
Biol. Cybern. 69, 327-335 (1993) Biological 
Gyt metics 
�9 Springer-Verlag 1993 

Reconstructing muscle activation during normal walking: 
a comparison of symbolic and connectionist machine learning techniques 
Ben W. Heller l , , ,  Peter H. Veltink 2, Nico J. M. Rijkhoff 3, Wim L. C. Rutten 2, Brian J. Andrews l'** 

1 Bioengineering Unit, University of Strathclyde, Glasgow, Scotland 
2 Biomedical Engineering Division, Department of Electrical Engineering, University of Twente, Enschede, The Netherlands 
3 Department of Urology, Faculty of Medicine, Katholic University of Nijmegen, Nijmegen, The Netherlands 

Received: 15 July 1992/Accepted in revised form: 30 March 1993 

Abstract. One symbolic (rule-based inductive learning) 
and one connectionist (neural network) machine learning 
technique were used to reconstruct muscle activation 
patterns from kinematic data measured during normal 
human walking at several speeds. The activation patterns 
(or desired outputs) consisted of surface electromyo- 
graphic (EMG) signals from the semitendinosus and 
vastus medialis muscles. The inputs consisted of flexion 
and extension angles measured at the hip and knee of the 
ipsilateral leg, their first and second derivatives, and 
bilateral foot contact information. The training set con- 
sisted of data from six trials, at two different speeds. The 
testing set consisted of data from two additional trials 
(one at each speed), which were not in the training set. It 
was possible to reconstruct the muscular activation at 
both speeds using both techniques. Timing of the recon- 
structed signals was accurate. The integrated value of the 
activation bursts was less accurate. The neural network 
gave a continuous output, whereas the rule-based induc- 
tive learning rule tree gave a quantised activation level. 
The advantage of rule-based inductive learning was that 
the rules used were both explicit and comprehensible, 
whilst the rules used by the neural network were implicit 
within its structure and not easily comprehended. The 
neural network was able to reconstruct the activation 
patterns of both muscles from one network, whereas two 
separate rule sets were needed for the rule-based tech- 
nique. It is concluded that machine learning techniques, 
in comparison to explicit inverse muscular skeletal 
models, show good promise in modelling nearly cyclic 
movements such as locomotion at varying walking 
speeds. However, they do not provide insight into the 
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biomechanics of the system, because they are not based 
on the biomechanical structure of the system. 

I Introduction 

Biomechanical models have been described for normal 
walking (Crowninshield and Brand 1981; Patriarco et al. 
1981; Hatze 1984; Davy and Audu 1987), walking of 
paraplegics assisted by functional electrical stimulation 
(FES) of paralysed muscles (Yamaguchi and Zajac 1990), 
and for prosthetic gait (Koopman 1989). These models 
are based on explicit models of the musculoskeletal sys- 
tem that describe the relationships between the neural 
activation of muscles and the kinematics of movement, 
using the theories of multi-body dynamical systems and 
detailed knowledge of the anatomy and contractile prop- 
erties of muscles. However, despite the sophistication of 
such models, they are restricted in their ability to recon- 
struct accurately individual muscle forces and activation 
patterns due to the many assumptions inherent in them, 
for instance, that a movement will be performed so as to 
minimise certain metabolic energy or muscle fatigue cri- 
teria. Furthermore, it appears to be difficult to identify 
and track the time-varying system parameters. 

It can be argued that the most optimal model of 
a human movement exists within the neurological con- 
trol mechanisms of the person performing the movement; 
for instance, most able-bodied individuals constantly 
consciously and subconsciously hone and adapt their 
gait to produce optimal walking patterns. The measure 
of optimality appears to be a dynamic combination of 
factors including efficiency, speed, safety, normality, 
minimisation of pain, etc. The motor control sequences 
(or rules) are a combination of spinal reflexes, patterns 
stored in the lower brain centres and cerebral cortex 
(Grillner 1975; Bussel et al. 1988) and conscious inten- 
tions. They are thus impossible to articulate fully 
- a problem which is acknowledged by psychologists 
studying motor skills (Anderson 1980; Davids and Myers 
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1990). This is a situation analogous to the so-called 
Feigenbaum bottleneck of artificial intelligence, meaning 
the difficulty of manually eliciting knowledge from an 
expert. The solution adopted in the artificial intelligence 
domain is to use an alternative way of obtaining the 
knowledge, namely learning by example, in which the 
expert system produces its own rules from general prin- 
ciples extracted from the training data presented to it by 
the expert. This inductive approach may produce more 
effective rules than those explicitly articulated by the 
expert (Michalski and Chilauski 1980). 

Given a set of data containing examples, each consist- 
ing of a vector of input values (the attributes) and a 
desired output value vector (which may consist of 
continuous values, or of discrete classes), inductive learn- 
ing techniques will attempt to find relationships between 
the inputs and the outputs. In this way, the system can be 
said to learn from the data presented to it. The system's 
memory consists of either decision rules or, for a neural 
network, synaptic weights. 

We will compare two kinds of inductive learning 
algorithms in this report. The first kind is called sym- 
bolic or rule-based inductive learning. In this tech- 
nique the program attempts to produce (or learn) a set of 
if-then-else decision rules which may be presented as 
a decision tree - a directed graph representing the se- 
quentially ordered decision rules produced by the pro- 
gram. 

The second technique is the use of a multi-layer 
feedforward perceptron network with supervised 
learning-via-error back-propagation (Rumelhart and 
McClelland 1986; Lippmann 1987). Because of the super- 
vised learning, this technique may also be considered an 
inductive learning method. 

The performance of the two machine-learning 
methods will vary with the type of data they are tested on 
because their function is determined by their structure. 
Neural networks are better at X of N functions (where at 
least X features of a possible N must be present for an 
example to be a member of a class); symbolic learning 
techniques require very complex rule trees to solve these 
problems. Symbolic methods are better for singly suffi- 
cient attribute values of the "if a, then b" kind (Mooney 
1990). 

A thorough comparison of the performance of 
symbolic learning (ID3) and connectionist (error back- 
propagating neural network algorithm) techniques on 
real-world data was performed by Shavlik et al. (1991). 
They used five data sets to assess the algorithms' perfor- 
mances, reaching the following conclusions: 

1. The neural network gave slightly higher classification 
accuracy than ID3 when tested on new examples. 
2. The neural network could be significantly better on 
numerical data sets [this contradicts the findings of 
Weiss and Kapouleas (1989)-I. 
3. The neural network was slightly more accurate when 
the examples were noisy or incompletely specified 
[however, the chi-squared pre-pruning method used 
for ID3 was probably less effective than post-pruning 
techniques (Mingers 1989)]. 

Other differences were that ID3 could be trained 
150 times faster, and it classified new examples 10 times 
faster than the neural network [although the error back- 
propagation technique may not be the fastest learning 
mechanism (Willis et al. 1990)-I; the neural-network 
architecture (number of hidden layers, number of 
neurons) needed to be selected, which is considered more 
of an art than a science, and perhaps most importantly 
for the present application, the comprehensibility of the 
knowledge acquired by the symbolic learning technique 
was much higher, because the rules which are obtained 
can be interpreted. 

In this study a symbolic or rule-based inductive learn- 
ing method is compared with a neural network method 
for their ability to reconstruct muscle activation patterns 
from kinematic data at several walking speeds. The mo- 
tivation for this work is twofold: 

1. To compare the use of rule-based inductive learning 
techniques with neural networks for the induction of 
rules in the general domain of movement analysis. 
2. To investigate the possibility of cloning the rules used 
by a human expert during normal gait at varying speeds. 
It provides a method of directly synthesising control 
strategies for robot and FES-induced gait, without hav- 
ing to find an inverse model of the system (the model can 
be said to reside within the rules or weights generated by 
the inductive learning strategy). 

This study was limited to reconstructing the activa- 
tion patterns (the classes) of two muscles (semitendinosus 
and vastus medialis) from the bilateral foot contact 
signals and the joint angles of the ipsilateral hip and knee 
and their first and second derivatives with respect to time 
(the attributes). The measurements were made on one 
unimpaired subject walking at two different speeds. 

2 Methods 

2.1 Experimental methods 

Experimental data were obtained from one male, un- 
impaired individual by instrumenting hip and knee 
unilaterally with flexible goniometers (Penny & Giles 
Ltd). These angular data were sampled at 50 Hz by an 
Analog Devices RTI-815 12-bit resolution data acquisi- 
tion card installed in an IBM-PC compatible computer. 
They were then low-pass filtered at a cut-off frequency of 
5 Hz by a finite impulse response (FIR) filter, then doubly 
differentiated using a second FIR filter. Foot-floor con- 
tact was determined by monitoring electrical contact 
between metal plates under the feet and a conducting 
rubber floor; this signal was then integrated to give 
information about the time spent in that phase of the gait 
cycle (see Fig. 1). 

Activation patterns of the ipsilateral semitendinosus 
muscle (one of the hamstring muscles, responsible for 
knee flexion) and the vastus medialis muscle (a knee 
extensor) were determined by means of bipolar surface 
EMG  measurements. The signals were rectified and low- 
pass filtered using a second-order Butterworth filter with 
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Fig. 1. Kinematic and muscle activation signals during reciprocal gait 
were measured from a healthy man. Hip angle and knee angle were 
measured using flexible goniometers. From these signals the angular 
velocities and angular accelerations (accn.) were estimated. Foot con- 
tact was measured with foot switches. This binary signal was integrated 
to give information about the time spent in that phase of the gait cycle. 
Muscle activation of semitendinosus and vastus medialis were estim- 
ated from rectified and low-pass filtered electromyelography 

a 25-Hz cut-off frequency, prior to being sampled at 
200 Hz. The E M G  signals were further low-pass filtered 
off-line, using a 57 coefficient FIR filter with a 5-Hz 
cut-off frequency and zero phase shift; this gave an envel- 
ope with a bandwidth similar to that measured from the 
kinematic joint angle data. The subject performed four 
trials of four or five double steps at each of two speeds: 
natural speed and a faster speed; this was to evaluate the 
ability of the machine learning techniques to generate the 
correct activation patterns at varying walking speeds. 
The data were recorded once a steady-state gait had been 
established. At each speed the filtered data (hip and knee 
angles, angular velocities, angular accelerations and in- 
tegrated foot contacts) from three trials were used as 
a training set for both inductive learning methods. The 
data from the remaining trials at each speed were used as 
the testing set for analysing the performance of both 
methods in reconstructing the activation patterns from 
the kinematic data. 

2.2 Symbolic learning 

The algorithm used is based on the hierarchical mutual 
information classifier of Sethi and Sarvarayudu (1982). 
The program that implements this algorithm, Empiric, is 
based on the Disciple program described by Kirkwood 
et al. (1989), but has been rewritten to include fuzzy class 
membership (described below) and to make more effic- 
ient use of the limited memory available in 640k personal 
computer. It can accommodate up to 10 4 examples, each 
having a maximum of sixteen, 16-bit attributes. 

The muscle activation signal was divided into five 
levels (an arbitrary choice), and each of these was taken 
as an independent class. The assignment of the continu- 
ous data into these arbitrary classes imposes unjustified 
divisions on the data; e.g. a muscle activation slightly to 
one side of an quantisation level is considered to be in 
a different class to one that is just beyond the level. This 
may prevent the algorithm from choosing a classification 

threshold that combines both examples into the same 
class, even though the threshold may be justified from 
a consideration of the continuous data. We thus chose to 
assign class membership on a fuzzy basis (Zadeh 1965): 
each example is considered to be both a member of the 
class it is in and of the next nearest class. The fuzzy 
membership value depends on the position of the 
example within the class and is given by: 

# ( x , u ) =  1 - [ [ x - M ( u ) ] / Q [  for [ x - M ( u ) [ < Q  

p(x, u) = 0 otherwise (1) 

where #(x, u) is the fuzzy membership value of an 
example of value x in class u, Q is the size of a quantum 
(the difference between adjacent quantisation levels), 
and M(u) is the value of the midpoint of class u. 

M(u) is given by: 

M(u) = (u - 1)Q. (2) 

The algorithm performs a hierarchical partitioning of 
the attribute space. Each new node of the decision tree 
contains a rule based on a threshold of one of the at- 
tributes. With each new rule the example set is further 
subdivided. The decision tree will continue to grow until 
each leaf (terminal node) contains members of only one 
class. For  non-exact, non-mutually exclusive or noisy 
data this will lead to a very large decision tree containing 
non-robust rules which reflect the noise in the data rather 
than genuine causal relationships. To avoid this overfit- 
ting, the algorithm can be made to terminate the forma- 
tion of new nodes before all the examples have beet~ 
correctly classified, thus limiting the size of the tree. The 
choice of tree size depends on the characteristics of the 
data being classified, and is in general determined by trial 
and error. For  a fuller discussion of this see Clark (1990), 

Two different rule sets were induced from the training 
data: one which had 3 rules (7 nodes) and a tnore complex 
one which had 31 rules (63 nodes), Both rule sets were 
then used to classify each example in the testing sets, and 
the reconstructed and actual classes were compared, 

2.3 Neural network 

Neural network computations were performed on an 
IBM-PC compatible computer using the N Works 
software package (Neural Works Inc.). A multi-layer 
perceptron network with supervised learning via back- 
propagation was used in this study (Lippmann 1987). 
The inputs to the neural network consisted of the same 
attributes and trials as for the symbolic inductive learn- 
ing training set detailed above. The time order of the 
examples was randomised before they were applied to the 
network, and the attribute values were normalised 
between - 1 and 1. The desired outputs were the con- 
tinuous muscle activation levels rather than the quan- 
tised levels used above. At the beginning of the training 
session the weights of the nodes were initialised random- 
ly between - 0 . 1  and 0.1. The input signals and the 
corresponding output activation patterns were applied to 
the network at each time step, and the weights of the 
nodes were adapted via the back-propagation training 
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Fig. 2. Small decision tree for rule-based inductive learning method to 
reconstruct semitendinosus activation during normal  walking. Only the 
left foot switch data were used for on-off timing of the activation burst 
and knee angular  acceleration (accn.) for determining the level of 
activation in the burst 

algorithm. The learning coefficient was set to 0.9 and the 
smoothing factor to 0.6 (Rumelhart and McClelland 
1986). The complete training set was applied to the net- 
work 30 times. Two different networks were considered, 
one with one hidden layer and one with two hidden 
layers. 

3 Results 

As an example of the output rules that were generated, 
the rule set for the (simpler) 7-node network reconstruct- 
ing semitendinosus is shown in Fig. 2. This small decision 
tree only uses the information of the left foot switch for 
timing of the activation burst and the knee angular 
acceleration for determining the activation level during 
the burst. 

The synthesised muscle activation levels using sym- 
bolic inductive learning are plotted together with the 
actual levels for both walking speeds in Figs. 3a, 4a, 5a 
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Fig. 3a-d .  Measured and reconstructed activation patterns of semitendinosus for slow walking, a applying a small fuzzy rule base (3 rules; 7 nodes); 
b applying a large fuzzy rule base (31 rules; 63 nodes); e applying a small neural network (one hidden layer); d applying a large neural network 
(two hidden layers) 
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Fig. 4a-d.  Measured and reconstructed activation patterns of semitendinosus for fast walking, a applying a small fuzzy rule base (3 rules; 7 nodes); 
b applying a large fuzzy rule base (31 rules; 63 nodes); c applying a small neural network (one hidden layer); d applying a large neural network 
(two hidden layers) 
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and 6a for the small rule set and Figs. 3b, 4b, 5b and 6b 
for the larger rule set. The equivalent outputs from the 
neural networks for both speeds are given in Figs. 3c, 4c, 
5c and 6c for the smaller network and Figs. 3d, 4d, 5d and 
6d for the larger network. 

To assess the ability of the techniques to reconstruct 
the activation patterns, the following compartsons be- 
tween reconstructed and measured outputs were made 
for all techniques: 

1. The difference in the onset and offset times of meas- 
ured and reconstructed activation bursts are given in 
Table 1. The times at which the activation crossed 20% 
of the maximum value of each measured burst were 
determined. These quantities indicate the accuracy of the 
timing of the reconstructed activity bursts. 
2. The average difference in the time integral of each 
reconstructed and measured activation burst between 
the onset and offset times described above are given in 
Table 2. This quantity indicates the accuracy of the total 

activity of the reconstructed bursts, which is related to 
the total associated mechanical impulse. 

These aspects (accuracy of timing and integrated value of 
the muscle activity) determine the accuracy of the asso- 
ciated mechanical output of the muscloskeletal system, 
because the movement of the slow and mainly inertial 
skeletal system is mainly determined by the timing and 
size of the mechanical impulse which is generated by the 
relatively short muscle-burst activity. Therefore, timing 
and integral value of this activity is more important than 
the actual time course of the activity. 

All the techniques had similar timing performances. 
No  large systematic errors were found in the onset and 
offset timings, since the averages and the standard 
deviations of the timing errors were of the same order 
of magnitude as the standard deviations of the timin- 
gerrors. The average and standard deviations of the 
timing errors were worse for vastus medialis than for 
semitendinosus in the case of slow walking. This can be 
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Fig. 5a-d .  Measured and reconstructed activation patterns of vastus medialis for slow walking, a applying a small fuzzy rule base (3 rules; 7 nodes); 
h applying a large fuzzy rule base (31 rules; 63 nodes); e applying a small neural network (one hidden layer); d applying a large neural network 
(two hidden layers) 

explainedby observing that vastus muscle does not turn 
on and off as sharply as semitendinosus, and thus a small 
difference in the amplitude threshold at which the recon- 
struction turns on will lead to a larger difference in timing. 

The errors in the reconstruction of the integrated 
activities were similar for all four techniques (Table 2). 
Also, no clear differences between the errors for both 
walking speeds and muscles can be distinguished. 

Figures 3-6 show some variations between subsequent 
reconstructed activation bursts of the same trial. These 
variations did not always follow correctly the variations 
between the corresponding measured activation bursts. 

4 Discussion 

The results (Figs. 3-6, Tables 1, 2) indicate that both 
inductive learning methods were able to distinguish 

between the two walking speeds: the activation patterns 
for slow and fast walking were reconstructed equally well 
in terms of onset times, offset times and integrated burst 
activities. 

In order to judge the acceptability of the timing 
errors, they should be related to the dynamical character- 
istics of the muscloskeletal system: the dynamics of 
muscles can be characterised by a rise time of approxim- 
ately 50-100 ms, depending on the muscle type. The 
resonance frequency of the skeletal system depends on 
the phase of the walking cycle (stance or swing), but can 
be estimated to be lower than 1 Hz. Therefore, timing 
errors on the order of 50 ms seem to be acceptable. 

The errors in the integrated activation values appear 
to be rather large, because the relative errors in the 
integrated activation (up to an average of 32%) are 
directly related to an error in the corresponding mechan- 
ical impulse delivered by the muscle. One possible reason 
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Fig. 6a-d. Measured and reconstructed activation patterns of vastus medialis for fast walking, a applying a small fuzzy rule base (3 rules; 7 nodes); 
b applying a large fuzzy rule base (31 rules; 63 nodes); c applying a small neural network (one hidden layer); d applying a large neural network 
(two hidden layers) 

for these relatively large errors might be that the system is 
insufficiently observable with the limited sensor set used: 
the differences between the cycles might not be suffi- 
ciently represented in the measured kinematic data. For  
example, movements other than in the sagittal plane are 
not measured. 

A possible explanation for the observation that 
the timing of the activation patterns appeared to be 
reconstructed with sufficient accuracy, but not the 
size (integral of the burst), is that more information 
is needed for a good reconstruction of the size than 
for a good reconstruction of the timing. This is in concert 
with the rules of the small rule set depicted in Fig. 2: 
the rule set only with one rule relied on the timing 
information contained within the integrated foot- 
contact signal to determine if the muscle was on or off; 
the other two rules were needed to determine the magni- 
tude of the activation from the angular acceleration at 

the knee. It is also consistent with the results of Arendt- 
Nielsen et at. (1991), who found that the shapes (timings) 
of the E M G  activation and knee kinematic patterns 
(normalised to the gait cycle period) remained similar for 
walking at different speeds, whereas the amplitudes 
varied. 

Whereas a deductive model, explicitly describing the 
inverse musculoskeletal dynamics, will be valid (within 
the limits of its assumptions) for all movement patterns, 
the induced models will only be valid over a range of 
movements that are similar to ones contained within 
their training sets. Also, the induced models do not give 
biomechanical insight into the system, because they only 
relate input and output signals and are not based on the 
biomechanical structure of the system like that of the 
deductive biomechanical models. 

However, the accuracy of the timing and size of the 
reconstructed muscle activity bursts do not appear to be 
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Table 1. Er rors  in the onset  and  offset t iming  of the recons t ruc ted  E M G  bursts  compared  wi th  or ig inal  bursts  (average +__ s t anda rd  
devia t ion)  

Technique  Speed Semitendinosus  Vastus  media l is  

Onse t  (ms) Offset (ms) Onset  (ms) Offset (ms) 

Small  rule set Slow - 16 _+ 26 8 _+ 23 0 _+ 51 - 190 _ 96 
(n = 5) (n = 5) (n = 5) (n = 4) 

Large  rule set Slow - 16 + 26 8 + 23 32 _ 39 - 135 _ 93 
(n = 5) (n = 5) (n = 5) (n = 4) 

Small  neural  ne twork  Slow 12 + 23 8 _ 23 - 68 __+ 23 - 85 + 72 
(n = 5) (n = 5) (n = 5) (n = 4) 

Large  neural  ne twork  Slow - 24 _+ 22 8 + 23 4 Jr 33 - 145 _ 87 
(n = 5) (n = 5) (n = 5) (n = 4) 

Small  rule set Fas t  20 _+ 29 40 _+ 35 53 _+ 23 - 7 -I- 31 
(n = 4) (n = 3) (n = 3) (n = 3) 

Large  rule set Fas t  -- 30 + 12 40 + 35 7 + 12 13 + 42 
(n = 4) (n = 3) (n = 3) (n = 3) 

Smal l  neural  ne twork  Fas t  - 10 + 12 27 _+ 50 0 _ 0 0 + 20 
(n = 4) (n = 3) (n = 3) (n = 3) 

Large  neural  ne twork  Fast  - 20 + 0 33 + 42 20 + 0 - 20 _ 20 
(n = 4) (n = 3) (n = 3) (n = 3) 

The ac t iva t ion  th resho ld  appl ied  for de t e rmina t ion  of the onset  and  offset momen t s  is 20% of the max ima l  value of the-measured  
ac t iva t ion  bursts.  A negat ive  er ror  implies  tha t  the reconst ructed burs t  is ahead  of the measured  burst  

Table  2. Er rors  in the in t eg ra ted  values  of the recons t ruc ted  ac t iva t ion  
burs ts  in c o m p a r i s o n  wi th  the measured  ac t iva t ion  burs ts  (aver- 
age + s t anda rd  devia t ion)  

Technique  Speed Semi tend inosus  Vastus  
In tegra ted  medial is  
ac t iva t ion  (%) in tegra ted  

ac t iva t ion  (%) 

Smal l  rule set Slow 32 _ 17 14 + 20 
(n = 5) (n = 4) 

Large  rule set Slow 14 + 17 3 _+ 21 
(n = 5) (n = 4) 

Smal l  neural  ne twork  Slow 7 + 14 30 -t- 20 
(n = 5) (n = 4) 

Large  neura l  ne twork  Slow 27 _+ 13 - 22 +_ 11 
(n = 5) (n = 4) 

Small  rule set Fas t  6 _ 21 - 30 + 13 
(n = 3) (n = 3) 

Large  rule set Fas t  16 + 23 14 _+ 28 
(n = 3) (n = 3) 

Smal l  neural  ne twork  Fas t  6 +_ 23 21 _+ 14 
(n = 3) (n = 3) 

Large  neura l  ne twork  Fas t  8 + 22 - 26 + 4 
(n = 3) (n = 3) 

The  burs ts  were in tegra ted  be tween the onset  and  offset t imes con- 
s idered in Tab le  1. The errors  are expressed as a percentage  of the 
in tegra ted  values  of the co r r e spond ing  measured  bursts.  A posi t ive  
value impl ies  tha t  the area  under  the recons t ruc ted  burs t  is larger  than  
the area  under  the m e a s u r e d  burs t  

better in the deductive biomechanical models (Crownin- 
shield and Brand 1981; Patriarco et al. 1981; Davy and 
Audu 1987). These biomechanical models are complex 
and contain many parameters which are difficult to 
identify. Furthermore, they are based on many assump- 
tions: for instance the models need a criterion to estimate 
the otherwise undetermined contribution of the indi- 
vidual muscles to the joint torques found by the inverse 
dynamics (Crowninshield and Brand 1981). Different 

criteria and imposed constraints may lead to substantial 
differences in the reconstructed activation patterns 
(Patriarco et al. 1981). 

An advantage of the use of the inductive techniques 
presented in this paper over explicit inverse musculo- 
skeletal models is that they generate the EMG activation 
level with no time delay. An explicit model's estimation of 
muscular activation must always lag by a time equal to 
the delay between electrical activation and mechanical 
torque generation. As there is no such lag for the induc- 
tive learning techniques, they must incorporate anticipa- 
tory knowledge of the movements to be performed. This 
is solely due to the repetitive nature of walking. 

Both the rule-based inductive algorithm and the 
neural-network inductive approach showed comparable 
performance in the reconstruction of muscle activation 
patterns from kinematic data. Because of this compar- 
able performance a choice between both methods will 
depend on other characteristics of the methods. 

The advantages of the rule-based inductive learning 
technique are that the rules are explicit, comprehensible, 
easily encoded into a knowledge base and may be ex- 
ecuted quickly. Furthermore, the algorithm is variably 
selective: only the "best" (in terms of average mutual 
information gain) attribute threshold will be selected at 
any node on the tree; thus, it is possible to identify the 
most important attributes (sensors) in any rules that are 
produced. 

An advantage of the neural network technique is that 
one network is able to model the output of more than one 
muscle. The rule-based inductive learning technique re- 
quired one independent decision tree per output. Fur- 
thermore, whilst the validity of these models cannot be 
guaranteed for unfamiliar patterns, the sigmoid weight- 
ing function used in the neural network ensures that the 
model will be continuous, i.e. small changes in input will 
cause small changes in output, thus small deviations in 
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Fig. 7. The mapping of the relationship between the sensor outputs 
and the EMG signals can either be considered as an indirect model of 
the muscle and body segment dynamics, or a direct input-output model 
of the neural system relating proprioception and sensation to muscle 
activation 

the input  pa t te rn  should still produce valid outputs.  This 
canno t  be said for the rule-based induct ive learning tech- 
nique in which a small change at the inputs  can produce 
a large change at the outputs.  

The neural  network technique produced con t inuous  
outputs ,  whereas the rule-based inductive learning tech- 
nique produced discrete, five-level outputs.  This  is un-  
likely to be impor t an t  in practice, as the low-pass filtering 
characteristics of the muscle and  the inertial  dynamics  of 
the l imb will smooth  out  the sudden transit ions.  

The induced rules (or weights for the neural  net-  
works) in bo th  inductive methods  l ink the kinemat ic  
variables to the muscle act ivat ion levels. They can be 
considered as provid ing  either a direct i npu t -ou tpu t  
model  (cloning) of the neural  system that  relates sensory 
inputs  to moto r  outputs ,  or an inverse model  of the 
musculoskeletal  dynamics  (see Fig. 7). Al though these 
two descriptions seem contradictory,  they are both  
equally valid and  both equally limited. 

Possible applications of the reconstruction of muscular 
activity from sensor information are in the automatic con- 
trol of paralysed muscles of paraplegic gait assisted by FES, 
the manufacturing of low-cost mot ion  analysis equipment 
that could reconstruct movement  patterns from only a few 
sensors and the control of robot locomotion (Craig 1986). 
More generally, both techniques are entirely data-driven 
and contain no causal knowledge of the application do- 
main; thus they are suitable for any classification problem 
for which a suitable training set can be found. 
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