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SUMMARY 

This paper shows and illustrates that product form expressions for the steady state distribution, as known 
for queueing networks, can also be extended to a class of availability models. This class allows 
breakdown and repair rates from one component to depend on the status of other components. Common 
resource capacities and repair priorities, for example, are included. Conditions for the models to have 
a product form are stated explicitly. This product form is shown to be insensitive to the distributions of 
the underlying random variables, i.e. to depend only on their means. Further it is briefly indicated how 
queueing for repair can be incorporated. Novel product form examples are presented of a simple 
serieslparallel configuration, a fault tolerant database system and a multi-stage interconnection network. 

KEY WORDS Availability modelling Product form Insensitivity 

1. INTRODUCTION 

The measures commonly used to quantify the functioning of a system are reliability and 
availability. The reliability function is typically of interest for systems that must remain 
operational during their whole (limited) mission length, such as air or spacecraft systems. If  
components can be repaired and if some down time can be tolerated, then availability is the 
more appropriate concept. There are several availability measures. An overview of numerical 
methods for calculating transient measures such as point- and interval-availability is given in 
Reference 1. 

In this paper we focus on the steady state availability of repairable computer systems. We 
consider a system consisting of Ncomponents that are alternatively up and down. The simplest 
case occurs when all components have independent up times and down times with mean X i '  
respectively p;'  for component h.  In this case note that ph = p h / ( p t l  + XA) corresponds to the 
marginal steady state probability that component h is up, so that the steady state probability 
a ( H )  that the components in the set H are down while the others are up is easily concluded 
to be given by 

(1.1) T ( H ) =  n Ph n ( 1 - P h )  
h f H  h t H  

87 5 5 -00241 92/ 04028 3 -20$15.00 
01992 by John Wiley & Sons, Ltd. 

Received 5 December 1991 
Revised 19 May 1992 



284 E. SMEITINK, N.  M. VAN DlJK AND B. R. HAVERKORT 

The asymptotic properties of this model, which is often used in reliability studies of (large) 
communication networks, are extensively studied in, for example, Reference 2. A typical 
measure of interest in this context is the steady state probability that two nodes can 
communicate via a network of links that are subject to failure. This probability can in principle 
be calculated from the steady state distribution ?r (cf. References 3,4,5,6). 

Fault tolerant computer systems often exhibit state dependencies, by which the breakdown 
or repair rate of one component can be accelerated or slowed down depending on the up or 
down status of other (neighbouring) components. For example, if all components share a 
common resource for repair, the down times will most likely increase with an increasing 
number of components that are down. Under exponential assumptions, such systems can be 
analysed using continuous time Markov models. In that case, the steady state distribution can 
in principle be obtained by numerically solving a system of linear equations. This can be 
computationally expensive, however, and if the cardinality of the state space is large special 
techniques have to be used, such as sparse matrix storage and successive overrelaxation (cf. 
Reference 7). In Reference 8 a bounding technique based on state space aggregation is 
presented for obtaining the steady state availability of highly reliable systems. 

The primary purpose of this paper is to illustrate that product form expressions for steady 
state distributions, which have been extensively studied for queueing networks, also apply to 
a class of availability models. This class is characterized by imposing conditions on the state 
dependent breakdown and repair rates. Although from a mathematical point of view the 
product form expression is not new, as it is based on the notion of reversibility (cf. References 
9 and lo), its recognition for the present purpose appears to be new. In particular, as state 
dependent breakdown and repair rates arise naturally, the interpretation of the actual 
transition rates is different. If in some configuration H a certain transition is prohibited, for 
example the breakdown of component h @ H ,  the corresponding transition rate is zero, i.e. the 
repair of that component is stopped. This situation occurs, for example, in the model of a 
series system considered in Reference 11 (pp. 194-201). As the system is a pure series 
configuration, system failure coincides with component failure and it is therefore natural to 
assume that, while a failed component undergoes repair, all other components remain in 
‘suspended operation’. When the repair of the failed component is complete, the remaining 
components resume operation. At that instant they are not ‘as good as new’, but rather as 
good as they were when the system stopped operating. The steady state results obtained in 
Reference 1 1  turn out to be insensitive, i.e. to depend only on the means of the underlying 
random variables. 

By introducing speed functions, i.e. state dependent breakdown and repair rates, we can 
generalize the above model of a series system and consider arbitrary systems. We then state 
sufficient conditions on the speed functions that guarantee a product form steady state 
distribution. These so-called product form conditions impose a special structure on the 
stochastic process of components going up and down. Loosely put, we require that in the 
steady state the system exhibits a certain local balance property. Local balance properties are 
closely connected to insensitivity. 12*13,14 

This paper is organized as follows. In Section 2 we formulate the model and illustrate how 
the speed functions can be used to model failure and repair dependencies between the 
components. In Section 3 we first formulate the product form conditions. Then, under 
exponential assumptions, we show how these conditions naturally arise when requiring local 
balance and obtain the steady state probabilities n ( H )  that the system is in configuration H. 
In Section 4 we consider a slight extension of our original model and illustrate, again under 
exponential assumptions, how queueing for repair can be incorporated. In Section 5 we show 
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that the steady state probabilities ?r (H)  are insensitive. In Section 6 we give three examples to 
illustrate how various systems can be modelled and how the product form conditions can be 
verified. Section 7 concludes the paper. 

2. MODEL 

We consider a system consisting of N components where each component is alternatively up 
(being able to work) and down (not able to work and needing repair). The set of all 
components is denoted by C and a configuration H c C denotes that the components in the 
set Hare  down while the other components are up. The configuration in which all components 
are up (none is down) is denoted by 0. 

At time t = 0 all components start their first up period. During its ith up period, component 
h performs a random amiunt of work w h , i  before going down. When component h goes down 
for the ith time it requires a random amount of repair Rh,i. Upon completion of its repair a 
component immediately returns to the up mode. We assume that all these random variables 
[ Wh,r]f 2 I and 1 R h , i ] l >  1 are mutually independent and that, for each fixed h E C, the random 
variables [ Wh,r)r 2 I respectively ( R h , i ] i  2 1 are identically distributed. Consequently, [ Wh,r] I 2 1 

and [ R h , r ) r 2  1 are renewal sequences. We denote the distribution functions of the generic 
variables wh and Rh by Fh, respectively Gh. 

The speed at which a component h E H i s  repaired is denoted by d(h I H ) ,  i.e. the remaining 
amount of repair that component h requires before going up again is provided at the 
configuration dependent rate b(h  I H ) .  Likewise, the speed at which a component h $ H works 
when the system is in configuration H i s  given by P(h I H ) .  We will refer to /3 and 6 as the speed 
functions. Further, if we write /3(h I H )  (6(h I H)) we implicitly assume that h f H ( h  € H ) .  

We denote by .XC 2' the set of configurations, including 0, which can be reached from 0 
by components going up and down (2= denotes the power set of C ) .  For convenience, we will 
denote by H +  h the configuration in which, apart from the components in H ,  an additional 
component h p His  down. Similarly, H - h denotes the configuration in which the components 
in H are down except for component h E H .  

Apart from the renewal assumptions above we will require the following regularity 
conditions for all components h E C. 

R1 The speed functions P(h I a )  and 6(h I .) are bounded. 

R2 0 < E[Whl, E[Rh]  < * 
R3 The distribution functions Fh and Gh are continuously differentiable. We denote the 

probability densities by f h ,  respectively g h .  Furthermore, these densities are bounded. 

Note that R2 directly implies R3 if Fh and Gh are exponentially distributed. In this case we 
also have that Rl and R2 together imply that 

HEreandP(hIH)>O-- .H+hE.re  (2.1) 

and 

H E 2 and 6 ( h  I H ) > 0 --. H - h E X' 

Condition R3 ensures that (2.1) and (2.2) also hold in the general case, i.e. that the set of 
configurations .Yfthat can be reached in the general case is the same as the set of configurations 
that can be reached under exponential assumptions. 
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Interpretation of the speed functions 

The actual time that component h remains up depends on the random amount of work, wh, 

that it performs before going down and on the varying speed(s) P(h I a )  with which it works, 
i.e. on the configurations that the system visits during the up time of component h .  In the same 
way the time that a component h remains down depends on the amount of repair, R h ,  that 
it needs and on the speed(s) 6(h I a) with which it is repaired. Below we give some examples 
of how the functions /3 and 6 can be used as delay or acceleration factors to model failure and 
repair dependencies between the components. 

(a) P(h 1 H )  = 0 reflects that component h, although it is up, does not work (cannot be used) 
if the components in the set H are down. Consequently, component h cannot go down 
if the system is in configuration H. Note that our model is not applicable to 
circumstances where the ‘ageing process’ continues while a component is unused. 

(b) P(h I H +  h ’ )  > P(h I H )  indicates that component h works faster if the additional 
component h’ has failed. This can be used to model situations where work is shared 
between components that are up. 

(c) 6(h I H +  h + h ‘ )  < 6(h I H +  h )  indicates that the repair of component h is slowed down 
if an additional component h’ has failed. This situation occurs when components share 
a common repair facility. 

(d) 6(h I ( h ,  h ‘ ] )  > 6(h’ I ( h ,  h ’ ) )  = 0 models the (pre-emptive) priority of the repair of 
component h over that of component h ’ .  

Steady state behaviour 

We are interested in the steady state behaviour of the stochastic process 2?= (k(t), t 2 0) 
on X, defined by letting k(t) = H if at  time t the configuration of the system is H .  It will be 
clear that, in general, the process k is not a Markov process, as the future evolution of the 
system depends on the residual amounts of work and repair. In order to imbed the process 
in a Markov process X we define for a given configuration H the vector 
s = ( ~ 1 ,  ..., S,V) E Y= RY by 

the residual amount of work for component h,  if h f H 
the residual amount of repair for component h,  if h E H s h =  [ 

Owing to the independence assumptions on the random variables ( R h , i } i  1 and { w h , i )  i 2 I the 
state of the system is then completely determined by a pair ( H ,  s) E X x  9 and, defining 
X ( t )  = ( H ,  s) if at time t 2 0 the system is in state ( H J ) ,  it is easily verified that the stochastic 
process X =  ( X ( t ) ,  t 2 0) on X X  B has the desired Markov property. The regularity 
conditions R1-3 ensure that X has a limiting probability density function p (see, for example, 
Reference 15), which we will obtain in Section 5. For all H E X t h e  steady state probability 
T ( H )  that the system is in configuration H is then given by 

T ( H )  = lim P(J?(t) = H )  = lim P ( X ( t )  E ( H ,  9)) = p ( H ,  s) d s  (2.3) 
[-a t-m 9 

3. PRODUCT FORM CONDITIONS 

It will be convenient to  define for an arbitrary state H =  ( h l ,  ..., hn) E 
y: (1, ..., n) +- (h l ,  ..., h,] the sets H z  for k 2 0 by H: = 0 and 

(H # 0) and bijection 

H :  = ( r ( l ) ,  ..., y ( k ) ) ,  k =  1, ... ) n 
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The bijection y indicates a possible ordering of the components of H ,  which might indicate, 
for example, that component y(i) went down before component y ( j )  if i < j .  

Definition 3.1 

An ordering y of H =  ( h l ,  ..., h,) is called a breakdown path if 

/3 (y(k)  Iff;-,) > 0,  k =  1, ..., n 
and a repair path if 

6 ( y ( k ) I H ; ) > O ,  k =  1,  ..., n 
The set of all possible breakdown paths for state H is denoted by I'p(H) and the set of all 
repair paths is denoted by I'a(H). 

Note that H E  sfdoes not necessarily imply that HZ E s fand  that in principle &?may contain 
states for which no breakdown path and/or repair path exists. However, this pathological case 
will be excluded by the conditions PFC 1 and PFC 2 below. The product form conditions are 
the following. 

PFC 1 

For any state HE sf (H # 0) we must have that 

i.e at least one component is being repaired and as a result I '&(H)  f 0. 

PFC 2 

For any state H €  sf ( H  # 0) we must have that 

6(h 1 H )  = 0 /3(h 1 H -  h )  = 0 for all h E H such that H- h E 2 

i.e. if component h cannot be repaired in configuration H it cannot break down in 
configuration H -  h, and vice versa. As a result we have that r s ( H )  = I'a(H). 

PFC 3 

For any state H =  (hl ,  ..., h,) E s f ( H #  0) and repair path yEra(H) we must have that 

where K ( H )  is some strictly positive value depending on H only. We define K ( 0 )  = 1. This key 
condition is related to the well-known Kolmogorov criterion for a Markov chain to be 
reversible (cf. Reference 10, pp. 21-25]). A further discussion of this condition and an 
interpretation are given in Section 3.2. 

The speed functions 0 and 6 often suggest a form for the function K ( * ) ,  in which case PFC 
3 can be checked using the equivalent condition PFC 3'  stated below. 
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PFC 3' 

For all states h E A? ( H  # 0 )  and all components h c H such that 6(h I H )  > 0 we have that 

Remark 3.2 

As we will frequently use PFC 3' let us briefly show that the two are indeed equivalent. First 
observe that for H =  ( h l ,  ..., h,) 6 %(H # 0 )  and h E H such that 6(h I H )  > 0 there exists a 
repair path y E Fa(H) with y ( n )  = h, i.e. the repair of component h is completed first. Using 
this path in (3.1) we obtain 

Thus PFC 3 implies PFC 3 ' .  Repeatedly using PFC 3' in (3.2) yields that 

K ( H )  = K(0)  

for each repair path y E ra(H). Noting that 
PFC 3. 

we defined K(0)  = 1 it follows that PFC 3'implies 

Source balance 

In order to illustrate the role of the conditions PFC 1-3 let us first assume that wh and Rh 
are exponentially distributed with mean E [  wh] = A;' and E[Rh] = p;' respectively. Owing to 
the memoryless property of the exponential distribution, the process 2 = (*(t), t 2 0) defined 
in Section 2 is a Markov process at X,  for which a unique steady state distribution T exists 
if ,f is irreducible. This is guaranteed by condition PFC 1, as the existence of a repair path 
for each state H E  &guarantees that all states communicate with the state 0.  

The steady state distribution ?r can be found as the unique solution (up to normalization) 
of the global balance equations, which require that for every state H ~ % t h e  'total rate of 
change' is equal to zero, i.e. 

where we used the observation that 6(h 1 H )  > 0 * H -  h E &and P(h I H )  > 0 * H + h E M. 
In order to find a closed-form solution to the global balance equations we require the stronger 
source balance property to hold, which in our model requires that for every state HE &: 

the probability flow into state H due to the breakdown of component h equals 
the probability flow out of that same state H due to the repair of component h, 
and vice versa 

(3.4) 

This notion of source balance is related to job-local balance as introduced in Reference 12 and 
local balance as introduced in Reference 13, which are known to be responsible for insensitive 
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product form results. It is readily verified that the global balance equations (3.3) are satisfied 
if the source balance property (3.4) holds, i.e. if we can find a probability distribution r such 
that for every state HE &, H # 0 

r ( H ) 6 ( h I  H)Ph=?r(H-h)P(hIH-h)Xh (3.5) 
for every component h E H such that H- h E %. In Theorem 3.3 below we will see that this 
is possible provided conditions PFC 1-3 are satisfied. In Section 5 we will show that the same 
result holds true for generally distributed quantities of work and repair, i.e. that the steady 
state probabilities r ( H )  given in (3.6) below are insensitive. 

Theorem 3.3 

Provided that PFC 1 holds, the conditions PFC 2 and PFC 3 are both necessary and 
sufficient for source balance. Further, if the conditions PFC 1-3 are satisfied, the steady state 
distribution r of 2 is given by 

(3.6) 
Ah 

h c H  Ph 
r ( H ) = c K ( H )  n: - 

with c a normalizing constant and K ( H )  given by (3.1). 

Pro0 f 
That PFC 2 is a necessary condition for source balance follows directly from the 

irreducibility of R and the regularity conditions R1-2, which imply r ( H )  > 0 for all HE X. 
Let H =  (hl ,  ..., h,) (H # 0) and let y c I’a(H) denote an arbitrary repair path for state H. By 
repeatedly using (3 3) it readily follows that source balance implies 

As the ratio between r ( H )  and r (0 )  must be constant, we conclude that PFC 3 is also 
necessary for source balance. 

All that remains to verify is that ?r given by (3.6) satisfies the source balance equations ( 3 . 9 ,  
as these imply that each separate term between brackets in (3.3) equals zero. Owing to PFC 
2 we need only consider states HE %and components h E H with 6(h 1 H) > 0. As for any such 
state we also have H- h E % with P(h I H - h )  > 0 we obtain from (3.6) and PFC 3‘ that 

r ( H )  = K(H)Xh -P(hIH-h)Xh - 
a(H- h )  K ( H -  h ) P h  6(h I H ) P h  

which completes the proof. 

Remark 3.4 

The interpretation of PFC 3 is that given the starting point 0 E Z a n y  path in the state space 
which ultimately returns to 0 must have the same probability whether this path is traced in one 
direction or the other. 

Remark 3.5 

The equations (3.5) are also called detailed bahnce equations, l4 a term reserved to express 
balance between any pair of states, in this example that is between states H and H- h. When 
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applied to the same state description, detailed balance implies source balance, but in Section 
4.2 (Equation (4.4)) we will see that source balance does not necessarily imply detailed balance 

4. QUEUEING FOR REPAIR 

The model described in Section 2 above is primarily suited for systems with a hierarchic 
structure. As the breakdown and repair speeds depend only on the set of components that are 
down and not on the order in which they broke down, product form results for systems with 
an FIFO queue of failed components in front of a limited number of repair facilities, for 
example, cannot be directly concluded using this model. 

4.1. Identical components 

The simplest such case is the following basic machine interference model (see Reference 10, 
p. loo), where all components h E C are assumed to be identical and where wh and Rh are 
exponentially distributed, each with the same mean E[Wh] = A-' respectively E[Rh]  = p - * .  
The state of the system is now completely determined by the number of components that are 
down. We denote by $(n), n = 0, ..., N -  1, and $(n), n = 1, ..., N ,  the total work, respectively 
repair speed, when n components are down. For example, $(n) = 1 models an FIFO queue for 
repair, whereas $(n) = n models independent repairs, The situation that only one component 
is actually working with the others in cold standby (not working) can be modelled by letting 
4 ( n )  = 1, reflecting an 'FIFO queue for breakdowns'. 

We define nmax as the maximum number of components that can be down at the same time. 
As initially all components are up nmax = min (n: $(n) = 0) .  We assume that + and $ are 
bounded and that $(n) > 0, n = 1, ..., nmax. These conditions are the equivalent of R 1 and 
PFC 1. Then, denoting by d(t) = n the event that n components are down at time t 2 0, it can 
easily be verified that the steady state distribution if of the Markov chain d= [x(t), t 2 0) (a 
birth-death process) is given by 

with c a normalizing constant. Thus d has a product form steady state distribution, even 
though conditions PFC 2 and PFC 3 are not necessarily satisfied. Instead, however, we have 
assumed that all components are identical with exponentially distributed quantities of work wh 

and repair Rh. 

Remark 4.1 

The steady state distribution ii satisfies the detailed balance equations ( 3 3 ,  if we only 
specify the total number of components, n, that are down. This seems to conflict with Remark 
3.5, since the source balance property (3.4) does not generally hold. Note, however, that here 
we work with a different, aggregated, state description. 

4.2. Non-identical components 

In  relation with queueing the conditions of Section 4.1 may be relaxed. Let us 
illustrate this by considering one concrete situation in which the components of some subset 
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down UP 

Figure 1. Queueing network interpretation 

Q C C join an FIFO queue for repair. In order to provide insight we will constructively 
investigate the consequences of allowing queueing in this case. These consequences are 
summarized in Theorem 4.2 below, which states that a product form steady state distribution 
is still possible, provided the additional conditions Q 1-3 are satisfied. 

It will be convenient to identify each component with a job, circulating between node ‘up’ 
and node ‘down’, in a two-node queueing network (see Reference 7 and Reference 10, 
pp. 99-105). We have depicted the network corresponding to the model with one FIFO queue 
for repair in Figure 1. Jobs h j! Q can, for example, be served in a processor sharing manner, 
receiving their required amount of repair, R h ,  at speed 6(h I H )  which decreases with an 
increasing number of jobs in node ‘down’. Similarly, accelerated ageing processes in the case 
of many failed components can be modelled by assigning a separate server to each job at node 
‘up’, consuming the amount of work wh at speed /3(h I H )  which increases with an increasing 
number of jobs in node ‘down’. The parts of the network where the source balance property 
(3.4), with respect to the augmented state description (H,  [) (see below), will be seen to hold 
are indicated by yigg. 

In order to model the positions in the queue we augment our description of a configuration 
H with a bijection [: ( 1, . . . , m) - H n Q, where m = I H f l  Q I and [(i) denotes the component 
that occupies position i in the queue, i = 1, ..., m. This configuration is denoted by (H, [). For 
notational convenience we will write [i rather than [(i) and omit parentheses if there is no 
danger of ambiguity. The configuration with one additional component h € Q down and in the 
last position of the queue (arrival) is denoted by ( H + h , ( E ~ - m , h ) ) .  Similarly, the 
configuration with the component up instead of down (departure) is denoted by 
( H  - [I, ( E 2  - m ) ) ,  where we use the convention that j = 0 for i > j .  The configuration- 
dependent breakdown and repair speeds are denoted B(h I H,  [) and 8(h I H, [), where queueing 
for repair of course implies that for each component h € H n Q the repair speed 8(h 1 H ,  5) = 0 
if  h # El ,  since only the component that occupies the first position in the queue is being 
repaired. We assume that the speed functions 6 and 6 are bounded and that in each state (H,  E) 
with H # 0 there is at least one component that is being repaired with a positive speed. These 
are the equivalent of R 1 and PFC 1. Further we assume that wh and Rh are exponentially 
distributed with mean E[Wh] = X i ‘  and E[Rh]  = p i ‘ ,  so that we can define the Markov 
process x= ( f ( t ) ,  t 2 0) by letting R(t) = (H,  [) if at time t the system is in state (H,  E ) .  

Balance equations 

Analogous to the case without queueing, the unique steady state distribution ii for 2 can 
be found as the normalized solution of the global balance equations, which require that for 



292 E. SMEITINK, N. M. VAN DIJK AND B. R. HAVERKORT 

all states (H, E) 

+ [F(H, E ) ~ ( E I  1 H ,  Opt1 - % ( H -  Em, (El + m -  l ) )D(Em 1 H -  Em, ( 4 1  - + m -  1 ) ) & ~ 1  = O  (4.2) 

It will be clear that source balance cannot be satisfied at the queue, corresponding to the last 
term of (4.2): the state ( H ,  [) can be entered due to the breakdown of component Em, but since 
Em is the last component in the queue, state ( H ,  E) can in general not be left due to  the repair 
of component Em (the only exception being the case m = 1). 

However, we can still try to solve the global balance equations in a local manner, i.e. by 
requiring that each separate term between brackets in (4.2) above equals zero. As in the case 
without queueing, the terms corresponding to components h p Q are equal to zero, provided 
that for all components h E H n QC 

* ( H ,  t ) z ( h  I H ,  E)Ph = * ( H -  h, E)B(h 1 ff- h, [ ) A h  (4.3) 

reflecting source balance for all components h p Q, both in node ‘up’ and node ‘down’ (see 
Figure 1). By considering the rate of change in state ( H -  [ I ,  ( E 2 - m ) )  rather than (H ,  t ) ,  we 
see that the terms in the third sum all equal zero, provided that 

(4.4) 

This equation reflects that the probability flow into state (H - El, (,5 - m ) )  due to the repair of 
component El must equal the probability flow out of that same state due to the breakdown of 
component [ I ,  corresponding to source balance for components h E Q in node ‘up’. Note that 
(4.4) is not a detailed balance equation (see Remark 3.5). The last equation is just the last term 
of (4.2) corresponding to the queue (no source balance), 

(4.5) 

f W , E P ( E l  I H , t ) P € l =  f ( H -  E19(t2-m>>BcEl I H -  El,(E2-+rn))XEI 

+(H,E)~(EI I H , t ) f i ~ , =  * ( H -  E m l ( E 1 - m - l ) ) B ( E m l H -  E m y ( E 1 - m - ~ ) ) & m  

Conditions and result 

As in Section 3 (see Equation (3.7)) we can repeatedly use the equations (4.3)-(4.5) to obtain 
the (fixed) ratio between the steady state probabilities F(H, E) and ii(0,0). However, if 
8(& 1 H,  4 )  > 0 we can either use (4.4) or (4.5) to proceed with. If both 8(& I H, E) > 0 and 
6(h 1 H ,  [) > 0 for some h p Q we may even use any of the three equations. These observations 
lead to the conjecture that the global balance equations (4.2) can only be solved in this local 
manner if the conditions Q 1-3 below are satisfied. 

Q 1 All components h € Q require an exponentially distributed amount of repair R with the 
same mean I l p .  

Q 2 The speed functions 

- 

and 8 are of the form 

i.e. apart from modelling the queue, the order 5 does not influence the speeds. 
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Q 3 For all states (H,  () and for all components h, h’ E Q we must have that 

6(h I H )  = S(h’ I H )  (4.7) 

i.e. all components h E Q are repaired in exactly the same manner. 

With these conditions we are almost back in the setting of our original model. Although 0 and 
6 are not the real speed functions in the model with queueing, we can still use the notion of 
(now fictitious) breakdown and repair paths as introduced in Definition 3.1 and formulate the 
conditions PFC 1-3. We then have the following result. 

Theorem 4.2 

/3 and 6 that satisfy PFC 1-3 and Q 3, the steady state distribution ?r of R is given by 
If condition Q 1 holds and the speed functions 6 and 8 are given by (4.6) for some functions 

%(H,  t )  = c K ( H )  (4.8) 

with c a normalizing constant and K ( H )  given by (3.1). 

Pro0 f 
Using (4.6) and condition PFC 3‘  the source balance equations (4.3) and (4.4) can be directly 

verified in the same manner as was done in the proof of Theorem 3.3.  Equation (4.5) can 
be verified by first using (4.6) and the conditions Q1 and Q2 to write $(tl 1 H ,  = 

0 &(ti I H)Ph = &(Ern I W P .  

Remark 4.3 

We have already hinted at the connection between insensitivity and source balance as related 
to job-local balance. l 2  Without proof we state that the steady state probabilities %(H,  t )  
depend on the distributions of wb for h t C and R h  for h Q only through their means. These 
distributions correspond to the parts of the network in Figure 1 where source balance is 
satisfied, indicated by 98. This partial insensitivity can be proven along the same lines as will 
be done for the case without queueing in Section 5 .  

Remark 4.4 

The above extension of our model to incorporate queueing reflects only one of the many 
possibilities. However, we considered FIFO queueing for repair as it seems to be one of the 
most natural cases. Further, Theorem 4.2 can easily be extended to model several different 
queues. Note that components in cold standby can also be modelled by an ‘FIFO queue for 
breakdowns’. 

5 .  INSENSITIVITY 

in Section 4 we extended our model to incorporate queueing for repair, and saw that in order 
to obtain a product form steady state distribution exponential assumptions are needed. In this 
section we consider the model as stated in Section 2 and concentrate on insensitivity. The main 
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results is the technical Theorem 5.2, yielding a product form limiting probability density 
function p :  YZ'x 8+ R+ for the Markov process X defined in Section 2. The more practical 
insensitive product form expression for the steady state probabilities n ( H ) ,  h E YZ, given in 
Corollary 5.3, is an immediate consequence. 

Although this insensitivity result can in principle be concluded from Reference 13, we prefer 
to give a direct proof, both for completeness and because it clearly illustrates the role of the 
regularity- and product form conditions. Extensions of Theorem 5.2 and Corollary 5.3 so as 
to include queueing for repair under appropriate conditions can be obtained by combining the 
results from this section and Section 4. 

Remark 5.1 

In the proof of Theorem 5.2 we will assume that a limiting probability density function p 
of X exists. That this is indeed the case can be argued under the sufficient regularity conditions 
R 1-3, which further imply that p can be found as the unique continuously differentiable 
solution of the stationary forward infinitesimal Kolmogorov equations (see, for example, 
Reference 15, Theorems 1.9 and 2.3). This solution is called the stationary probability density 
function of X .  

Theorem 5.2 

Under conditions PFC 1-3 and R 1-3 the limiting probability density function p of X is 
given by 

with c a normalizing constant and K ( H )  given by (3.1). 

Pro0 f 
First we derive the forward infinitesimal Kolomogorov equations (5 .2) ,  which express the 

distribution of X at some arbitrary epoch t in terms of the distribution of X at t - A .  Then, 
using the fact that a unique stationary probability density p for X exists which is continuously 
differentiable w.r.t. the residual amounts of work/repair s h ,  we obtain the stationary forward 
infinitesimal Kolmogorov (or global balance) equations (5.6). The proof is completed by 
verifying that the density p given in (5.1) is indeed continuously differentiable and satisfies 
these global balance equations. 

In order to derive the forward infinitesimal Kolmogorov equations we define for any 
configuration HE X a n d  for any A > 0 the vectors A H ,  - A H  and A H  in P b y  

zip = A f l ( h I H ) ,  i f h P H  Ah"= A ,  if A ? = O  
{ A b ( h , H ) ,  i f h E H  - [o , i f A ? > o  

and A H = A H + A H .  Further we denote by e h  the hth N-dimensional unit vector. The 
interpretation of the vector A H  is that in an infinitesimal time A a component h 6 H performs 
an amount of work Ah" and a component h E H  receives an amount of repair a?. The 
additional vectors AH and A H  are introduced in order to define infinitesimal elements 
(s - A H ,  s) C Y with positive volume. Consider an arbitrary state (H,  s) E YZx 9 with sh > 0 
for all h E C.  As all speeds p and 6 are finite we can choose A small enough such that 
Sh - Ah" > 0 for all h E C and thus (H,  (s - A H ,  s)) C S x  % Conditioning upon the epoch 
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t - A there are three possibilities for the event X ( t )  € (H,  (s - A H ,  s)) to occur: 

The configuration does not change in the time interval (t - A ,  t ) ,  i.e. 

X ( t  - A )  € (H,  (S - A H ,  s + A H ) )  

The configuration changes from H + h to H in (t - A ,  t )  due to the repair of some 
component h with a residual amount of repair r <  A6(h I H + h )  at time t -  A .  In this 
case the change in configuration occurs at time t - A + r/b(h I H + h ) .  In order to account 
for the change of speeds in the interval ( t  - A ,  t )  we define the vector a(h,  7) E 8 by 

h ’ = h  P 

Note that, for example, 

is the amount of repair received by component h‘ E If in the interval ( t  - A ,  t ) .  Thus, 
given some 7 E  (0, A6(h I H +  h ) )  we must have that 

and the amount of work that component h can perform after its repair must be in the 
interval 

The configuration changes from H - h to H in ( t  - A ,  t )  due to the breakdown of some 
component h with a residual quantity of work 7 < AP(h 1 H - h )  at time t - A .  Defining 
the vector b(h, r )  E Yanalogous to the vector a(h,  r )  in the previous case, we must have 
that 

X ( t  - A )  E ( H  - h, (b(h, T )  - A H ,  b(h, T )  + A H  - A f e h ) )  

and the amount of repair that component h needs after its breakdown must be in some 
interval with width Ah” around Sh. 

All other contributions would require two or more components to change status in the 
interval ( t  - A ,  t ) .  Owing to the regularity assumptions, these contributions will become 
negligible as A 10 and can thus be omitted. From the above observations and using the Markov 
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property it follows that 

P ( X ( t )  E (H,  s - AH,  s))) = P ( X ( t  - A )  E (H ,  (S - A H ,  s + A H ) ) )  

( S ( h  I h - h )  > 0 )  

E ( H -  h,  (b(h,  7) - - A H -  7 e h ,  b(h, 7 )  + A H -  A f e h ) ) )  (5.2) 
where we have used the assumption that the random variables wh and R h  have densities fh 
respectively g h  and o( -) denotes any function with the property that o(x) /x  -+ 0 as x 10. 

Now, without loss of generality, assume that a unique stationary probability density p exists 
which is continuously differentiable in its residual amounts of work/repair s h .  Then, using the 
mean value theorem we obtain 

P ( X ( t )  E (H,  (S - AH,  s))) - P ( X ( t  - A )  E (H, (S - AH, s + A H ) ) )  

= S a E @,aH' 
[ p ( H ,  s - AH + a )  - p ( H ,  s - A H  + a)] da 

= p ( H ,  s - AH + 0') - p ( H ,  s - AH + a ' )  

for some vector a' E (0, A H ) .  Note that s - AH + a' -+ s along some trajectory in the interior 
of 9 as A 10. Again using the mean value theorem, for each separate integral in the second 
term of the r.h.s. of (5.2) we obtain (apart from the factor f h ( s h ) A h H +  o ( A f ) )  

A8(h I H + h )  
dP(X( t  - A )  E ( H +  h, (a (h ,  7 )  - AH - 7 e h ,  a(h ,  7 )  + A H  - Z h H e h ) ) )  - 

- - p ( H +  h, ~ ( h ,  7 )  - A H  + a)  du d7 
uC (O.AH - AhHet,) 

p ( H +  h ,  a(h, 7 ' )  - A H  + a2)A6(h I H +  h )  (5.4) = ( , h * , C  h ' # h l  

for some value T~ E (0, A6(h I H +  h ) )  and vector a2 E (0, AH - A h H e h ) .  In a similar manner we 
obtain for each integral in the third term of the r.h.s. of (5 .2)  (apart from the factor 
g h ( &  )A  f + o(A hH)) 

A\B(h I H -  h )  
dP(X( t  - A )  E (ff- h, (b(h, 7 )  - AH - T e h ,  b(h, 7 )  + A H  - X h H e h ) ) )  

for some value 73 E (0, Ap(h I H -  h ) )  and vector a3 E (0, AH - A h H e h ) .  Note that both 
a(h, 72) - + a2 -+ s - s h e h  and b(h, 73)  - 4 H + a3 -+ s - s h e h  along some trajectory 
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in the interior of <Yas A 10. Finally, eliminating the common factor n h '  EC A$ in (5.3)-(5.5), 
dividing by A and letting A LO we obtain the stationary forward infinitesimal Kolmogorov 
equations 

= O  (5 .6)  

All that remains is to verify that the probability density p as given in (5.1) above satisfies these 
equations. Consider some component h f H  with P(h I H )  > 0. First note that the regularity 
condition R 3 and PFC 2 imply that H +  h E *and 6(h 1 H + h )  > 0. Differentiating (5.1) yields 

and using lim.rh10 [l  - F h ( X h ) ]  = 1 we obtain 

lim p ( H +  h ,  X )  = C K ( H +  h )  fl [ I  - F h ( s h ) ]  fl [ I  - G h ( . S h ) ]  (5 .8)  
I - s - sheh h f H t h  h c H  

With condition PFC 3 '  it follows that all contributions due to components h f! H in (5.6) are 
equal to zero. In a similar manner it can be shown that all contributions due to components 

1 LJ h E H are equal to zero also. 

Using Theorem 5.2 the steady state probability ?r(H)  that the system is in configuration H 
can be readily obtained by integrating the limiting probability density function p over all 
possible residual amounts S h  of work (if h e  H )  or  repair (if h €  H ) .  

Corollary 5.3 

Under conditions PFC 1--3 and R 1-3 we have for all H E  9 that 

(5.9) 

with C a normalizing constant and K ( H )  given by (3.1). 

Pro0 f 
The change of order of integration and taking products below is justified by the fact that 

all integration variables occur in exactly one separate factor in the product form (5.1). Thus, 
m m 

T(H)=  [ p ( H ,  S) d s = C K ( H )  [ I  - F h ( s h ) ]  d.Sh fl [ - G h ( S h ) ]  d S h  
h f H  0 h t H  0 

(5.10) 
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6 .  EXAMPLES 

In this section we give a number of examples that illustrate the kind of systems that can be 
modelled, i.e. for which the speed functions satisfy the product form conditions. 

6.1. Simple series-parallel system 

Consider a system consisting of one critical component, a, and a set B = (61, ..., bMM) of M 
secondary components (see Figure 2). The system is operational if the critical component and 
at least M -  k of the secondary components are up. We assume that none of the components 
can be used if the system is not operational, so that the set of possible configurations is given 
by 

S v = ( H C C :  I H j < k + l )  

Further we assume that there is a single repair unit giving pre-emptive priority to the critical 
component and that the secondary components are repaired in a processor sharing manner. 
Defining n e ( H ) =  I H n  BI as the number of secondary components that are down in 
configuration H ,  the breakdown and repair speeds for the secondary components b E B are 
given by 

and for the critical component a we have 

It can easily be seen that PFC 1 and PFC 2 are satisfied. In order to check PFC 3’, the 
equivalent of PFC 3, observe that if a E H all repair paths y E r s ( H )  have y(1) = a, i.e. the 
critical component is repaired first. Thus, the only conditions for the function K are 

Figure 2. Series-parallel system 
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As a consequence K is given by K ( H )  = ~ B ( H ) !  and from Corollary 5.3 we conclude that 

299 

processor 

switch memory 

processor 

with c a normalizing constant. 

--, 

Remark 6.1 

From Section 4.2 it can be concluded that instead of a processor sharing discipline, also an 
FIFO queue for the repair of the secondary components (Q= B )  leads to a product form 
steady state solution provided that for all A €  B the required quantity of repair Rh is 
exponentially distributed with mean p - ’ .  The corresponding function 6 for b €  B in (4.6) is 
given by 

Otherwise the functions 0 and 6 are as given above. It can easily be verified that conditions 
Q 1-3 and PFC 1-3 are satisfied, now with K ( H )  = I ,  so that from Theorem 4.2 we conclude 
that the steady state probabilities i i(H, [) are given by 

with c a normalizing constant. Noting that s(H, [) does not depend on 4‘ and that there are 
~ B ( H ) !  possible orderings 4 we see that the steady state probability that the set of components 
H is down is still given by (6.1), of course with E[Rh]  = p - l  for h C B.  

6.2. Fault tolerant database system 

Consider a database system consisting of a front-end, two processing subsystems and a 
database. Each subsystem consists of a switch, a memory and two processors and is 
operational if the switch, the memory and at least one of its processors are up. The system 
as a whole is operational if the front-end and the database are up and at least one of the 
processing subsystems is operational. The system can be interpreted as a nested series-parallel 
system (see Figure 3). 

!- 

Figure 3. Nested series-parallel system 
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We assume that the components in a subsystem cannot be used if that subsystem is down 
and if the whole system is down none of the components can be used. In order to define the 
speed functions and the set of all possible configurations we define for each component h € C 
its direct dependability set D ( h )  as the set of components, other than h,  that can only be used 
if component h is up. For example, if h denotes a processor D ( h )  = 0 and if h denotes a switch, 
D ( h )  contains all the component of the subsystem, except for the switch itself. Further, from 
Figure 3 it is apparent that the system has four different path sets Pi C C, i = 1, ..., 4, where 
a path set is defined as a minimal set of components that must be up for the system as a whole 
to  be operational. Let us label the four processors by PI,  ..., p4 such that pI  E Pi, i = 1, ..., 4. 
The set of all possible configurations M i s  given by 

i 

i.e. each component was contained in at least one path set with all components up just before 
it broke down. For the breakdown speeds, we have for all HE 

P(h 1 H )  = 0 * 3h' E H: h E D ( h ' )  (6.2) 

and all h # H 

As PFC 2 requires that for all HE X a n d  all h E H 

6 ( h / H ) = O o  3h'EH: hED(h')  (6.3) 

we must assume a hierarchic repair strategy, which we model as follows. Each subsystem has 
its own repair unit, giving pre-emptive priority to the memory and the switch. (Note that, 
within a subsystem, the memory and the switch cannot be down at the same time.) If the 
database goes down then both repair units are assigned to repair the database immediately. 
The same holds for the front end. Thus, the database and the front end have pre-emptive 
priority at system level. The repair units resume the work they were doing as soon as they finish 
the repair of a component with higher priority, i.e. the priority disciplines are work conserving. 

Having modelled the hierarchy, i.e. when speeds equal zero, we have the freedom to assign 
the positive speeds in an arbitrary manner. Suppose that the repair speed for a processor is 
equal to 1 if it is the only processor that is down in its subsystem but that, if the other one 
goes down too, this speed drops to  q for both processors. Further, if in a subsystem both 
processors are up then they both work at speed 1 and if only one of them is up then it works 
at speed p. The speeds of all other components take the values 0 or 1 only. 

Again, it is easy to see that PFC 1 is satisfied. That PFC 2 is satisfied follows from (6.2) 
and (6.3). In order to check PFC 3, consider a configuration H # 0 and an arbitrary repair 
path y E I'&(H). The only factors 

that matter in (3.1) are those for which ~ ( k )  denotes a processor, all other factors P/S being 
equal to 1. From this observation it follows that the function 

if in both subsystems at most one processor is down 

if all four processors are down 
K ( H )  = [:/q, if in one subsystem both processors are down 

( p / ~ ) ~ ,  

satisfies PFC 3. 
As in Remark 6.1 it can be verified that the steady state distribution x is still of product form 

if the processors in each subsystem join a FIFO queue for repair (one separate queue for each 
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subsystem), provided that they require exponentially distributed amounts of repair with means 
p a  and p.bl for subsystem a and b, respectively. Note that the case where all four processors 
join the same queue would violate condition Q 3. 

- I  

6.3. Multi-stage interconnection network 

Consider a multi-stage interconnection network (MIN) connecting K inputs to K outputs. 
We assume that K is a power of two. When using 2 x 2 internal switches to build up the MIN, 
there are M = 'log K stages required. The number of switches per stage is N =  K12. In Figure 4 
an 8 x 8 MIN is depicted. 

Assume that under normal operation all switches that are up work at  speed 0 = 1. Switches 
that are down are repaired in a processor sharing manner. However, there is a critical number 
B;, 1 < B; < N,  associated with each stage, i = 1, ..., M. As soon as B; switches of stage i are 
down the network abandons normal operation. Stage i is now critical and all switches that are 
up stop working. The repair of all switches that are not in the critical stage is also stopped in 
favour of the B; switches that are down in the critical stage i. These are repaired in a processor 
sharing manner. As soon as one of the switches in the critical stage is repaired the system 
resumes normal operation again. 

Let C, denote the set of switches in stage i and let n ; ( H )  = I H n  Ci I denote the number of 
switches that are down in stage i if the system is in configuration H,i= 1, ..., M .  

The set .@of all possible configurations is given by 

.rP= ( H C C :  ( 3 j E  { I ,  . . . ,MJ)(  n j ( H ) < B j a n d  n ; ( H ) < B ; , i # j ) J  

For all states H and switches h E C the speeds 0 and 6 are given by 

1, if n ; ( H )  < B;, i =  1, ..., M 
1 H )  = [o, else 

and 

i f n j ( H ) = B , f o r s o m e j E ( l ,  . . . ,A4  a n d h € S j  
i f n j ( H ) = B j f o r s o m e j € ( l ,  ...,MJ a n d h f S j  

stage 1 stage 2 stage 3 

Figure 4. Multi-stage interconnection network 
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From this, it is not difficult to see that PFC 1 and PFC 2 are satisfied. Finally, in the same 
manner as was done in Example 6.1, it can be verified that the function K ( H )  given by 

satisfies PFC 3 ‘ . 

7.  CONCLUSION 

In this paper we have characterized a class of availability models that exhibit a product form 
steady state solution. The conditions that have to be fulfilled for a model to fall in this class 
(the product form conditions) have been stated and examples are given that show how these 
conditions can be verified. Further research is conducted on using the product form results to 
obtain bounds for non-product-form models. This can be done by making proper adjustments 
in the speed functions 8 and 6 .  
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