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Abstract

A graph is distance hereditary if it preserves distances in all its connected induced subgraphs.
The MINIMUM FILL-IN problem is the problem of �nding a chordal supergraph with the smallest
possible number of edges. The TREEWIDTH problem is the problem of �nding a chordal embedding
of the graph with the smallest possible clique number. In this paper we show that both problems
are solvable in linear time for distance hereditary graphs. ? 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

A graph is called distance hereditary if it preserves distances in all connected vertex
set induced subgraphs. They were introduced in [2]. They form a subclass of the
well-studied class of perfect graphs. Moreover they belong to the subclass of weakly
chordal graphs (no chordless cycle of length greater than four in the graph nor its
complement). They are also interesting because they can be represented by a structure
of size O(n), where n is the number of vertices of the graph. Note that distance
hereditary graphs can all be generated by starting at a single vertex, appending a leaf
at any vertex, creating a nonadjacent “false” twin of a vertex, and creating an adjacent
“right” twin [2]. On the other hand, distance hereditary graphs contain the cographs as
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a subclass. Many problems that are NP-complete in general can be solved e�ciently
for distance hereditary graphs. One example is the Hamilton cycle problem [19].
Much attention has been drawn to triangulation problems because of a large number

of applications (e.g. Gauss elimination of sparse positive-de�nite matrices [21]). A
triangulation of a graph G is an extension G′ of G with the same vertex set that is
chordal. A graph is chordal if it has no chordless cycle of length greater than three.
One problem is MINIMUM FILL-IN, i.e. �nding a triangulation with a minimum number
of additional edges. The other problem we consider in this paper is TREEWIDTH. The
objective is to �nd a triangulation that has a maximum clique size (clique number) that
is as small as possible (the treewidth is the minimum clique number of a triangulation
minus one). Note that a tree on at least two vertices has treewidth one. Both problems
are NP-hard in general [23,1], but polynomial-time algorithms exist for many special
graph classes such as cographs, circle graphs and circular arc graphs, permutation
graphs and, more generally, cocomparability graphs with bounded dimension, chordal
bipartite graphs, etc. [5,14,18,17,3,22,4,15,8,13,20].
For cographs, the treewidth problem can be solved in linear time [5]. With the same

approach the minimum �ll-in problem can be solved in linear time for cographs. In
[4] both problems are solved in linear time for the larger class of permutation graphs.
On the other hand, existing polynomial time minimum �ll-in and treewidth algorithms
for circle graphs and circular arc graphs are not linear. Note that distance hereditary
graphs form a subclass of circle graphs (see for example [6]). Therefore, one could ask
whether one could extend the methods in [5] to distance hereditary graphs. The linear
time �ll-in and treewidth algorithms for cographs are based on the so-called cotree
representation of cographs. In our paper, we generalize the notion of a cotree to a
similar notion called a fragment tree for distance hereditary graphs. Using the structure
of the fragment tree, we show that the TREEWIDTH and the MINIMUM FILL-IN problem are
solvable in linear time for distance hereditary graphs. Moreover, if the fragment tree
of a distance hereditary graph is known, we can show that an elimination ordering and
the size of a minimum �ll-in and the treewidth can be determined in linear time with
respect to the number of vertices.
In Section 2 we introduce some notation and terminology, and give some preliminary

results. In Section 3 we discuss some structural properties of distance hereditary graphs.
In Section 4 we present an algorithm to solve the minimum �ll-in problem for distance
hereditary graphs, and we discuss the computational complexity of the algorithm. In
Section 5 we give a similar approach for solving the treewidth problem for distance
hereditary graphs. In Section 6 we give a brief further outlook.

2. Preliminaries

Throughout this section, let G = (V; E) denote a graph with vertex set V and edge
set E.
We denote the number of vertices of G by n and the number of edges of G by m.
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For a vertex x ∈ V , N (x) is the neigborhood of x in G and N [x] = {x} ∪ N (x) is the
closed neighborhood of x in G.
If 
 is a set and x ∈ 
, then we write 
− x instead of 
\{x}; if A⊆
, we write


−A instead of 
\A. For a nonempty subset Q of V , we write G[Q] for the subgraph
of G induced by the vertices of Q. For a vertex x ∈ V , we write G − x instead of
G[V − x] if V − x 6= ∅; for a proper subset W of V we write G −W for the graph
G[V −W ].
We call a set C of vertices connected if its induced subgraph G[C] is connected. If

G is disconnected, we call a connected set C ⊆V a c-set and the subgraph G[C] of
G induced by C a component of G if G[C] is connected and, for no proper superset
C ′ ⊃C, G[C′] is also connected.

De�nition 1. A graph is chordal if it does not contain an induced cycle of length more
than three.

De�nition 2. An ordering ¡ on the vertex set V of G = (V; E) is called a perfect
elimination ordering if with xy ∈ E; xz ∈ E, x¡y, and x¡ z, yz ∈ E (i.e. the
“larger” neighbors of any vertex induce a complete subgraph).

Lemma 3 (Fulkerson and Gross [11]). A graph is chordal if and only if it has a
perfect elimination ordering.

De�nition 4. A triangulation of G is a graph H with the same vertex set as G such
that G is a (spanning) subgraph of H and H is chordal.
A triangulation H of G is minimal if no proper (spanning) subgraph of H is also a

triangulation of G.

De�nition 5. The minimum �ll-in of G, denoted by m�(G), is the minimum number
of edges which are not edges of G, of a triangulation of G. A minimum elimination
ordering is a perfect elimination ordering of a triangulation of G with a minimum
number of edges. We write m�∗(G) = m + m�(G) for the number of edges in a
triangulation realizing the minimum �ll-in. The treewidth of G, denoted by tw(G), is
the minimum clique number of a triangulation of G minus one.

Remark. Notice that for the treewidth and minimum �ll-in problem we only have to
consider triangulations that are minimal.

If G is connected, then the distance between two vertices x; y of G is the length
(number of edges) of a shortest path from x to y in G. It is denoted by dG(x; y) or
d(x; y).

De�nition 6. G is called distance hereditary if for each pair of vertices x and y of
G, and each induced connected subgraph G′ of G containing x and y, dG′(x; y) =
dG(x; y).
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We use Ck to denote a cycle on k¿3 vertices. A house is obtained from a C5
by adding one extra edge (a chord) between two nonadjacent vertices of the C5. A
domino is obtained from a C6 by adding a chord between two vertices at distance
three in the C6. A hole is a cycle of length at least 5. A gem is obtained from a
house by adding one edge between two nonadjacent vertices of degree two and three,
respectively.
As observed in [2] distance hereditary graphs are exactly those graphs that do not

contain a house, a domino, a hole or a gem as an induced subgraph.
From the forbidden subgraph characterization it is clear that the class of distance

hereditary graphs is properly contained in the class of HHD-free graphs (i.e. graphs
that do not contain a house, a hole or a domino as an induced subgraph). In [7] the
authors use a dynamic programming approach to show that the treewidth problem and
the minimum �ll-in problem can be solved in time O(n6) for HHD-free graphs.
If T is a tree, we speak about nodes instead of vertices, and we use the term leaf

set to denote the set of nodes with degree one in T , and the term inner node for a
node with degree two or more. If the tree is rooted, we use the terms parent, child,
ancestor, and descendant in the usual sense.
A graph G = (V; E) is called a cograph if there is a tree T with V as its leaf set,

such that the inner nodes of T have label 0 or 1, and xy ∈ E for x and y in V if
and only if the least common ancestor of x and y in T has label 1. T is also called a
cotree for G. Cographs are exactly those graphs that do not have a path of length three
(a P4) as an induced subgraph (see, e.g. [6]). Moreover, each cograph is a distance
hereditary graph but not vice versa.
In the sequel we assume that 0’s and 1’s alternate in the cotree of a cograph. This

is no restriction: if two inner nodes with equal labels, 0 or 1, would be adjacent in
the cotree, then we can contract them to one inner node with the same label, and the
resulting tree is still a cotree of the same graph. By similar arguments we will assume
that every inner node of the cotree, except possibly for the root, has degree at least
three, i.e. has at least two children.

3. The structure of distance hereditary graphs

Throughout this section we assume that G=(V; E) is a connected distance hereditary
graph. For disconnected distance hereditary graphs the following structural results apply
to the components separately. We �x a vertex u of G and let Li be the set of vertices
that have distance i from u in G, i.e. Li = {x |dG(u; x) = i}. We also refer to Li as the
ith level.
Following [12] we get the following structural properties concerning the c-sets of

the levels.

Proposition 7. Let G and Li be as above.
1. Let C be a c-set of Li. Then G[C] is a cograph.
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2. Let C be a c-set of Li (i¿1). Then all vertices in C have the same neighbors in
Li−1.

3. Let x be a vertex in Li+1 for some i¿1; and let C1 and C2 be two c-sets of Li
containing neighbors of x. Then all vertices of C1 and of C2 are in the neighborhood
of x and all vertices in C1 ∪ C2 have the same neighbors in Li−1.

4. The neighborhoods of c-sets of Li+1 in Li can be tree-like ordered with respect
to the subset relation; i.e. if C1 and C2 are distinct c-sets of Li+1; then N (C1) ∩
N (C2) ∩ Li = ∅ or N (C1) ∩ Li and N (C2) ∩ Li are comparable with respect to ⊆.

5. Let C be a c-set of Li+1. Then all vertices in N (C) ∩ Li have the same neighbors
in Li − N (C).

We call a maximal union of c-sets of Li with at least one common neighbor in Li+1
(if Li+1 6= ∅) an m-set of Li. For technical reasons we also call the c-sets of the highest
level m-sets.

Lemma 8. All m-sets of Li are pairwise disjoint.

Proof. For the highest level this is obvious. For the other levels this is a consequence
of the fact that neighborhoods N (v)∩Li, v ∈ Li+1 can be tree-like ordered with respect
to the subset relation.

Corollary 9. All vertices that appear in the same m-set of Li (i¿1) have the same
neighbors in Li−1.

Clearly, since the c-sets of the levels induce cographs, the m-sets of the levels induce
cographs too.
Consider for each node t of the cotree TC of the m-set C, the set Ft of descendants

of t that are leaves (i.e. vertices of C). We call Ft a cotree fragment. The cotree
fragments are ordered in a tree-like manner, i.e. Ft1 ⊆Ft2 if t1 is a descendant of t2,
and Ft1 ∩ Ft2 = ∅ if neither t1 is a descendant of t2 nor t2 is a descendant of t1. Let C
be an m-set of Li and C′ be an m-set of Li+1. Suppose N (C′)∩ Li intersects C. Then
C is the only m-set of Li that has a nonempty intersection with N (C′). This follows
from the following result.

Lemma 10. Let C′ be an m-set of Li+1 and C be an m-set of Li. Then either N (C′)∩
C = ∅ or N (C′) ∩ Li⊆C.

Proof. It is su�cient to show that N (C′) can intersect only one m-set of Li. If two dis-
tinct c-sets C1 and C2 of Li have a common neighbor v ∈ Li+1, then by Proposition 7
all vertices in the c-set of Li+1 containing v have all vertices of C1 and C2 as its
neighbors. By the maximality of the m-sets this implies that all neighbors in Li of an
m-set of Li+1 are in one m-set of Li.

We call FC′ = N (C′) ∩ Li a neighborhood fragment.
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Lemma 11. If F1 is a cotree fragment and F2 is a neighborhood fragment; then
F1 ∩ F2 = ∅ or F1⊆F2 or F2⊆F1.

Proof. Note that by Proposition 7, all neighborhood fragments F2 that are subsets of
the m-set C have the property that all vertices in F2 have the same neighbors in C−F2.
Assume F1 is a maximal cotree fragment that intersects the neighborhood fragment F2
but neither F1⊂F2 nor F2⊂F1 is true. Let F1 = Ft and t′ be the parent of t in TC .
Then F2⊂Ft′ . W.l.o.g. we assume that t is a 0-node and therefore t′ is a 1-node. Pick
a vertex x ∈ F2 ∩ Ft , a vertex y ∈ F2 − Ft , and a vertex z ∈ Ft − F2. Then xz 6∈E
and yz ∈ E. This is a contradiction to the fact that all vertices of F2 have the same
neighbors in C − F2.

De�ne a fragment as a neighborhood fragment or a cotree fragment or a single
vertex.

Lemma 12. The fragments of an m-set C are ordered in a tree-like manner; i.e. if F1
and F2 are fragments of C; then either they are disjoint or comparable with respect
to the subset relation.

Proof. This follows immediately from Lemma 11 and Proposition 7.

The introduction of fragments allows us now to de�ne a fragment tree.
Extension of TC . The extended cotree T ′

C consists of the fragments of C and the
singletons containing one vertex of C as nodes. The parent of any vertex of fragment
F of C is the smallest fragment F ′ properly containing F . The labelling of T ′

C with 0,
1, or “single vertex fragment” is done as follows.
1. A cotree fragment is labelled with 0 or 1 as in the cotree TC .
2. A vertex fragment is labelled as a vertex fragment.
3. A neighborhood fragment F that does not coincide with a cotree fragment is labelled
with the same label as the next greater cotree fragment that contains F .
Still we can show the following.

Lemma 13. For vertices v and w in C; vw ∈ E if and only if the least common
ancestor of {v} and {w} in T ′

C has label 1.

Proof. If the least common ancestor of {v} and {w} is a cotree fragment, then it is
also the least common ancestor of v and w in TC and we are done. Otherwise, the least
common ancestor of v and w in TC is the node t in TC , such that Ft is the smallest
fragment that contains the least common ancestor fragment F of {v} and {w} in T ′

C .
Note that F is a neighborhood fragment that does not coincide with a cotree fragment.
This fragment F has the same label as Ft .

One di�erence between the cotree and the extended cotree of C is that the labels of
the extended cotree are not necessarily alternating.
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Fig. 1. A distance hereditary graph and its levels L1 and L2.

Edges between di�erent m-sets: Note that each m-set C is a fragment. They represent
the roots of the extended cotrees T ′

C . Let C be a fragment of Li+1. Then parent(C) of
C is the fragment N (C) ∩ Li.
The whole fragment tree: The fragment tree TG of the distance hereditary graph G

consists of the fragments as nodes. If a fragment F is not an m-set and a fragment of
an m-set C, then parent(F) of F is the parent of F in the extended cotree T ′

C of C. If
F is an m-set, then parent(F) is de�ned as in the last item. We label fragments with
0, 1, and “vertex fragment” as they were labelled as nodes of the extended cotree and
label additionally m-sets with M .
Fig. 1 shows a distance hereditary graph G. Fig. 2 is an extension of Fig. 1 with

the cotree fragments of G (broken lines). In Fig. 3 we added also the neighborhood
fragments that are not cotree fragments. Finally it is easily checked that the tree shown
in Fig. 4 is a fragment tree of G.

Proposition 14. The distance hereditary graph G is uniquely determined by its frag-
ment tree TG; i.e. if TG is known with all its labels; then G can uniquely be recon-
structed from TG.

Proof. We �rst can determine the level of each m-set D by counting the number of
m-sets that are ancestors of D in TG.
Next we can determine the edges in each level by looking, for each m-set, at the

maximal subtree of TG rooted at the m-set vertex and containing no other m-set vertices.
This subtree corresponds to the cotree of the m-set if we suppress the unlabelled
neighborhood vertices of the subtree.
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Fig. 2. The cotree fragments (broken lines).

Fig. 3. Adding the neighborhood fragments (dotted lines).

Finally we can determine the edges between di�erent levels, i.e. between Li and Li+1
by looking at two subtrees of TG. Consider, for each m-set C, the maximal subtree T1
rooted at Par(C) and containing no other m-sets, and the maximal subtree T2 rooted at
C and containing no other m-sets. Join the vertices of degree zero or one in T1 with
the vertices of degree zero or one in T2.
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Fig. 4. The fragment tree.

Finally we would like to show that the fragment tree of a distance hereditary graph
can be determined e�ciently.

Theorem 15. For a distance hereditary graph G; a fragment tree TG of G can be
constructed in O(n+ m) time.

Proof. The levels Li can be computed in O(n+m) time (see [12]). Then the c-sets of
each level Li can be computed in linear time O(|Li| + |E(Li)|). Also the equivalence
classes of m-sets can be determined in linear time by selecting a neighbor in Li+1
with a maximum number of neighbors in Li (compare [12]). Knowing the cotrees of
all m-sets and the neighborhoods N (C) ∩ Li of all m-sets of Li+1, we get the tree TG
restricted to fragments in Li as follows. For each fragment C, we select a vertex v ∈ C
and determine the next larger fragment C′ that contains v. This can be done in linear
time, because the number of pairs (x; C) with x ∈ C and C is a fragment is bounded
by O(n+m): we need only one representing vertex for each fragment, there are at most
as many neighborhoods of Li+1 in Li as there are edges between these levels, and the
number of distinct 0-fragments and 1-fragments that are descendants of a 1-fragment
in a cotree of Li correspond to at most twice the number of edges in Li. To get the
parents of m-sets in linear time is obvious.
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3.1. The structure of minimal triangulations

In this section we will show that any minimal triangulation of a distance hereditary
graph is distance hereditary, characterize distance hereditary chordal graphs, and show
how the fragment tree of a minimal triangulation of a distance hereditary graph looks
like.
First we will start with some general results on minimal triangulations.

De�nition 16. Let a and b be distinct nonadjacent vertices of G. A set S ⊂V is a
minimal a; b-separator of G if a and b are in di�erent components of G− S and there
is no proper subset of S with the same property. A minimal separator of G is a set
S ⊂V for which there exist distinct nonadjacent vertices a and b such that S is a
minimal a; b-separator of G.

De�nition 17. Let S be a minimal separator and C a c-set of G − S such that every
vertex of S has a neighbor in C. Then we say that S is close to C.

There exist many characterizations of chordal graphs. We use the characterization
given by Dirac [10] using minimal separators.

Lemma 18. G is chordal if and only if every minimal separator induces a complete
subgraph of G.

For a proof of the following, see, e.g. [16].

Lemma 19. Let H be a minimal triangulation of G and let S be a minimal a; b-
separator of H for distinct nonadjacent vertices a and b in H . Then S is also a
minimal a; b-separator in G; and if C is a c-set of H − S; then C induces also a
component in G − S.

This lemma shows that we always get a minimal triangulation in that way that we
construct a sequence (Gi)ki=0, such that starting with G0 = G; Gi arises from Gi−1
by making a minimal separator of Gi−1 complete, and the minimal triangulation H
is Gk . One also can prove that each H that is constructed in that way is a minimal
triangulation [20]. This follows from the following result.

Lemma 20 (Parra and Sche�er [20]). If S is a minimal separator of G; then there
is a minimal triangulation H of G; such that S is also a minimal separator of H.

For the rest of this section, we assume that the graph G is distance hereditary.
The following lemma characterizes minimal separators of distance hereditary graphs

as nonempty joint neighborhoods of nonadjacent vertices.
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Lemma 21. Assume x and y are distinct nonadjacent vertices of G and C = N (x) ∩
N (y) 6= ∅. Then C is a (minimal) separator. Conversely; if C is a minimal separator;
then there are x and y that are separated by C and C = N (x) ∩ N (y).

Proof. The �rst statement follows directly from the fact that G is distance hereditary
(all chordless paths from x to y have length two).
The second statement is also true for HHD-free graphs that contain the distance

hereditary graphs (see for example [7]).

Lemma 22. Assume x and y have distance two in G. Then in a (minimal) triangu-
lation of G; xy is an edge or C = N (x) ∩ N (y) induces a complete graph.

Proof. Let G′ be a (minimal) triangulation of G, and suppose that xy is not an edge
of G′, and G[C] is not complete. Then for a nonadjacent pair z; w ∈ C of G′; x; z; y; w
induces a chordless cycle of length four, a contradiction.

Lemma 23. Any minimal triangulation of a distance hereditary graph is distance
hereditary.

Proof. Due to Lemma 20, we only have to show that when a minimal separator S of
G is made complete, the resulting graph G′ is still distance hereditary. By Lemma 21,
S is the joint neighborhood of two nonadjacent vertices, say x and y. As shown in
[7], G′ is HHD-free (note that G is HHD-free), because a graph remains HHD-free
if we make a minimal separator complete. Following the characterization of distance
hereditary graphs by forbidden introduced subgraphs, it remains to show that G′ does
not have a gem. Let S be the joint neighborhood of the nonadjacent vertices x and
y. S separates x and y. Moreover, for all c-sets C of G − S, all z ∈ C that have
neighbors in S have the same neighbors in S and for all di�erent c-sets C1 and C2
of G − S; N (C1) ∩ S and N (C2) ∩ S are disjoint or comparable with respect to the
subset relation. Suppose we create a gem. Then either two adjacent vertices or three
vertices belonging to a common triangle belong to S. It is easily checked that in all
combinations, one gets a contradiction to the statements of the last sentence.
This proves that G′ is distance hereditary.

Since any minimal triangulation of a distance hereditary graph is distance hereditary,
we now take a further look at distance hereditary chordal graphs.

Lemma 24. A fragment tree T is a fragment tree of a distance hereditary chordal
graph if and only if
1. every neighborhood fragment is complete; i.e. every fragment F that is the parent
of an M-labelled node is either a single vertex fragment or all its descendants in
the extended cotree it belongs to are 1-labelled or single vertex fragments and

2. for every 1-labelled fragment; all but one child fragment is complete; i.e. if F is
a 1-labelled fragment of the m-set C; then for all but one of the children F ′ of
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F; F ′ and all descendants of F ′ in the extended cotree T ′
C are 1-labelled or single

vertex fragments.

Proof. Suppose T is a fragment tree of a chordal distance hereditary graph, i.e. T is a
tree such that the vertices are labelled with 0; 1, or “single vertex” and some vertices
are also labelled with M , and the distance hereditary graph de�ned by the labelled tree
is chordal.
Note that each node t of T belongs to the m-set Mt that is associated with the next

ancestor mt of t that is labelled with M . The vertices of Mt are the descendants v of
mt that are labelled with “single vertex”, such that mt is the next ancestor of v that is
M -labelled.
Let Ft be the fragment associated with t and let Ft be a neighborhood fragment. That

means there is an M -labelled child t′ of t. We show that Ft is complete. Assume Ft is
not complete. Then Ft has more than one element. Then also the m-set Mt containing
Ft has more than one element. Therefore Mt is not in the level L0 and has therefore a
parent, say D. If Mt ⊆Li, then D is the neighborhood of Mt in Li−1, and the m-set Mt′
associated with t′ is in Li+1. Note that no vertex in D is adjacent to any vertex in Mt′ .
We pick two nonadjacent vertices in Ft , say x and y, a vertex z ∈ D, and a vertex
w ∈ Mt′ . These four vertices induce a cycle of length four. This is a contradiction.
Next we show that for each 1-labelled fragment F , at most one child fragment

F ′ is not complete. We may assume that F is not complete. Therefore F is not a
neighborhood fragment. That means that all child fragments of F are in the same
m-set as F . Assume F has two noncomplete child fragments F1 and F2. Then we may
pick two nonadjacent vertices in F1 and two nonadjacent vertices in F2, and we get
an induced cycle of length four. This is a contradiction.
Vice versa, assume that the fragment tree T satis�es conditions 1 and 2 of the

lemma. We construct a perfect elimination ordering as follows. We sort the vertices
of the graph G (they are the “single vertex” labelled nodes) in the �rst priority in
descending order with respect to the number of ancestor fragments that are m-sets and
in the second priority with respect to the number of 0-labelled ancestor fragments. If
the numbers of ancestors that are m-sets and the number of 0-labelled ancestors of
vertices are equal, then they are sorted in any way. Let ¡ be the ordering de�ned by
this sorting. Assume y and z are neighbors of x and x¡y and x¡ z. We have to show
that y and z are neighbors. Assume x ∈ Li. Then y and z are in Li or Li−1, because
the vertices are sorted in descending order with respect to the number of ancestors that
are m-sets and neighborhoods can be either in the same level Li or between adjacent
levels.
First we assume that y; z ∈ Li−1. Then y and z are in the neighborhood of the m-set

M in Li−1 that contains x and therefore in a common neighborhood fragment. Since
each neighborhood fragment is complete, y and z are neighbors.
Next we assume that y ∈ Li and z ∈ Li−1. Since xy is an edge, y and x are in the

same m-set, say M . z is in the neighborhood of M in Li−1. Since all vertices of M
have the same neighbors in Li−1, yz is an edge.
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Finally we assume that y and z are in Li. Since xy and xz are edges, the least
common ancestors Fxy and Fxz of x and y and of x and z, respectively, are 1-labelled.
If Fxy 6= Fxz, then the least common ancestor Fyz is one of Fxy or Fxz and therefore yz
is an edge. Otherwise if F =Fxy =Fxz, we assume that the least common ancestor Fyz
is 0-labelled. Then Fyz is a descendant of F . The child fragment F ′ of F containing
x and the child fragment F ′′ of F containing the fragment Fyz are di�erent. F ′′ is
not complete and therefore, since only one child fragment of F is not complete, F ′

is a complete fragment. F ′ and each descendant of F ′ is not 0-labelled. Therefore x
has at least one 0-labelled ancestor less than y and z. This is a contradiction to the
assumption that vertices that have the same number of m-set ancestors are sorted in
descending order with respect to the number of 0-labelled ancestors. That means the
least common ancestor of y and z is 1-labelled and therefore yz is an edge.

Next we discuss the fragment tree structure of minimal triangulations of distance
hereditary graphs.
Let Compl be the set of all fragments of G that are complete in the minimal trian-

gulation G′ of G. Then we immediately observe the following.

Lemma 25.
1. Each “single vertex” labelled fragment is in Compl.
2. If F is a fragment of the m-set C and F 6∈Compl; then all ancestors of F in the
extended cotree T ′

C (i.e. all ancestors of F that are descendants of C including C)
are not in Compl.

3. If an m-set C is not in Compl; then its parent fragment (that is one level Li lower)
is in Compl.

4. If F is a 1-labelled fragment of the m-set C; then there is at most one child of F
in the extended cotree T ′

C of C that is not in Compl.

Proof. Statements 1 and 2 are trivial, and 3 can be proved as follows. Note that the
vertices of the parent of C belong to the joint neighborhood of the vertices of C. Since
C is not complete, the vertices of the parent of C belong to the joint neighborhood of
two nonadjacent vertices. Therefore C must be complete.
Statement 4 is shown as follows. Suppose F ′ is a child of the 1-labelled fragment F

in C. Then the vertices of each other child F ′′ in C belong to the joint neighborhood
of all vertices in F ′. If F ′ is not complete, then the vertices of F ′′ are in the joint
neighborhood of two nonadjacent vertices. Therefore F ′′ is complete and in Compl.

We call a set Compl that satis�es the requirements of the last lemma a triangulation
representative.
We can reformulate the de�nition of a triangulation representative as follows.

Lemma 26. Compl is a triangulation representative if and only if
1. All “single vertex”-labelled fragments are in Compl;
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2. If a fragment F is in Compl; then all its nonm-set children of F are in Compl;
3. If F is not in Compl; then all its m-set children are in Compl and
4. If F is a 1-labelled fragment; then at most one nonm-set child is not in
Compl.

Proof. Note that if F is a fragment of the m-set C, then the nonm-set children of F
are exactly the children of F in the extended cotree T ′

C . The fact that all ancestors of
F in T ′

C are not in Compl if F is not in Compl translates into the fact that if F is in
Compl, then all descendants of F in T ′

C are in Compl, and this translates again into
the fact that if F is in Compl, then all nonm-set children are in Compl.
The fact that the parent of an m-set C that is not in Compl is in Compl translates

into the fact that the m-set children of a fragment F that is not in Compl are in Compl.
This proves that the second and the third items of Lemma 25 and of Lemma 26 are

equivalent. The remaining items of Lemmas 25 and 26 are identical.

Let Compl be a triangulation representative. Then we can construct a fragment tree
TCompl as follows.
1. If F is a fragment of the m-set C and F ∈ Compl, then F and all its 0-labelled
descendants in the extended cotree T ′

C of C are 1-labelled.
2. Suppose F 6∈Compl and F is a neighborhood fragment. Then we create a new
fragment F ′ of F that becomes the parent of F , and such that the parent of F ′ is
the original parent of F in TG. For each child C of F that was an m-set in G,
the parent of C in TCompl is F ′. Each child C of F that was an m-set in TG (and
therefore M -labelled in TG) is not M -labelled in TCompl. F ′ is a 1-labelled node. If
F was an m-set in TG, then F is not an m-set in TCompl and F ′ becomes an m-set
of TCompl.

Lemma 27.
1. For each triangulation representative Compl; TCompl is a fragment tree of a chordal
graph.

2. If Compl is the set of fragments of G that are complete in the minimal triangu-
lation G′ of G; then TCompl is a fragment tree for G′.

Proof. To prove the �rst statement, we proceed as follows. If F is a neighborhood
fragment that is not in Compl, then F ′ is not a neighborhood fragment in TCompl. No
child of F ′ in TCompl is labelled with M . The only case that a new m-set is created
is that F was an m-set and a neighborhood fragment in TG and F ′ becomes an m-set
in TCompl. In TG, the parent of F is a neighborhood fragment F1 ∈ Compl and in
TCompl; F1 is the parent of F ′. Therefore each neighborhood fragment in TCompl is a
neighborhood fragment in TG. Since all neighborhood fragments of TG that are not in
Compl lose their m-set children in TCompl and these children lose their M -label, the
remaining neighborhood fragments of TCompl are all in Compl, and their corresponding
vertex sets are complete. This proves that all neighborhood fragments of TCompl are
complete sets.
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It remains to show that each 1-labelled fragment of an m-set C in TCompl has only
one noncomplete child fragment of the same m-set C. We �rst take closer look at the
structure of the m-sets of TCompl. Suppose C is an m-set. Note that the vertices and
fragments of C are those F that can be reached from C in TG or TCompl without passing
an m-set. We denote the set of fragments F belonging to C in TG by TGC and the set
of fragments belonging to C in TCompl by T

Compl
C . Note that if C is an m-set of TG not

in Compl, then either C is an m-set in TCompl (if C is not a neighborhood fragment) or
the fragment C′ consisting of C and all m-set children of C in TG, as children become
an m-set of TCompl. In that case we say that C remains an m-set. If an m-set C is in
Compl, then either C remains an m-set in TCompl (if also its parent is in Compl) and
the set of fragments belonging to C is not changed, or C and all its descendants in
TGC become members of TComplD , where D is the m-set that contains the parent of C
in TG. Note that C becomes a member of T

Compl
D′ if D is a neighborhood fragment. In

that case, we say that C is amalgamated into D. Note that only m-sets C that are
in Compl are amalgamated into the m-set D. Therefore also after amalgamation, each
1-labelled fragment has only one nonm-set child that is not in Compl. This proves that
in TCompl, each 1-labelled fragment F has at most one child F ′ that is not complete,
i.e. not all descendants F ′′ of F ′ including F that belong to the m-set C that contains
F are 1- or “single vertex”-labelled.
We continue with the proof of the second part of the lemma. Let Compl be the set

of fragments that are made complete by a minimal �ll-in G′ of G. We have to show
that each edge of the graph that is represented by TCompl is an edge in G′. There are
two types of edges xy: x and y are in the same m-set and the least common ancestor
of x and y is 1-labelled, or x is in an m-set C and y is in the parent fragment of C.
Suppose x and y are in the same m-set C of TG. Then the least common ancestors

of x and y in TG and TCompl are the same. Note that for fragments F1 and F2 of the
m-set C of TG; F1 is an ancestor of F2 in TG if and only if F1 is an ancestor of F2 in
TCompl, because any new element F ′ as parent of the neighborhood c-set F is inserted
between F and the parent of F and the insertion of F ′ does not a�ect the ancestorship
of F1 and F2 and any other change of the parent of a fragment F is only possible if F
is an m-set. Note that x and y are joint by an edge in G′ if and only the least common
ancestor of x and y is 1-labelled in TCompl, i.e. it is 1-labelled in TG and therefore xy
is an edge in G or it is in Compl and therefore xy is an edge in G′.
Now we assume that x and y are in di�erent m-sets of TG but in the same m-set of

TCompl. Then at least one of the vertices x and y appears in an m-set C of TG whose
parent fragment is not complete. Let Cx and Cy be the m-sets containing x and y. The
�rst case is that the parent of Cx is a neighborhood fragment Fx 6∈Compl of D=Cy. In
TCompl; Cx and Fx become children of F ′

x. In TCompl, the least common ancestor F of
x and y is therefore the least common ancestor of F ′

x and y. If F 6= F ′
x, then F is the

least common ancestor of Fx and y in TCompl, and since Fx and y are fragments of the
same m-set, F is the least caommon ancestor of Fx and y in TG. Note that F 6∈Compl,
because the descendant Fx of F is not in Compl. If F 6= F ′

x and xy is an edge of G
′,

then F is 1-labelled also in TG and therefore, since F is the least common ancestor of
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Fx and y, y is adjacent to all vertices that belong to the fragment Fx. Note that also
x is adjacent to all vertices in Fx. Since Fx is not in Compl, there are two vertices u
and v belonging to Fx that are not adjacent in G′. Therefore xy must be an edge in
G′. If F =F ′

x, then y belongs to the fragment Fx and is therefore in the neighborhood
of Cx in G and therefore xy is also an edge in G.
The second case is that Cx and Cy are in Compl and their parents Fx and Fy are not

in Compl and in the same m-set D. Note that Fx is an ancestor of Fy or vice versa or
the least common ancestor of Fx and Fy in TG is 0-labelled; otherwise Compl is not
a triangulation representative. In the last case, also the least common ancestor of F ′

x

and F ′
y in TCompl is the same and therefore 0-labelled. Assume xy is an edge of G

′.
W.l.o.g. we may assume that Fx is an ancestor of Fy. Then each vertex belonging to
Fy belongs also to Fx. Therefore also x is adjacent to all vertices in Fy. Since Fy is
not in Compl, one again �nds two vertices u and v that belong to Fy and that are not
adjacent in G′. Therefore x and y must be adjacent in G′ as common neighbors of u
and v.
Finally we assume that x and y are in di�erent m-sets D1 and D2 of TCompl. Then

we may assume that y is in the parent fragment Fy of D1. In any case, Fy is also a
fragment of TG and in Compl, because it is a neighborhood fragment in TCompl. If in
TG the parent fragment of the m-set Cx containing x is Fy, then we are done. Otherwise
Cx is amalgamated into D1 and therefore the parent of Cx is a neighborhood fragment
Fx that is not in Compl and that is also a fragment of the m-set D1. Cx and Fy, and
therefore x and y belong to the neighborhood of Fx, and since Fx is not in Compl, to
the common neighborhood of two vertices that are not adjacent in G′. Therefore xy is
an edge in G′.

4. The algorithm for minimum �ll-in

Theorem 28. If a fragment tree of a distance hereditary graph G is known; then a
minimum elimination ordering (perfect elimination ordering of a minimum �ll-in) can
be determined in O(n) time.

We develop an algorithm to compute an elimination ordering with a minimum �ll-in
or to compute a �ll-in of minimum maximum clique size (for the purpose of computing
the treewidth) as follows.
1. We �rst compute a triangulation representative Compl that creates a minimum num-
ber of �ll-in edges. We do not compute the set of �ll-in edges, because it would
require a time of O(n2). But with the knowledge of the set Compl of fragments
that are made complete, we will compute the number of �ll-in edges in O(n)
time.

2. With the knowledge of the fragments that have to be made complete, we also can
compute a perfect elimination ordering of the minimum �ll-in.
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4.1. Counting �ll-in edges to fragments

First we count the number of additional edges that are created by the graph that is
represented by TCompl. We count �ll-in edges to fragments.

Lemma 29. Let G be a distance hereditary graph and let TG be its fragment tree.
Let Compl be a triangulation representative and TCompl its fragment tree. Let G′ be
the graph that is represented by TCompl. Then for an edge xy of G′ that is not in G;
if x and y belong to the same m-set C; then the least common ancestor of x and y
in TG is in Compl.

Proof. By construction of TCompl, the least common ancestors of x and y in TG and
in TCompl are the same. It is 1-labelled if and only if it is in Compl.

Lemma 30. Let G be a distance hereditary graph and let TG be its fragment tree.
Let Compl be a triangulation representative and TCompl its fragment tree. Let G′ be
the graph that is represented by TCompl. Then for an edge xy of G′ that is not in
G; if x and y do not belong to the same m-set C and Cx and Cy are the m-sets
containing x and y respectively; then the parent of Cx is an ancestor of the parent
of Cy or vice versa. If the parent of Cy is an ancestor of the parent of Cx; then the
joint neighborhood of x and y in G is the parent of Cx; and the parent of Cx is not
in Compl.

Proof. We denote the parents of Cx and Cy by Fx and Fy respectively. We distinguish
the cases that x and y are in the same m-set of TCompl and that x and y are in di�erent
m-sets of TCompl.
First consider the case that x and y are in the same m-set D of TCompl. Consider

the situation that Cx and Cy are amalgamated into D. Then for the same reasons as
in the proof of Lemma 27, Fx is an ancestor of Fy or vice versa. W.l.o.g. we may
assume that Fx is an ancestor of Fy. Then all vertices belonging to Fx belong also to
Fy. Therefore the joint neighborhood of x and y is the set of vertices belonging to Fx.
Consider the situation that Fx is a fragment that belongs to the m-set Cy. Then Cy
and therefore also Fy is an ancestor of Fx. Since y is not a neighbor of x, y is not
in Fx and the only common neighbors of x and y are in Cy. Therefore Fx is the joint
neighborhood of x and y.
Finally consider the case that x and y are in di�erent m-sets of TCompl. Let C′

x and
C′
y be the m-sets of TCompl containing x and y respectively. Then the parent F

′′
x of C

′
x

is a fragment of C′
y or vice versa. W.l.o.g. we assume that F

′′
x is a fragment of C

′
y.

Note that F ′′
x is a fragment of TG that is in Compl and a neighborhood fragment in

TG. Moreover, F ′′
x is a fragment belonging to Cy. Since xy is not an edge in G; Cx

is amalgamated into C′
x by the fragment Fx. Clearly Cy, and therefore also Fy is an

ancestor of Fx. The joint neighborhood of x and y in G is Fx.
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Let G = (V; E) be a distance hereditary graph and let TG be its fragment tree.
Let T ′

C be the extended cotree of the m-set C. Then for each fragment F belonging
to C,

Co(F) := {xy 6∈E | x ∈ C; y ∈ C; the least common ancestor of x and y is F}
and

NC(F) := {xy 6∈E | x and y belong to di�erent m-sets of TG
and the joint neighborhood of x and y is F}:

From the previous lemma we get immediately the following.

Corollary 31. Let Compl be a triangulation representative of TG and TCompl be de�ned
as before. Let G′ = (V; E′) be the triangulation of G represented by TCompl. Then

E′ − E =
⋃

F 6∈Compl
NC(F) ∪

⋃
F∈Compl

Co(F):

Note that the sets NC(F) and Co(F) are pairwise disjoint. Therefore we also get
the following.

Corollary 32. Let Compl be a triangulation representative of TG and TCompl be de�ned
as before. Let G′ = (V; E′) be the triangulation of G represented by TCompl. Then

|E′ − E|=
∑

F 6∈Compl
|NC(F)|+

∑
F∈Compl

|Co(F)|:

This yields the following expression for the size of a minimum �ll-in.

Corollary 33. The size of a minimum �ll-in is determined by

min
Compl

∑
F 6∈Compl

|NC(F)|+
∑

F∈Compl
|Co(F)|;

where the minimum is taken over all triangulation representatives.

We say that a �ll-in edge is counted to a fragment F if it is in NC(F) or in Co(F).
The strategy of the algorithm is that we determine, recursively by a bottom up

strategy on the fragment tree, for each fragment F , the minimum number NC∗(F) of
�ll-in edges of a �ll-in making F not complete that are counted to F or a descendant
of F , and the minimum number Co∗(F) of �ll-in edges of a �ll-in making F complete
that are counted to F or a descendant of F .
First we show that we can determine the sizes of NC(F) and Co(F) in O(n) time.

Then, with the knowledge of |NC(F)| and |Co(F)|, we will determine NC∗(F) and
Co∗(F), for all fragments F , in O(n) time. Note that we will not determine the edge
sets contributing to NC∗(F) or Co∗(F) explicitly.
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4.2. Computing the sizes of NC(F) and Co(F)

Lemma 34. For all fragments F simultaneously; |NC(F)| and |Co(F)| can be com-
puted in O(n) time; provided the fragment tree of G is known.

Proof. Note that we can determine the size |F | of all fragments F in O(n) time,
because we only have to compute, for each m-set C, for each fragment belonging
to C, the number of leaf descendants, by recursively adding the sizes of the child
fragments of the same m-set C.
We �rst determine |Co(F)|. If F is a 1-fragment, then Co(F) = ∅ and therefore

|Co(F)|= 0. If F is a 0-fragment with nonm-set children D1; : : : ; Dk , then

|Co(F)|=
∑
�¡�

|D�| |D�|= 12




 k∑
�=1

|D�|


2

−
k∑
�=1

|D�|2

 :

Note that |Co(F)| can be computed in O(k) time, and therefore for all F simultaneously
in O(n) time.
Next we determine |NC(F)|. We denote the parent of a fragment F in the fragment

tree TG by Parent(F). For any vertex x, we denote the m-set that contains x by Cx and
the parent fragment of Cx by Fx. Note that if xy is in NC(F), then Fx = F or Fy = F .
W.l.o.g. we assume that F = Fx. Then one of the next three cases can occur.
1. Fx and Fy belong to the same m-set and Fx ⊆Fy (x and y are in the same level
Li and therefore Fx and Fy are in Li−1). If both Fx = Fy = F , then xy is put into
NC0(F); otherwise, we put xy into NC1(F).

2. x ∈ Li+1 and y ∈ Li. Then y belongs to the same m-set as F , y does not belong to
F and the smallest fragment containing y and F is a 1-fragment. In this case xy is
put into NC2(F).

3. x ∈ Li+1 and y ∈ Li. If C is the m-set containing F , then y ∈ Parent(C). In that
case, xy is put into NC3(F).
We determine the sizes of these sets NC0(F); : : : ;NC3(F).
Let D1; : : : ; Dk be the m-sets with Parent(D�) = F . Then

|NC0(F)|=
∑
�¡�

|D�| |D�|:

By the same argument as in the computation of |Co(F)|, for a 0-labelled fragment C,
we can compute |NC0(F)|, for all C simultaneously, in O(n) time.
To determine |NC1(F)|, we �rst determine, for each fragment D, the number
xD =

∑
(|D′|: D′ is an m-set and Parent(D′) = D):

This can be done in O(n) time, for all D simultaneously. Then for any fragment
C in Li,

|NC1(F)|= xF

 ∑
D proper ancestor of F in Li

xD


 :
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We determine the sums uF :=
∑

D proper ancestor of F in Li xD going top down. If F is an
m-set, then uC = 0. If C is not an m-set, then uF = uParent(F) + xParent(F). We get all
uF ’s in O(n) time and therefore also all |NC1(F)| in O(n) time.
To determine |NC2(F)|, we determine the number aF of vertices in the same m-set

C as F that are not in F but adjacent to all vertices in F . Note that |NC2(F)|= xFaF .
To get aF , we determine, for each fragment D that is not an m-set and with a

1-fragment D′ as parent, the number yD of vertices u with D′ as smallest fragment con-
taining u and D. Note that yD=

∑
D′′: Parent(D′′)=Parent(D); D′′ 6=D |D′′|=∑D′′:Parent(D′′)=Parent(D)

|D′′| − |D|. If D has k children, yD can be computed in O(k) time. Therefore, for all
D simultaneously, yD can be computed in O(n) time.
Now if F is in the m-set C, then the number of vertices in C that are not in F and

that are adjacent to all vertices in F , say aF , is the sum over all yD, such that D is
in C, Parent(D) is 1-labelled, and D is an ancestor of F . Let yD = 0 if Parent(D) is
not 1-labelled. Then we can determine all aF ’s in O(n) time in the same way as we
determined the uF ’s (going top down).
Therefore |NC2(F)| can be determined in O(n) time, for all F simultaneously.
Let C be the m-set containing F . Then |NC3(F)| = xF |Parent(C)|. |NC3(F)| can

clearly be determined in O(n) time, for all F simultaneously.

4.3. Computing the size of a minimum �ll-in

Before we compute the size of a minimum �ll-in, we introduce the notion of a partial
triangulation representative. Let F be a fragment of TG. Then TF is the subtree of
TG consisting of F and all its descendants. A subset Compl of the fragments of TF is
called a partial triangulation representative of F if it satis�es the requirements of a
triangulation representative for the fragments in TF , i.e.
1. each “single vertex” labelled fragment of TF is in Compl.
2. If F ′ is a fragment in TF and F ′ ∈ Compl, then all its nonm-set children are in
Compl.

3. If F ′ is a fragment in TF and F ′ 6∈Compl, then all its m-set children are in Compl.
4. If F ′ is a 1-labelled fragment of TF , then there is at most one 0-labelled child of
F ′ that is not in Compl and that is not an m-set.
Note that a triangulation representative is a partial triangulation representative of the

root fragment L0.

Lemma 35. Recursively; we can de�ne partial triangulation representatives as follows.
1. If F is a leaf; then {F} is a partial triangulation representative of F . (Note that
leaves are all “single vertex”-labelled fragments.)

2. Let C1; : : : ; Ck denote the children of F that are m-sets and D1; : : : ; Dl denote the
children of F that are not m-sets. Assume Compl1; : : : ;Complk are partial trian-
gulation representatives of C1; : : : ; Ck and Compl

′
1; : : : ;Compl

′
l are partial triangu-

lation representatives of D1; : : : ; Dl.
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(a) If Compl′1; : : : ;Compl
′
l contain D1; : : : ; Dl respectively; then

Compl :=
k⋃
i=1

Compli ∪
l⋃
i=1

Compl′i ∪ {F}

is a partial triangulation representative of F (this includes “single vertex”-labelled
fragments that are not leaves).
(b) If Compl1; : : : ;Complk contain C1; : : : ; Ck ; respectively; and F is 0-labelled; then

Compl :=
k⋃
i=1

Compli ∪
l⋃
i=1

Compl′i

is a partial triangulation representative of F .
(c) If Compl1; : : : ;Complk contain C1; : : : ; Ck ; respectively; F is 1-labelled and at

most one Di is not in Compl
′
i ; then

Compl :=
k⋃
i=1

Compli ∪
l⋃
i=1

Compl′i

is a partial triangulation representative of F .
3. All partial triangulation representatives can be created in this way.

Proof. First note that if F is a fragment, F ′ is a child of F , and if Compl′ is the
restriction of the partial triangulation representative Compl of F to TF′ , then Compl′

is a partial triangulation representative of F ′.
It is easily checked that in all cases, if Compli, for i = 1; : : : ; k and Compl

′
j, for

j = 1; : : : ; l are partial triangulation representatives of C1; : : : ; Ck and D1; : : : ; Dl, then
Compl is a partial triangulation representative of F .
Conversely, if Compl is a partial triangulation representative of F , then let Compli

be Compl restricted to TCi and Compl
′
j be Compl restricted to TDj . It is easily checked

that Compl can be created by the above recursion rules from Compl1; : : : ;Complk and
Compl′1; : : : ;Compl

′
l.

For a partial triangulation representative Compl of F , the weight of Compl is de�ned
as

W (Compl) :=
∑

F′∈Compl
|Co(F ′)|+

∑
F′∈TF-Compl

|NC(F ′)|:

Note that if R is the root fragment (this is L0), then the size of the �ll-in of the
triangulation representative Compl is W (Compl).
Let Co∗(F) be the minimum weight of a partial triangulation representative of F

containing F , NC∗(F) be the minimum weight of a partial triangulation representative
of F not containing F , and M (F) =min(NC∗(F);Co∗(F)) be the minimum weight of
a partial triangulation representative of F . Then for the root fragment R, M (R) is the
minimum size of a �ll-in.
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Theorem 36. Let F be a fragment with m-set children C1; : : : ; Ck and nonm-set chil-
dren D1; : : : ; Dl. Then NC∗(F) and Co∗(F) are recursively determined as follows.
1. If F is a leaf; then

Co∗(F) = 0:

2. If F is a “single vertex”-labelled fragment; then NC∗(F) is not de�ned; i.e. is set
∞.

3. For any fragment F;

Co∗(F) = |Co(F)|+
k∑
i=1

M (Ci) +
l∑
j=1

Co∗(Dj):

4. If F is 0-labelled; then

NC∗(F) = |NC(F)|+
k∑
i=1

Co∗(Ci) +
l∑
j=1

M (Dj):

5. If F is 1-labelled; then

NC∗(F) = |NC(F)|+
k∑
i=1

Co∗(Ci) +
l
min
j=1

(M (Dj) +
∑
i 6=j
Co∗(Di)):

For a fragment F; M (F) :=min(Co∗(F);NC∗(F)).

Proof. Note that a leaf fragment is always a “single vertex”-labelled fragment. There-
fore Co∗(F)=0 for any leaf fragment F . If F is a single vertex fragment, then NC∗(F)
is not de�ned, because F belongs to any partial triangulation representative of any an-
cestor F ′ of F (including F). This realizes 1 and 2.
To show 3 one has to consider 2a of the previous lemma. This is the only case

where F is in the partial triangulation representative Compl. The m-set children can
be in Compl or not. The nonm-set children must be in Compl. To get Co∗(F), we
have therefore to sum up the minimum weights M (Ci) of the m-set children Ci and
the minimum weights Co∗(Dj) of partial triangulation representatives of Dj containing
Dj and Co∗(F).
To show 4, one has to consider part 2b of the previous lemma. This covers the case

that F is 0-labelled and not in Compl. Here the m-set children are in Compl and the
nonm-set children can be in Compl or not. Therefore we have to sum up over |NC(F)|,
the weights Co∗(Ci), and over the minimum weights M (Dj).
To show 5, we refer to 2c of the previous lemma. This covers the case that F is

1-labelled and F is not in Compl. Again the m-set children are in Compl. Contrary to
the case that F is 0-labelled, at most one nonm-set child is not in Compl. Therefore
we have to minimize over all j the sum of Co∗(Di) with i 6= j and the minimum
weight M (Dj). We add to this minimum the sum over all Co∗(Ci) and |NC(F)|.

Note that Theorem 36 de�nes a recursive algorithm to determine the size of a min-
imum �ll-in. It remains to check the complexity of the algorithm.
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Clearly 1 and 2 can be done in O(1) time and 3 and 4 can be done in O(k + l)
time, i.e. in the order of the number of leaves of F .

Lemma 37. Part 5 of Theorem 36 can be executed in O(k + l) time.

Proof. The di�cult step is to compute minlj=1(M (Dj) +
∑

i 6=j Co
∗(Di)). De�ne Xj :=

(M (Dj) +
∑

i 6=j Co
∗(Di). We have to compute the minimum over all Xj. We compute

S :=
∑l

i=1 Co
∗(Di) in O(l) time and get Xj= S−Co∗(Dj)+M (Dj). This can be done

for each Xj separately in O(1) time, and therefore for all Xj simultaneously in O(l)
time. The minimization over all Xj can be done in O(l) time. It remains to add all
Co∗(Ci) and |NC(F)|. This can be done in O(l) time. Therefore we get an overall
time of O(k + l).

The overall complexity of the algorithm to get the size of a minimum �ll-in is the
sum of the number of children over all fragments and the number of leaves of the
fragment tree. Therefore we get the following.

Theorem 38. The size of a minimum �ll-in of a distance hereditary graph G can
be computed in O(n + m) time. If the fragment tree of G is known; then it can be
computed in O(n) time.

4.4. Computing the triangulation representative of a minimum �ll-in

To get the fragment tree of a minimum �ll-in, we have to determine a triangulation
representative Compl of minimum weight.
We assume that we have computed NC∗(F) and Co∗(F) for all fragments of G.

Whenever M (F) is called, we keep track whether it is NC∗(F) or Co(F). Denote the
set of children of F by ChildF . Note that NC∗(F) and Co∗(F) are minimum sums∑

F′∈P Co
∗(F ′)+

∑
F′∈ChildF-P M (F

′) such that P is a subset of ChildF satisfying certain
requirements. For each F , we easily can compute these sets P= PF; NC and P= PF; Co,
such that

NC∗(F) =
∑

F′∈PF; NC
Co∗(F ′) +

∑
F′∈ChildF-PF; NC

M (F ′)

and

Co∗(F) =
∑

F′∈PF; Co
Co∗(F ′) +

∑
F′∈ChildF-PF; Co

M (F ′):

Note that PF; NC and PF; Co can be computed by the following extension of the
recursive procedure that computes NC∗ and Co∗.
1. If F is a leaf, then

Co∗(F) := 0:

2. If F is a “single vertex”-labelled fragment, then NC∗(F) is not de�ned, i.e. is
set ∞.
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3. For any fragment F ,

Co∗(F) := |Co(F)|+
k∑
i=1

M (Ci) +
l∑
j=1

Co∗(Dj):

PF; Co := {D1; : : : ; Dl}:
4. If F is 0-labelled, then

NC∗(F) := |NC(F)|+
k∑
i=1

Co∗(Ci) +
l∑
j=1

M (Dj):

PF; NC := {C1; : : : ; Ck}:
5. If F is 1-labelled, then select a j such that

NC∗(F) = |NC(F)|+
k∑
i=1

Co∗(Ci) + (M (Dj) +
∑
i 6=j
Co∗(Di))

is minimum.

PF; NC := {C1; : : : ; Ck} ∪ {Di | i 6= j}:
6. For a fragment F , M (F) :=min(Co∗(F);NC∗(F)).
This procedure has a time bound of O(n).
We get a triangulation representative Compl that realizes a minimum �ll-in by going

top down along the fragment tree.
1. The root R= {v0} belongs to Compl.
2. If F is in Compl, then each child F ′ ∈ PF; Co is set to be in Compl and each child
F ′ 6∈PF; Co is set to be in Compl if and only if M (F ′) = Co∗(F ′). Otherwise F ′ is
set not to be in Compl.

3. If F is set not to be in Compl, then each child F ′ ∈ PF; NC is set to be in Compl
and each child F ′ 6∈PF; NC is set to be in Compl if and only if M (F ′) = Co∗(F ′).
Otherwise F ′ is set not to be in Compl.

As an overall result of this subsection, we get the following.

Theorem 39. A triangulation representative of a minimum �ll-in can be computed in
O(n) time if the fragment tree is known.

4.5. Computing the fragment tree of the minimum �ll-in and the minimum
elimination ordering

Lemma 40. A fragment tree of the minimum �ll-in can be determined in O(n) time.

Proof. We know that the triangulation representative Compl can be computed in O(n)
time. Recall that the fragment tree TCompl of the triangulation of Compl is determined
as follows.
1. If F is a fragment of the m-set C and F ∈ Compl, then F and all its 0-labelled
descendants in the extended cotree T ′

C of C are 1-labelled.
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2. Suppose F 6∈Compl and F is a neighborhood fragment. Then we create a new
fragment F ′ of F that becomes the parent of F , and the parent of F ′ is the original
parent of F in TG. For each child C of F that was an m-set in G, the parent of C in
TCompl is F ′. Each child C of F that was an m-set in TG (and therefore M -labelled
in TG) is not M -labelled in TCompl. F ′ is a 1-labelled node. If F was an m-set in
TG, then F is not an m-set in TCompl and F ′ becomes an m-set of TCompl.

It is easily checked that this can be done in O(n) time.

Knowing the fragment tree of TCompl, we can also obtain a perfect elimination or-
dering of the graph G′ that is represented by TCompl as follows (see the proof of
Lemma 24).
1. We sort the vertices v of the graph G (they are the “single vertex” labelled nodes)
in the �rst priority in descending order with respect to the number of ancestor
fragments that are m-sets and in the second priority with respect to the number of
0-labelled ancestor fragments in the m-set that contains v.

2. If the number of ancestors that are m-sets and the number of 0-labelled ancestors
of vertices are equal, then they are sorted in either way.
We show that this can be done in O(n) time. Clearly the number of m-set ancestors

and 0-labelled ancestors of all fragments can be computed in O(n) time. Also the m-set
containing a fragment F can be determined, for all F in O(n) time (this is the next
ancestor of F that is an m-set. Therefore for each fragment F , also the number of
0-ancestors in the same m-set can be determined in O(n) time. Sorting can be done in
O(n) time by bucket sort as follows. We �rst create lists Ai containing the fragments
with i m-set ancestors. Then for each Ai, we create the lists Ai; j of fragments in Ai that
have j 0-labelled ancestors in Ai. Note that there are only O(n) lists Ai; j. Moreover, if
Ai is a nonempty list and i′¡i, then also Ai′ is nonempty, and if Ai; j is a nonempty
list and j′¡j, then Ai; j′ is nonempty. We concatenate the lists Ai; j and eliminate
those fragments that are not “single vertex”-labelled. This de�nes a perfect elimination
ordering.
Concluding this section, we get the following.

Theorem 41. A minimum elimination ordering of a distance hereditary graph can be
determined in O(n+ m) time; and in O(n) time if a fragment tree is known.

5. Computing the treewidth

To show how to determine the treewidth, we �rst discuss the structure of cliques,
i.e. maximal complete sets, of distance hereditary chordal graphs.

5.1. Cliques of distance hereditary chordal graphs

A �rst observation is the following.
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Lemma 42. If G = (V; E) is a chordal graph with a perfect elimination ordering ¡;
then Qx := {y¿x | xy ∈ E} ∪ {x} induces a complete subgraph of G. Moreover; for
each clique Q of G; there is a vertex x = xq; such that Q = Qx.

The �rst statement of the lemma follows directly from the fact that all greater neigh-
bors of any vertex are pairwise adjacent. To show the second statement, we only have
to select the smallest vertex xq of Q and clearly Q⊆Qxq , and since Q is a (maximal)
clique, Q = Qx.
In this subsection, we assume that G is a distance hereditary chordal graph with

fragment tree TG. Let C be an m-set and T ′
C its extended cotree. Recall that a fragment

F of C represents a complete set of vertices if and only if F and all its descendants
in T ′

C are 1-labelled. In that case, we say also that F is complete. Recall that any
1-labelled fragment of C has at most one noncomplete child in T ′

C , i.e. at most one
noncomplete nonm-set child.
Let VF be the set of vertices of the fragment F .

Lemma 43. For each clique Q of G; there is an m-set C; such that Q=VParent(C) ∪D;
where D is a clique of G[VC].

Proof. Let Q be a clique of G. Let i be the maximum, such that Q ∩ Li 6= ∅. Note
that all vertices of Q ∩ Li are in the same c-set of Li and therefore in the same m-set
C. Vertices of Q − Li can only be in the neighborhood of C in Li−1, i.e. the parent
fragment Parent(C) of C. Since all vertices in VC have the same neighbors in Li−1
and Q is a maximal complete subset, all vertices of VParent(C) are in Q. Therefore
Q − Li = VParent(C). Since all vertices of VC have the same neighbors in VParent(C) and
therefore the same neighbors in Q − Li, Q ∩ Li is a maximal complete set (clique) of
G[VC].

Next we have to consider the structure of cliques of GC = G[VC]. For any vertex
x ∈ VC , let Bx be the �rst ancestor fragment of x in T ′

C that is 0-labelled and Ax be
the child fragment of Bx that has x as an ancestor. If x has no 0-labelled ancestor in
T ′
C , then Ax :=C.

Lemma 44. For vertices x and y of GC; xy ∈ E if and only if Ax is an ancestor of
Ay or vice versa.

Proof. Note that xy ∈ E if and only if the least common ancestor F of x and y in
T ′
C is 1-labelled. Suppose xy ∈ E. Let Fx and Fy be the children of F that have x
and y as descendants. Since GC is chordal, at least one of Fx and Fy is complete. We
assume that Fx is complete. Then Bx is a proper ancestor of F , and therefore Ax is F
or an ancestor of F . Therefore Ax is also an ancestor of Ay.

Note that all Ax are 1-labelled fragments such that the parent Bx of Ax is 0-labelled
if Ax is not an m-set. In general, a fragment A is called a 1–0 jump if A is 1-labelled
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or a single vertex and its parent is 0-labelled or if A is a 1-labelled or single vertex
m-set. For a 1–0 jump A, let

QA := {x |Ax = A or Ax is an ancestor of A in T ′
C};

where C is the m-set containing A and T ′
C is the extended cotree of C. Due to the

previous lemma, all vertices in QA are pairwise adjacent (i.e. they form a complete
set).

Lemma 45. Q is a clique if and only if there is a complete 1–0-jump A such that
Q = QA.

Proof. De�ne as a chain a set Ch of fragments such that with F; F ′ ∈ Ch, F is
an ancestor of F ′ or vice versa. Note that there is a one-one correspondence between
cliques and maximal chains of 1–0-jumps. Let Chq be the maximal chain of 1–0 jumps
corresponding to Q and A the fragment in Chq that has the largest distance from the
root C of T ′

C in T
′
C . Then A has no 0-labelled descendant in Ch (otherwise we could

add any non 0-labelled child to Chq). That means that A is complete. Moreover, Chq
is the set of ancestors of A that are 1–0 jumps. Therefore Q = QA.
Conversely, let A be a complete 1–0 jump. Then the set ChA of ancestors of A

including A that are 1–0-jumps is a maximal chain of 1–0-jumps, and therefore QA is
a clique.

For a fragment F belonging to the m-set C, let N (F) be the set of all vertices of
the m-set C that are adjacent to all vertices belonging to F , i.e.

N (F) := {y |y is a single vertex in C and not a descendant of F
and the least common ancestor of y and F is 1-labelled}:

Then by Lemma 44,

QA = VA ∪ N (A):
By Lemma 43, we get the following.

Corollary 46. Each clique of the distance hereditary chordal graph G is of the form
QA ∪ Parent(C); where A is a complete 1–0-jump and C is the m-set containing the
fragment A.

5.2. The cliques of a minimal �ll-in of a distance hereditary graph

Now let G be any distance hereditary graph and G′ its minimal triangulation. Let
Compl be the set of fragments of G that are complete in G′. Then we can make the
following observation.

Remark. If F is a 1-labelled fragment and all nonm-set children of F are in Compl,
then also F is in Compl (∗).
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We call a triangulation representative satisfying (∗) a strong triangulation represen-
tative.

Lemma 47. Let Compl be a strong triangulation representative of G; and let G′ be
the triangulation of G corresponding to Compl. Let VF be the set of vertices belonging
to F . If F is not in Compl; then G′[F] is not complete.

Proof. Let C be the m-set of the fragment tree TG of G containing F (C is the next
m-set ancestor of F). Let T ′

C be the extended fragment tree of C. Note that F has a
0-labelled descendant F ′ in T ′

C that is not in Compl. Let TCompl be the fragment tree
of G′. Note that F ′ is also 0-labelled in TCompl. Therefore VF′ induces a noncomplete
subgraph of G′. Note that VF′ is a subset of VF .

Let G′ be the triangulation of G that corresponds to the strong triangulation represen-
tative Compl, and let TCompl be the fragment tree of G′ constructed from the fragment
tree TG of G and Compl.

Lemma 48. Let Aq be the complete 1–0 jump of the clique Q of G′ and Bq be the
parent of Aq in TCompl. Then Aq and Bq are also fragments of TG; and Bq is also the
parent of Aq in TG.

Proof. The �rst case is that Aq is an m-set C of TCompl. Then all fragments of the
extended cotree T ′

C of TG are in Compl, and no m-set C′ is amalgamated into C.
Therefore C is also an m-set of TG. The parent of C in TG and in TCompl are the same
and the parent Parent(C) of C is in Compl.
The second case is that Aq is not an m-set. Then Bq is 0-labelled in TCompl and

therefore not the parent fragment F ′ in TCompl of a neighborhood fragment F of TG
that is not in Compl. Also Aq is not such a fragment F ′, because it is in Compl and
has no nonm-set children that are not in Compl. Clearly Bq is also the parent of Aq in
TG.

By the above observations we can identify each clique with an edge AqBq of the
fragment tree TG of G.
Next we would like to determine the clique associated with AqBq in terms of the

fragment tree TG of G.
Let F be a fragment of TG that belongs to the m-set C. Then VF is the set of vertices

that belong to F (i.e. the set of vertices, i.e. “single vertex”-labelled fragments that are
descendants of F in T ′

C).

Lemma 49.
1. If Aq is an m-set of TG and Bq is the parent of Aq; then the clique Q is VAq ∪VBq .
2. If Aq is not an m-set of TG; Bq is the 0-labelled parent of Aq in TG; and Aq and
Bq belong to the m-set C; then the clique Q associated with AqBq consists of
(a) the vertices in VAq ;
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(b) the vertices of VParent(C);
(c) the vertices of VC′ ; where C′ is an m-set and Parent(C′) is an ancestor in T ′

C

of Bq; or Parent(C′) = Bq and Parent(C′) belongs to the m-set C and
(d) the vertices v in VC; such that the least common ancestor of Bq and v in TG

(i.e. T ′
C) is 1-labelled.

Proof. In general, Aq ∈ Compl, because it is complete in G′.
First suppose Aq is an m-set in TG. We claim that Aq is also an m-set in TCompl. Note

that no m-set child is amalgamated with the m-set Aq = C. Moreover the m-set Aq is
not amalgamated into an m-set C′ (otherwise the parent of Aq in TCompl is 1-labelled).
Since C = Aq is in Compl, all fragments belonging to C are in Compl and therefore
no m-set is amalgamated into C. Therefore the vertices belonging to C in TG and the
vertices belonging to C in TCompl are the same. Moreover, the parent of Aq = C, say
Bq, is in Compl (otherwise C would not remain an m-set in TCompl). Note that also the
vertices belonging to Bq in TG and the vertices belonging to Bq in TCompl are the same,
because all descendants of Bq in the same m-set as Bq are in Compl and therefore no
m-set is amalgamated with a fragment that is a descendant of Bq and that belongs to
the same m-set as Bq. Therefore Q = VAq ∪ VBq .
Suppose now that Aq is not an m-set in TG. Recall that G′ is the graph represented

by TCompl. Let C be the m-set of TG the fragment Aq belongs to. Note that also Bq
belongs to C. Since Bq is not in Compl, C does not belong to Compl. Therefore C
is not amalgamated into another m-set. Let C′ be the m-set of TCompl the fragment
Aq belongs to. Then C = C′ or C′ is the 1-labelled parent of C in TCompl (the latter
is the case if C is a neighborhood fragment in TG). Note that the parent Parent(C)
of C in TG is in Compl and therefore the vertices belonging to Parent(C) in TG and
the vertices belonging to Parent(C) in TCompl are the same. Moreover Parent(C) is
the parent of C′ in TCompl. Since Aq is in Compl, the vertices belonging to Aq in TG
and in TCompl are the same. Let N (F) be the set of vertices belonging to the m-set
C′ that are adjacent to all vertices of F in G′ and that are not descendants of F .
Note that the vertices of Q belonging to C′ are the vertices belonging to Aq and the
vertices of N (Aq), i.e. those vertices x that do not belong to Aq and such that the least
common ancestor of Aq and x in TCompl is 1-labelled. Note that all 1-labelled ancestors
of Aq are ancestors of Bq, since Bq is 0-labelled. There are two types of vertices
in N (Aq).
1. The least common ancestor of v and Aq is a 1-labelled fragment F of TG. Then F
is also the least common ancestor of v and Bq in TG. Then v is in VC and the least
common ancestor of v and Bq in TG is 1-labelled.

2. The least common ancestor of v and Aq is not a fragment of TG, i.e. the parent
fragment F ′ of a neighborhood fragment F 6∈Compl in TCompl. The children of F ′

in TCompl are F and the m-set children of F in TG. Since F is the only child of
F ′ that belongs to the m-set C of TG, F ′ is an ancestor of Aq in TCompl, and Aq
belongs to the m-set C of TG, F is an ancestor of Aq. Since F is not in Compl, F
is an ancestor of Bq or is Bq itself. Since the least common ancestor of v and Aq
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(that is also the least common ancestor of v and Bq) in TCompl is F ′, v is a vertex
belonging to a child of F ′ that is an m-set of TG, i.e. to a child of F in TG that is
an m-set of TG. That means v is a vertex in an m-set D of TG, such that the parent
of D in TG is an ancestor of Bq in TG.
Note that the vertices not belonging to C that are in Q are the vertices that belong

to the parent of C in TG.

For any fragment A of TG that has a 0-labelled parent or that is an m-set, we de�ne
the associated clique QA as follows.
Let B be the parent of A. Then

1. If A is an m-set of TG, then QA is VA ∪ VB.
2. If A is not an m-set of TG, and A and B belong to the m-set C, then QA associated
with AB consists of
(a) the vertices in VA,
(b) the vertices of VParent(C),
(c) the vertices of VC′ , where C′ is an m-set and Parent(C′) is an ancestor in T ′

C

of B, or Parent(C′) = B and Parent(C′) belongs to the m-set C and
(d) the vertices v in VC , such that the least common ancestor of B and v in TG (i.e.

T ′
C) is 1-labelled.

Note that each clique of G′ is associated with a complete 1–0-jump of TCompl, i.e.
an A ∈ Compl, such that either A is not an m-set and Parent(A) is 0-labelled and not
in Compl, or A is an m-set and Parent(A) is in Compl. We also say in that case that
A is a 1–0-jump of Compl. Note that A is not necessarily 1-labelled in TG.
From the above observations, we obtain the following useful result.

Corollary 50. The cliques of G′ are exactly those QA; such that A is a 1–0-jump of
Compl.

Before we determine the minimum treewidth, we determine the sizes of the QA.

Lemma 51. The sizes of the sets QA; such that A has a 0-labelled parent in TC or A
is an m-set can be determined in O(n) time.

Proof. If A is an m-set with parent B, then |QA|= |VA|+ |VB|. Note that the size |VF |
of the set of all vertices belonging to a fragment F can be determined in O(n) time,
for all fragments F simultaneously (by recursively summing up, for each fragment F ,
the sizes |VF′ | of child fragments F ′ of F).
Now suppose that A is not an m-set. First, for all neighborhood fragments F , we

can determine the sum xF of the sizes of the m-set children of F in O(n) time. Then
for all fragments F in the m-set C, we can determine the number aF of vertices
of C that are not vertices of F and that have a 1-labelled least common ancestor
with F in O(n) time. These time bounds have been proved when we determined the
number of �ll-in edges associated to a fragment that is not in Compl. The size of QA
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is now

|VA|+
∑

F ancestor of A in T ′
C

xF + aB + |VParent(C)|:

Therefore the sizes of all QA can be determined in O(n) time.

5.3. Partial strong triangulation representatives and their clique sizes

A partial strong triangulation representative of a fragment F is a partial triangula-
tion representative of F satisfying the requirements of a strong triangulation representa-
tive, i.e. a partial triangulation representative Compl of F , such that for each 1-labelled
descendant F ′ of F , if all nonm-set children are in Compl, then also F ′ is in Compl.
Recursively we can de�ne partial strong triangulation representatives as follows.
We assume that the fragment F has the m-set children C1; : : : ; Ck and the nonm-set

children D1; : : : ; Dl.
1. If F is a leaf, then {F} is a partial strong triangulation representatives of F .
2. Let C1; : : : ; Ck be the children of F that are m-sets and D1; : : : ; Dl be the children of
F that are not m-sets. Assume Compl1; : : : ;Complk are partial strong triangulation
representatives of C1; : : : ; Ck and Compl

′
1; : : : ;Compl

′
l are partial strong triangulation

representatives of D1; : : : ; Dl.
(a) If Compl′1; : : : ;Compl

′
l contain D1; : : : ; Dl, respectively, then

Compl :=
k⋃
i=1

Compli ∪
l⋃
i=1

Compl′i ∪ {F}

is a partial strong triangulation representative of F (this includes “single vertex”-labelled
fragments that are not leaves).
(b) If Compl1; : : : ;Complk contain C1; : : : ; Ck , respectively, and F is 0-labelled, then

Compl :=
k⋃
i=1

Compli ∪
l⋃
i=1

Compl′i

is a partial strong triangulation representative of F .
(c) If Compl1; : : : ;Complk contain C1; : : : ; Ck , respectively, F is 1-labelled and ex-

actly one Di is not in Compl
′
i , then

Compl :=
k⋃
i=1

Compli ∪
l⋃
i=1

Compl′i

is a partial strong triangulation representative of F .
The proof is the same as the proof of Lemma 35.
For a partial strong triangulation representative Compl of F , the clique weight

Cl(Compl) of Compl is the maximum |QA|, such that A is a descendant of F , the
parent B of A is F or a descendant of F , and A ∈ Compl and A is not an m-set and
B is 0-labelled, or A is an m-set and B is in Compl. Note that the clique weight of a
triangulation representative is Cl(R), where R is the (one vertex) root fragment of the
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fragment tree TG. Here NC∗(F) is the minimum clique weight Cl(Compl) of a partial
strong triangulation representative Compl of F that does not contain F and Co∗(F) is
the minimum clique weight Cl(Compl) of a partial strong triangulation representative
Compl that contains F . Let M (F) = min(Co∗(F);NC∗(F)) be the minimum clique
weight of a partial strong triangulation representative of F .
NC∗(F) and Co∗(F) can be determined recursively as follows.

Lemma 52. Let F be a fragment with nonm-set children D1; : : : ; Dl and m-set children
C1; : : : ; Ck . Then
1. If F is a 1-fragment; then

NC∗(F) = max
(

l
min
i=1

max
j 6=i
(NC∗(Di);Co∗(Dj));

k
max
i=1

Co∗(Ci)
)
:

2. If F is a 0-fragment; then

NC∗(F) = max
(

l
max
i=1

min
(
NC∗(Di);max(|QDi |;Co∗(Di));

k
max
i=1

Co∗(Ci)
)
:

3. If F is a 0- or 1- or “single vertex”-fragment; then

Co∗(F) = max
(

k
max
i=1

(
min

(
NC∗(Ci);max(|QCi |;Co∗(Ci));

l
max
i=1

Co∗(Di)
)
:

Proof. Case 1 is covered by case 2c of the recursive de�nition of a partial strong trian-
gulation representative. We have to minimize over all cases where Di is the nonm-set
child of F that is not in Compl. Since F is not in Compl, we have to consider the
case that each Ci is in Compl and not a 1–0-jump of Compl and each Dj with j 6= i
is in Compl. This leads to the formula in 1.
Case 2 is covered by case 2b of the recursive de�nition of a partial strong triangu-

lation representative. Each Di might be in Compl or not. If Di is in Compl, then Di
is a 1–0-jump of Compl, and we therefore have to maximize over |QDi | and Co∗(Di).
To cover both cases, Di ∈ Compl and Di 6∈Compl, we have to minimize over NC∗(Di)
and the maximum of |QDi | and Co∗(Di). As in case 1, all Ci belong to Compl and
since F is not in Compl, the Ci are no 1–0-jumps.
Case 3 is covered by case 2c of the recursive de�nition of a partial strong triangu-

lation representative. Necessarily all Di are in Compl if F is in Compl, and therefore
for the Di we have to consider the clique weights. The m-sets Ci may be in Compl
or not. If Ci is in Compl, then, since F is in Compl, Ci is a 1–0-jump of Compl.
Therefore we have to consider |QCi | to cover the case that Ci ∈ Compl. In a similar
way as in case 1 we get the formula for 3.

As in the section where we determined the size of the minimum �ll-in, Lemma 52
de�nes a recursive procedure to determine NC∗(F) and Co∗(F). For leaves F , we set
Co∗(F) := 1 and for any “single vertex”-fragment F , we set NC∗(F) :=∞, because
every clique is of size at least one and a “single vertex”-labelled fragment is always
in Compl.
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The following lemma shows that the recursive procedure as stated in the last lemma
can be done in O(n) time.

Lemma 53. All recursions of the previous lemma can be done in O(k + l) time.

Proof. The statements 2 and 3 can be trivially done within this time bound. It remains
to show this time bound for statement 1. We have to show that

min
i
max
j 6=i
(NC∗(Di);Co∗(Dj))

can be determined within this time bound. We determine an i′ such that Co∗(Di′) is
maximum. If NC∗(Di′)¡Co∗(Di′), we take this i= i′ for the minimum. Otherwise we
take an i, such that NC∗(Di) is minimum, for the minimum.

Starting with Co∗(x) = 1 and NC∗(x) =∞ for leaf fragments x, we get a recursion
that can be done in O(n) time. Thus we have the following result.

Theorem 54. The treewidth of a distance hereditary graph can be determined in
O(n+ m) time; and in O(n) time if a fragment tree is known.

6. A further outlook

We conjecture that we can parallelize the described algorithms for min �ll-in and
treewidth of distance hereditary graphs. In fact, we believe that, with the knowl-
edge of the fragment tree, we need O(n=log n) processors and O(log n) time on an
EREW-PRAM. Note that distance hereditary graphs can be recognized in O(log2 n)
time with a linear processor number by an EREW-PRAM [9]. The fragment tree of a
distance hereditary graph can be determined within the same time bound.
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