / 7.5 ml of blood was used to separate patients with metastatic disease
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Figure 13. Schematic overview of different CTC classes. For each subclass a cartoon image of a typical
cell is shown. Next to it on the right different examples for every class are shown. All images consist of two
overlaid color channels where green is the tumor cell marker and magenta is the nucleus marker. The relative
frequencies of each subclass are shown on the left. By looking only at the green signal it is obvious that the size
scale varies between different subclasses.

into those with favorable and unfavorable prognoses [26, 28]. Currently all known CTC
analysis tools are based on subjective morphological criteria and objects can be classified
differently by different operators which results in different interpretations of the status of the
patients. The low cell counts and subsequent statistical analyses further increases the chances
of mistakes. The problem of subjectivity in the CTC analysis is currently addressed by the
development of an open-source toolbox to automatically detect and classify CTCs in datasets
from various machines and institutes. This project is part of a European consortium called
CANCER-ID that aims at validating blood-based biomarkers and is funded by the European
Union. One key component of this toolbox is the development of a (nearly) parameter-
free segmentation algorithm which performs reliably and efficiently on multiple tumor cell
datasets (see Figure 14). Moreover, in recent studies [25] it was hypothesized that not only
the definition used to classify objects as CTC predicted clinical outcome but also those objects
that did not match the criteria of an intact cell. A schematic overview of different cell classes
and their relative frequencies is shown in Figure 13. Here, green is a fluorescence marker
indicating the presence of cytokeratin expressed in cancer cells but not on white blood cells
and magenta is a fluorescence marker indicating the presence of DNA thus showing the nucleus
of the cell. When comparing the green marker among the different CTC classes we observe
that the signal clusters strongly vary in size (area) and therefore motivate the usage of our
multiscale segmentation approach.

In Figures 14(a), (d), (g), and (j) experimental data sets are shown. From the original
image sets, consisting of three different fluorescent color channels, we extracted the tumor
cell marker (green) and used those images as input for our multiscale segmentation approach.
Although the difficulties vary between all images (inhomogeneous background, noise, cell
clusters, mixture of size and intensity scales), we can process all images with our multiscale
segmentation approach with the exact same parameters. This is essential for the development
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(a) Fluorescence image
from the CellSearch sys-
tem.

(b) Color-coded spec-
tral response S.

(c) Color-coded segmen-
tation of multiple scales.

(d) Fluorescence image
from a filter system.

(e) Color-coded spectral
response S.

(f) Color-coded segmen-
tation of multiple scales.

(g) Fluorescence image
from the CellSearch sys-
tem with more clustered
cells.

(h) Color-coded spec-
tral response S.

(i) Color-coded segmen-
tation of multiple scales.

(j) Fluorescence image
from the ARIOL system.

(k) Color-coded spectral
response S.

(l) Color-coded segmen-
tation of multiple scales.

Figure 14. Experimental cell data. Automatic detection of (a) different sparse cell sizes (scales) with
nearly constant background, (d) cells in front of an inhomogeneous background, (g) clustered cells with nearly
constant background and (j) different intensity and size scales. All results are obtained with the exact same
parameters. In column one single channel images obtained from different fluorescence microscopes are shown.
The corresponding spectral responses are shown in the second column and the color-coded segmentation in
column three. It can be seen that more complex images (inhomogeneous background or mixtures of scales) lead
to more complexity in the spectral response function (response becomes less sparse).

of a user-friendly (parameter-free) toolbox for CTC analysis. Note that the dim spots in image
(d) are not cells but only pores of a filter used to collect cells (bright spots) and therefore it is
not desired to segment them. The resulting spectral response functions for all four images are
shown in Figures 14(b), (e), (h), and (k) with a color coding corresponding to the coding used
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in the segmentation results in (c), (f), (i), and (l). The color coding of the response function
shows that all objects which appear later in our segmentation and therefore belong to finer
scales have a yellow to reddish color in the color-coded segmentation. The very large and
intact cells are blue (with some small artifacts at the boundary) and smaller cells (or large
fragments) are shown in light blue to green. We can nicely observe that the object colors
cover the whole color scale range. For images that are more complex (e.g., (d) and (j)) the
spectral response function is also more complex but the color-coded segmentation shows that
nearly every object appears in one step and thereby has a clearly defined scale that we use as a
feature in our classification approach. Here, we profit from the fact that not only Wulff shapes
(perfectly circular objects) but also other eigenshapes appear in one step in our segmentation.
Hence, this segmentation approach not only provides all contours automatically without any
parameter adaptations but simultaneously also a simple classification of cells based on their
scale (size, resp., color). This analysis can be applied to all color channels separately and
can be used together with more features in a subsequent automatic classification approach.
The constants c1 and c2 can again simply be estimated a priori from the data by a simple
thresholding and averaging approach and are fixed throughout the iterative process.

5.5. Electron microscopy cell images with nonuniform background. In this subsection
we show that our multiscale segmentation approach can also be used for real-world images
where the background is less homogenous than in the cell images before. In Figure 15(a)
we show an electron microcopy dataset of acinar cells provided by D. Riedel.1 For a more
obvious visual interpretation we reverted the contrast from the original EM dataset (bright
background with dark cells) to a dark, but not uniform, background with brighter cells.
The intensity of the cells is also inhomogeneous and varies from very bright cells (left) to
cells with an intensity closer to the background (right). Figure 15(b) shows the color-coded
spectral response function and (c) the color-coded segmentation of the cells. We see that
the inhomogeneous intensity of the cells is reflected in the scales found by our method. The
inhomogeneity of the background is not influencing the segmentation result and the constants
c1 and c2 can still be estimated beforehand from the data without further adaptation. One
problem that occurs is the ambiguity of size and intensity scales which can be observed when
comparing small but bright cells on the left (visualized in green) with larger cell clusters on the
right (also visualized in green). Currently our method is not able to differentiate their scales.
A useful extension of our method would be a combination of our multiscale approach with
a watershed-type algorithm that is able to split cell clusters into individual cells of different
scales.

5.6. Segmentation and clustering of biological network structures. In many biological
and medical applications network-like structures occur as part of vascular systems. Examples
are blood vessels in retinal images, anisotropic structures in brain or myocardium imaging,
or at the microscopic level even cells consisting of a round core with several meandering arms
of different diameters. Although these networks have a much more complex shape than the
examples before, our multiscale method is very useful for a segmentation or clustering of
these networks. An example of a round object with “arms” of different diameters is shown

1Max Planck Institute for Biophysical Chemistry, Electron Microscopy Group, 37077 Göttingen, Germany.
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(a) Electron microscopy data of acinar cells in
the parotid gland provided by D. Riedel.

(b) Color-coded spectral re-
sponse S.

(c) Color-coded segmentation of multiple scales.

Figure 15. Segmentation of cells in front of an inhomogeneous background. (a) shows the input image
obtained by electron microscopy, (b) the corresponding spectral response function, and (c) the color-coded seg-
mentation. This result shows that our method can detect inhomogeneities in the object we want to segment
while inhomogeneities in the background (up to a certain degree) do not affect the result of our segmentation
method.

in Figure 16(a). In (b) the corresponding spectral response function is shown and the color-
coded segmentation in (c). We can see that the spectral response function has sparse clusters
where each cluster corresponds to branches of a certain diameter. Although these arms are
not eigenfunctions, they do appear in one step and therefore have a distinct scale if they have
constant diameter. A similar behavior can be seen in Figure 17. As input for our multiscale
method we used a manual blood vessel segmentation (b) of a retinal image (a) from the STARE
dataset [38]. The resulting spectral response is shown in Figure 17(c) and the color-coded
segmentation in (d). We see that the different times of appearance of the vessels (indicated by
the different colors) lead to a clustering of the underlying network based on the diameter of
each branch. With this approach we can get segmentations of the network that contain only
branches of certain diameter scales or directly get an estimate of how many different vessel
sizes are present and how often they occur. In order to apply our segmentation approach
directly on raw retinal images, instead of using it as a postprocessing step, a decomposition
method for retinal images similar to Zosso et al. [66] could be combined with our multiscale
approach.

6. Summary and conclusion. In this paper, we have studied a novel multiscale segmen-
tation method which is a combination of an inverse scale space variational approach and a
nonlinear spectral analysis. Using our approach we can automatically detect objects of dif-
ferent scales where scale can refer to intensity or size. These scales can be evaluated using
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(a) Given data. (b) Color-coded spectral response S. (c) Color-coded segmentation of
multiple scales.

Figure 16. Reconstruction of different scales in network-like structures. The input data are shown in (a)
with the corresponding spectral response function (b) and the color-coded segmentation (c). In this example the
usability of our method in the case of more complex, network-like structures is demonstrated. Interestingly, the
spectral response function shows distinct sparse clusters where every cluster corresponds to arms or “branches”
of a specific diameter. Although they are not shaped as an eigenfunction they appear (nearly) in one step and
are represented by one specific scale.

a spectral response function and we can easily decompose the segmentation with respect to
those scales using the spectral transform function. Thus we have extended the useful spec-
tral analysis, that was introduced for TV denoising applications before, to a segmentation
approach. This novel approach can to some extent circumvent the problem of choosing a
suitable regularization parameter. The iterative procedure using Bregman distances can be
interpreted as an automatic regularization parameter choice method and is very robust with
respect to noise or errors in the estimated c1 and c2 values in the CV model. We have shown
that our method works very reliably even for applications with more than two intensity scales
although this actually contradicts the models binary assumption. The framework can easily
be adapted to different prior shape assumptions (Wulff shapes). With regard to real experi-
mental datasets, such an assumption does not limit the usefulness of the method, due to its
ability to even detect compositions of eigenfunctions not belonging to the restricted class of
Wulff shapes. For the numerical implementation we used a primal-dual optimization scheme
that, especially with a C/MEX version, lead to a very efficient framework, even for large
datasets. We illustrated the strengths and limitations of our method on synthetic datasets
with a certain focus on eigenfunctions, shapes, as well as robustness against noise and back-
ground artifacts. Three different biomedical imaging applications with different shapes and
challenges emphasize the potential and wide applicability of our approach. The code is also
part of an open-source toolbox called ACCEPT. With this software users are able to auto-
matically detect and classify CTCs from fluorescence images, and can also extract important
information related to the level of expression of certain therapy targets on the CTC (see the
application and results described in section 5.4).

One limitation that we currently have in our model is an ambiguity in scale. It is known
for variational methods with an L2-type data fidelity term combined with TV regularization
that these methods are not able to distinguish between intensity and size scales. In practice
it seems not very likely that two objects with different sizes and different intensities fall onto
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(a) Retinal image of the STARE
dataset [38].

(b) Manually segmented blood
vessel network [38].

(c) Color-coded spectral response S. (d) Color-coded clustering of network
in (b).

Figure 17. Clustering of networks. (a) A retinal image of a human eye taken from the STARE dataset [38]
with a manual segmentation of the blood vessel network in (b). We applied our multiscale segmentation method
to the binary image in (b) and thereby obtain the spectral response function (c) and a clustering of the network
based on the diameter of the network branches (d). We see that large blood vessels are represented by blue
colors, medium vessels by light blue to green colors, and the very fine branches by yellow to red colors. Although
the representation of (c) is not as sparse as in the previous example we can get a meaningful clustering of the
graph based on the resulting colors in (d).

exactly the same peak in the spectral response. Nevertheless to reliably interpret the spectral
response function it is advantageous to have only one dominating scale in the data that are
analyzed. Another limitation is the flexibility with regard to different shapes. Currently only
one shape assumption at the moment is possible.

Outlook. There are four main questions that we want to address in our future research.
To allow a clear interpretation of the spectral response function even in the case of size and
intensity scales we want to adapt the data term in the way that it can differentiate both scales.
For denoising this can be done using an L1-type data fidelity and we want to generalize this to
our segmentation model (which is not obvious in terms of gradient flows). For the experimental
cell datasets we currently analyze every fluorescent channel separately. In a future work we
would like to investigate if a combined segmentation in all channels can lead to an improved
segmentation and a richer response function. Moreover, we are interested in how far we can use
the spectral response function to investigate if a shape assumption matches the data. One idea
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is to use the l0 “norm” of the spectral response function as a measure for shape optimization.
A further development of this idea could lead to an approach where we could learn an optimal
γ function and thereby an optimal shape of eigenfunctions for a specific dataset. Another
very interesting consideration is to transfer our method from the currently local setup to a
nonlocal setup. A first foundation for this was recently laid with a work on nonlocal TV
spectral theory by Aujol, Gilboa, and Papadakis in [4]. More mathematical spectral theory
for nonlocal TV, its usefulness for solving and improving complex segmentation tasks, and
a direct comparison with spectral clustering and graph cuts will be of high interest for the
community and our future research.
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