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Crystal Growth of the Lennard-Jones (100) Surface by Means of Equilibrium
and Nonequilibrium Molecular Dynamics
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On the basis of Onsager’s hypothesis a new method is presented to calculate growth rate constants of
various crystal faces from the fluctuations of interfaces duN®@" simulations. The method is applied
to the (100) face of a Lennard-Jones crystal grown from the melt. The results are in perfect agreement
with those obtained by means 8PT nonequilibrium simulations. The new method allows for much
better statistics at the cost of much less computation time. The use of Onsager’s hypothesis to derive
the microscopic expression for the growth rate constant may serve as an example for applications in
other fields. [S0031-9007(97)04878-3]

PACS numbers: 81.10.Aj, 05.20.Dd, 64.70.Dv, 71.15.Pd

The study of growth rates of crystals from their melt, orchosen along the three Cartesian axes, the simplest such
from supersaturated solutions, besides being an interestifignction reads
theoretical problem, is of importance for the prediction 4.4 4 4 4,4
of macroscopic growth morphologies of crystals. The X(r) =it 4yt + 3/5. (2)
rheological properties of particulate systems, be it liquidsThe order paramete®, which discriminates between
in which small crystallites are suspended or just granulacrystal and liquid particles was next defined by
materials consisting of small crystallites, very much (X2) — (X)?
depend on the morphologies of the crystallites. v =
Since the crystal-melt interface, being a combination of
two dense phases, is not easily accessible to experimenighere the averages were taken over all nearest neighbors
measurements, molecular dynamics simulations can be @ésiding within a cutoff radius ofl.390. A slight
great help in the study of these systems. Several studiggnelioration was obtained by referring the positions of the
of the crystal-melt interface of Lennard-Jones systemsaeighbors, not to the central particle, but to the center of
consisting of atoms which interact by pairwise potentialsmass of the neighbors. The distributions of the values of

R ©

of the form ¥ during a simulation of a pure crystal and a simulation
B o \? o\ of a pure liquid are plotted in Fig. 1. It is seen that by
Pri(r) = 4e (T - <7> ’ (1) calling crystal particles those particles for whigh< 0.5

have been reported in the literature, mainly by Broughtonand liquid particles those for whic” > 0.5, a perfect

etal.[1-5]. Among other things, they performed (LA B LENEE R phase
nonequilibrium molecular dynamics simulations to cal- Y partly p quid p

X near the interface. As a result our discriminator will
culate the growth rates of various crystal faces over a. : . :
! . . slightly overestimate the number of solid particles. We
wide range of temperatures below the melting point. In . )
. expect, however, that changes in the number of solid
this paper, we present a method to calculate growth rates

from fluctuations of the interface during an equilibrium palrrtllctlﬁg v(;/glsgeocliosrirr?qct:g n%%?:?;;?ﬁic svstems the melt-
simulation. We have applied this method to study. : P y .
ing temperature is found to be above the roughening tran-

the growth rate of the (100) face of a Lennard-JonesSition. Growth occurs at any point on the surface, and

crystal growing from its melt, .and c_hecked the resunsthe growth mode is called normal growth [7—9]. In the

by performing nonequilibrium simulations for very small . 2

deviations from equilibrium case of small deV|a}t|ons from equilibrium, Fhe growth rate
In order to be able to deéide whether a particle belongsOf such a surface is proportional to the difference of the

to the crystal or to the melt, we have constructed achemical potentials of the liquid and the solid phases, i.e.,

very simple recognition function. What distinguishes a R = kg B s 4)

particle in the crystal from a particle in the liquid is the kgT

fact that its surroundings have octahedral symmetry. We . . . .

therefore have constructed, using the methods of Ref. [6], hered is the mterplanqr distance parallgl to the inter-

a functionX(r), which for every vector pointing from ace.b Th? grl%vvth tr.atle!;;/ ri;atbed to the increase of the

the particle under investigation to one of its neares{!UMPEr Of Solid particie s/d1 by

neighbors, in a perfect crystal, takes the same value. d dN;

When the fourfold symmetry axes of the octahedron are " Ala dr ° (5)
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FIG. 1. Distribution of the recognition functiof in bulk

solid (solid line, left scale) and in bulk liquid (dashed line,
right scale).

with a the specific area taken by a solid particle, and
the total area of the surface.

When the system is in equilibrium, no net growth takesalong they axis.

place, and on average equals zero. Instantaneous fluc-

tuations of the number of solid particles do occur, how-
ever, and their dynamics is related to the above equations, = L

where 7/ = N;U/N and f5* = N/N. Equation (9)
says thatAN; decays from its initial value according to
a simple exponential law.

We are now in the position to make use of On-
sager's hypothesis in the form(AN,(t))an,0) =
AN, (0) exp(—t/7), from which we find

ANOANO) _

€0 =N,

(11)

All simulations were done with therRoOMOS package
[12]. First, separat&/ PT simulations withP = 2.546 X
1073¢/03 and T = 0.646¢/kp were carried out for a
crystal and a liquid. The rates with which velocities and
box volume were rescaled [13], were controlled by the
relaxation timesry = 0.0747(mo%/€)'/? and 7p/k =
222.6(me)'/? /o2, with m the particle’s mass. The time
step of the numerical integration of Newton’s equations
wasAz = 0.0015(ma?/€)'/2. The temperature was close
enough to the equilibrium temperature for no structural
changes to occur during either of the two simulations.
Next, the crystal box was surrounded by two liquid boxes
Subsequent simulations were done
in the NVT ensemble with" = 0.646€/kg; the number
of particles was 1378, and the box dimensions were
. = 8.06090 and L, = 24.2060. Note that two

by means of Onsager’s hypothesis. This hypothesis statésterfaces occur in the box and th&tin Egs. (5) and (10)
[10,11] that slow equilibrium fluctuations on average de-denotes the total surface area.

cay according to macroscopic laws. We now first derive Correlation function C(r) from Eqg. (11) is plot-
the macroscopic laws governing the relaxation of a smalted in Fig. 2. After a short transient time of about

deviation AN, = N, — Ns" of the number of solid par-
ticles from its equilibrium valuevs®, in a closed system

with constant volume and constant temperature. First wamounts tok = 0. 5269(ma?/e)1/2.

1.5(mo?/€)'/2, this correlation function decays exponen-
tially with time constantr = 9.887(ma2/€)'/2, which

The value é)fk

relate the difference between the chemical potentials oovas calculated from Eq. (10), usimg= 0.81130, vs =

curring in Eq. (4) to the deviations from equilibrium of
the molar volumes of both phases:

(6)

where « is the isothermal compressibility. In order to
calculateAv; andAv,; we use the following relations:

1 1
M T My = T Avl + AUS7
K]

N

1.056403, v; ! 12000 Ky = 0004280’3/6 K| =
0014120’3/6 NS = 5407, andN, ! = 837.3. vl v,

and 4 were measured from the bulk parts of the

(N = ANy) (v + Avp)+
(N9 + AN) (089 + Avy) = V Y]
Av Av
- = —AP = -, (8)
V) Kj Vs Ky = =
whereN;" = N — N;*. The second of these equations o .
expresses uniformity of pressure during the simulations. SN

This means that we assume that pressure gradients relax
much faster than the time scales we are interested in.
Solving Egs. (7) and (8) foAv; and Av, to first order
in AN, and using the result in Egs. (4)—(6), we obtain

dan; _ —i AN, , (9) o s 10 1z 14
dt t
eq 2
1 — A/d< (Uz — v ) ) 1 (10) FIG. 2. Normalized time dependent auto correlation function
T N \vik,fs® + vtk fi ) kgT’ of AN,. Time scale in units ofma?/e)"/>.
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FIG. 3. Characteristics of a growing crystal. The solid line FIG. 4. Nonequilibrium results of the growth rate vs tempera-
denotes the number of solid particles and the dashed lintre (both in reduced units). The straight line represents growth
the number of liquid particles. Time scale in reduced units.rates calculated with the growth rate constambtained with

T = 0.612¢€/kp. the equilibrium simulation.

respective phases in the equilibrium simulatior;
was calculated using the equation of state given b
Nicholas et al.[14]; «, was calculated according to
Kks/Kk; = Avg/Av; X v, /vy with v, and v, the spe-
cific volumes of the initial solid and liquid boxes
and Av, = vs' — v, and Av; = v;' — v;; Ns© and
N;* were calculated fromvs vs® + N;v;? = v and
N+ N =N

It is seen that for times larger than about 11
(mo?/€e)'/2, large deviations from exponential de-

represents the data, and that therefore the equilibrium and
¥1onequi|ibrium simulations are in good agreement with
each other.

The error bars in Fig. 4 roughly indicate the maximum
' and minimum values of the corresponding growth rates.
For large values oflAT| the system rapidly melts or
crystallizes. As a result the runs are very short and the
difference between maximum and minimum slopes are
relatively large. One way to obtain better statistics is
0 repeat the same simulation several times. A second

cay occur. These deviations reflect the influence o ay might be to use much larger boxes. This, however
long-time temperature oscillations, caused by insufficienfy 1,5t 3 realistic possibility because with such large

removal and supply of latent heat of crystallization andgrowth or melting rates it will become increasingly

melting, respectively. difficult to maintain constant nonequilibrium conditions.

In o_rderl to check ﬁur results, Wf)lhav.er;)jofe nanethbAS a consequence, the nonequilibrium method which asks
rium simulations in theVPT ensemble wittP = 2.546 X ¢ many simulations for many different values Afl

10%¢ /o at various temperatures around the equilibriumis™ o ch more costly than one equilibrium simulation.

t.empgra.ture. AF]n ex_amg?le. of _the.evol'utioan(t) V‘;]ithf One disadvantage of the equilibrium method is that the
time during such a simulation is given in Fig. 3. The fact ¢jta gjze) equilibrium temperature must be known fairly

that N, is a linear func_tlon of t_|me means that we have,accurately, in order for the pressure not to change too
very well succeeded in keeping constant the nonequi-

libri pr Vi ; h much during the initial part of th&/VT run. As a final
lbrium conditions. Applying parameters for argon, the o mar we notice that the relaxation time which is actually
growth rate amounts td4 m/s in good agreement with

measured, i.e., the relaxation ti is proportional to
the results of Burke and Broughton. e 1 Prop

Il deviati ; iibri ) N/A, i.e., to the box size normal to the interface. This
For small deviations roeT equelql rum we may write gjz6 myst therefore not take part in the thermodynamic
h;” — hs AT

limit.
KT Tt (12)

i.e., the growth rate is proportional to7 = T — T°4. In
Fig. 4’”thet gJOV\_/IEE ratfs_orl;):al_lneq forb\t/quOLéSftempEeratlirzes[l] J. Q. Broughton, G.H. Gilmer, and K.A. Jackson, Phys.
are collected. e straight line is obtained from Eq. (12) Rev. Lett.49, 1496 (1982).

R = —kd

usingk from the equilibrium simulation and® — k" = 51 3.0 Broughton and G. H. Gilmer, J. Chem. PH§@, 5095
1.0le. A" and hs® were obtained from shortVVT (1983). o o ' '
simulations at the respective equilibrium densities and[3] J.Q. Broughton and G. H. Gilmer, J. Chem. P84,.5749
T = 0.646€/kg. It is seen that this line very well (1986).
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