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On the basis of Onsager’s hypothesis a new method is presented to calculate growth rate consta
various crystal faces from the fluctuations of interfaces duringNVT simulations. The method is applied
to the (100) face of a Lennard-Jones crystal grown from the melt. The results are in perfect agree
with those obtained by means ofNPT nonequilibrium simulations. The new method allows for much
better statistics at the cost of much less computation time. The use of Onsager’s hypothesis to d
the microscopic expression for the growth rate constant may serve as an example for applicatio
other fields. [S0031-9007(97)04878-3]

PACS numbers: 81.10.Aj, 05.20.Dd, 64.70.Dv, 71.15.Pd
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The study of growth rates of crystals from their melt, o
from supersaturated solutions, besides being an interes
theoretical problem, is of importance for the predictio
of macroscopic growth morphologies of crystals. Th
rheological properties of particulate systems, be it liqui
in which small crystallites are suspended or just granu
materials consisting of small crystallites, very muc
depend on the morphologies of the crystallites.

Since the crystal-melt interface, being a combination
two dense phases, is not easily accessible to experime
measurements, molecular dynamics simulations can be
great help in the study of these systems. Several stud
of the crystal-melt interface of Lennard-Jones system
consisting of atoms which interact by pairwise potentia
of the form

FLJsrd ­ 4e

∑µ
s

r

∂12

2

µ
s

r

∂6∏
, (1)

have been reported in the literature, mainly by Brought
et al. [1–5]. Among other things, they performed
nonequilibrium molecular dynamics simulations to ca
culate the growth rates of various crystal faces over
wide range of temperatures below the melting point.
this paper, we present a method to calculate growth ra
from fluctuations of the interface during an equilibrium
simulation. We have applied this method to stud
the growth rate of the (100) face of a Lennard-Jon
crystal growing from its melt, and checked the resul
by performing nonequilibrium simulations for very sma
deviations from equilibrium.

In order to be able to decide whether a particle belon
to the crystal or to the melt, we have constructed
very simple recognition function. What distinguishes
particle in the crystal from a particle in the liquid is the
fact that its surroundings have octahedral symmetry. W
therefore have constructed, using the methods of Ref. [
a functionXsrd, which for every vectorr pointing from
the particle under investigation to one of its neare
neighbors, in a perfect crystal, takes the same val
When the fourfold symmetry axes of the octahedron a
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chosen along the three Cartesian axes, the simplest s
function reads

Xsrd ­ x4yr4 1 y4yr4 1 z4yr4 2 3y5 . (2)

The order parameterC, which discriminates between
crystal and liquid particles was next defined by

C ­

s
kX2l 2 kXl2

kXl2 , (3)

where the averages were taken over all nearest neighb
residing within a cutoff radius of1.39s. A slight
amelioration was obtained by referring the positions of th
neighbors, not to the central particle, but to the center
mass of the neighbors. The distributions of the values
C during a simulation of a pure crystal and a simulatio
of a pure liquid are plotted in Fig. 1. It is seen that b
calling crystal particles those particles for whichC , 0.5
and liquid particles those for whichC . 0.5, a perfect
discriminator is defined. It is important to realize tha
crystalline structure will partly persist in the liquid phas
near the interface. As a result our discriminator wi
slightly overestimate the number of solid particles. W
expect, however, that changes in the number of so
particles will be correctly monitored.

In the case of simple monoatomic systems the me
ing temperature is found to be above the roughening tra
sition. Growth occurs at any point on the surface, an
the growth mode is called normal growth [7–9]. In th
case of small deviations from equilibrium, the growth ra
of such a surface is proportional to the difference of th
chemical potentials of the liquid and the solid phases, i.

R ­ kd
ml 2 ms

kBT
, (4)

where d is the interplanar distance parallel to the inte
face. The growth rate is related to the increase of t
number of solid particlesdNsydt by

R ­
d

Aya
dNs

dt
, (5)
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FIG. 1. Distribution of the recognition functionC in bulk
solid (solid line, left scale) and in bulk liquid (dashed line
right scale).

with a the specific area taken by a solid particle, andA
the total area of the surface.

When the system is in equilibrium, no net growth take
place, and on averageR equals zero. Instantaneous fluc
tuations of the number of solid particles do occur, how
ever, and their dynamics is related to the above equatio
by means of Onsager’s hypothesis. This hypothesis sta
[10,11] that slow equilibrium fluctuations on average d
cay according to macroscopic laws. We now first deriv
the macroscopic laws governing the relaxation of a sm
deviationDNs ­ Ns 2 N

eq
s of the number of solid par-

ticles from its equilibrium valueN
eq
s , in a closed system

with constant volume and constant temperature. First
relate the difference between the chemical potentials o
curring in Eq. (4) to the deviations from equilibrium o
the molar volumes of both phases:

ml 2 ms ­ 2
1
kl

Dyl 1
1
ks

Dys , (6)

where k is the isothermal compressibility. In order to
calculateDyl andDys we use the following relations:

sNeq
l 2 DNsd syeq

l 1 Dyld1

sNeq
s 1 DNsd syeq

s 1 Dysd ­ V , (7)

Dyl

y
eq
l kl

­ 2DP ­
Dys

y
eq
s ks

, (8)

whereN
eq
l ­ N 2 N

eq
s . The second of these equation

expresses uniformity of pressure during the simulation
This means that we assume that pressure gradients r
much faster than the time scales we are interested
Solving Eqs. (7) and (8) forDyl and Dys to first order
in DNs, and using the result in Eqs. (4)–(6), we obtain

dDNs

dt
­ 2

1
t

DNs , (9)

1
t
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µ
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where f
eq
l ­ N

eq
l yN and f

eq
s ­ N

eq
s yN. Equation (9)

says thatDNs decays from its initial value according to
a simple exponential law.

We are now in the position to make use of On
sager’s hypothesis in the formkDNsstdlDNss0d ­
DNss0d exps2tytd, from which we find

Cstd ­
kDNsstdDNss0dl

kDNss0d2l
­ exph2tytj . (11)

All simulations were done with theGROMOS package
[12]. First, separateNPT simulations withP ­ 2.546 3

1023eys3 and T ­ 0.646eykB were carried out for a
crystal and a liquid. The rates with which velocities an
box volume were rescaled [13], were controlled by th
relaxation timestT ­ 0.0747sms2yed1y2 and tPyk ­
222.6smed1y2ys2, with m the particle’s mass. The time
step of the numerical integration of Newton’s equation
wasDt ­ 0.0015sms2yed1y2. The temperature was close
enough to the equilibrium temperature for no structur
changes to occur during either of the two simulation
Next, the crystal box was surrounded by two liquid boxe
along the y axis. Subsequent simulations were don
in the NVT ensemble withT ­ 0.646eykB; the number
of particles was 1378, and the box dimensions we
Lx ­ Lz ­ 8.069s and Ly ­ 24.206s. Note that two
interfaces occur in the box and thatA in Eqs. (5) and (10)
denotes the total surface area.

Correlation function Cstd from Eq. (11) is plot-
ted in Fig. 2. After a short transient time of abou
1.5sms2yed1y2, this correlation function decays exponen
tially with time constantt ­ 9.887sms2yed1y2, which
amounts tok ­ 0.5269sms2yed21y2. The value of k
was calculated from Eq. (10), usingd ­ 0.8113s, y

eq
s ­

1.0564s3, y
eq
l ­ 1.200s3, ks ­ 0.00428s3ye, kl ­

0.01412s3ye, N
eq
s ­ 540.7, andN

eq
l ­ 837.3. y

eq
s , y

eq
l ,

and d were measured from the bulk parts of th

FIG. 2. Normalized time dependent auto correlation functio
of DNs. Time scale in units ofsms2yed1y2.
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FIG. 3. Characteristics of a growing crystal. The solid lin
denotes the number of solid particles and the dashed l
the number of liquid particles. Time scale in reduced unit
T ­ 0.612eykB.

respective phases in the equilibrium simulation;kl

was calculated using the equation of state given
Nicholas et al. [14]; ks was calculated according to
ksykl ­ DysyDyl 3 ylyys with ys and yl the spe-
cific volumes of the initial solid and liquid boxes
and Dys ­ y

eq
s 2 ys and Dyl ­ y

eq
l 2 yl; N

eq
s and

N
eq
l were calculated fromN

eq
s y

eq
s 1 N

eq
l y

eq
l ­ V and

N
eq
s 1 N

eq
l ­ N.

It is seen that for times larger than about 1
sms2yed1y2, large deviations from exponential de
cay occur. These deviations reflect the influence
long-time temperature oscillations, caused by insufficie
removal and supply of latent heat of crystallization an
melting, respectively.

In order to check our results, we have done nonequil
rium simulations in theNPT ensemble withP ­ 2.546 3

1023eys at various temperatures around the equilibriu
temperature. An example of the evolution ofNsstd with
time during such a simulation is given in Fig. 3. The fac
that Ns is a linear function of time means that we hav
very well succeeded in keeping constant the noneq
librium conditions. Applying parameters for argon, th
growth rate amounts to14 mys in good agreement with
the results of Burke and Broughton.

For small deviations from equilibrium we may write

R ­ 2kd
h

eq
l 2 h

eq
s

kBT eq

DT
T eq , (12)

i.e., the growth rate is proportional toDT ­ T 2 T eq. In
Fig. 4, the growth rates obtained for various temperatur
are collected. The straight line is obtained from Eq. (1
usingk from the equilibrium simulation andh

eq
l 2 h

eq
s ­

1.01e. h
eq
l and h

eq
s were obtained from shortNVT

simulations at the respective equilibrium densities a
T ­ 0.646eykB. It is seen that this line very well
5076
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FIG. 4. Nonequilibrium results of the growth rate vs temper
ture (both in reduced units). The straight line represents grow
rates calculated with the growth rate constantk obtained with
the equilibrium simulation.

represents the data, and that therefore the equilibrium
nonequilibrium simulations are in good agreement wi
each other.

The error bars in Fig. 4 roughly indicate the maximu
and minimum values of the corresponding growth rate
For large values ofjDT j the system rapidly melts or
crystallizes. As a result the runs are very short and t
difference between maximum and minimum slopes a
relatively large. One way to obtain better statistics
to repeat the same simulation several times. A seco
way might be to use much larger boxes. This, howev
is not a realistic possibility because with such larg
growth or melting rates it will become increasingl
difficult to maintain constant nonequilibrium conditions
As a consequence, the nonequilibrium method which a
for many simulations for many different values ofDT
is much more costly than one equilibrium simulation
One disadvantage of the equilibrium method is that t
(finite size) equilibrium temperature must be known fair
accurately, in order for the pressure not to change t
much during the initial part of theNVT run. As a final
remark we notice that the relaxation time which is actua
measured, i.e., the relaxation timet, is proportional to
NyA, i.e., to the box size normal to the interface. Th
size must therefore not take part in the thermodynam
limit.
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