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Abstract

Semiclassical theories of electron and spin transport in metallic magnetic structures are reviewed with emphasis on the role of
disorder and electronic band structures in the current perpendicular to the interface plane (CPP) transport configuration. © 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

Electron transport in layered magnetic systems can
be directed parallel or perpendicular to the interfaces.
The physics of transport in the latter, so-called current
perpendicular to the plane (CPP) configuration, studied
first by the Michigan State University Group with
superconducting contacts [1,2] and by Gijs c.s. in mi-
crostructured pillars at arbitrary temperatures [3], has
been reviewed quite recently [4,5]. The topic remains to
attract the interest of the community and new insights
have been obtained on issues as first-principles calcula-
tions of transport in disordered multilayers, phase co-
herence effects, transport with non-collinear
magnetizations and spin-torques induced by applied
currents. The present paper briefly reviews and com-
pares these novel developments. Related topics of inter-
est are superconductor–ferromagnet hybrids [6,7],
spin-injection into carbon nanotubes [8,9] and semicon-
ductors [10,11] or many-terminal devices [12].

Most studies have been carried out on multilayers
consisting of many bilayer periods. In earlier studies
attention was focussed on collinear magnetization
profiles, i.e. that with antiparallel or parallel magnetiza-
tion vectors for neighbouring layers. These experiments

are well fitted by the so-called 2-channel series resistor
model (2CSRM), which is discussed in the light of
recent developments in Section 2. In Section 3 novel
theoretical approaches are reviewed, which describe
non-collinear configurations.

2. Collinear magnetization

The experiments of perpendicular transport in mag-
netic multilayers are well described by the 2CSRM, i.e.
an equivalent electric circuit of two spin channels in
parallel, in which the resistance of each channel is the
sum of the bulk and interface resistances. When all
magnetizations are parallel the total resistance RT of a
ferromagnetic/normal metal (F/N) multilayer of M
double layers reads

ART=M
�

� (N)dN+�
s

(� s
(F)dF+2ARs

N/F)
n

, (1)

where A is the cross-section of the sample, � (N) is the
resistivity of the bulk normal metal, � s

(F) is the resistiv-
ity of the ferromagnet for spin direction s, dN and dF

are the layer thicknesses and R s
N/F are the spin-depen-

dent interface resistances. The five parameters � (N),
� s

(F), and R s
N/F can be determined accurately by fitting

experiments on numerous samples with different layer
thicknesses and for antiparallel as well as parallel mag-
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netic configurations [1,2]. It was soon realized that the
microscopic basis was to be found in semiclassical
arguments [13,14]. The most flexible theoretical frame-
work turned out to be the linearized Boltzmann equa-
tion in the relaxation time approximation by Valet and
Fert [15], which also included spin-flip processes. In this
model the distribution function or local chemical poten-
tial fs for spin s in the F or N bulk materials is
governed by the one-dimensional diffusion equation

�2fs(x)
�x2 =

1
2

fs(x)− f−s(x)
l sf

2 . (2)

where �s is the conductivity for spin-flip processes are
included in terms of the spin-diffusion length lsf. Inter-
faces were treated as thin regions with a different (low)
mobility. The current for spin s then reads

js(x)=�s

�fs(x)
�x

, (3)

When lsf�d the results are identical to the 2CSRM.
However, this treatment is incomplete in that the dis-
continuities in the electronic structure at heterointer-
faces are disregarded, which are essential for the
electron transport properties since they scatter electrons
even in clean samples [16,17]. This can be seen most
easily for an isolated interface in a constriction accord-
ing to the Landauer–Büttiker formula

GA/B=
1

RA/B=
e2

h
�

k ��s,k ����s�

�tk ��s,k ����s��=
e2

h
�
���

T��� (4)

where t���, T��� are the transmission coefficients and
probabilities of states �=k���s at the Fermi energy with
(tranverse) wave vector k�� parallel to the interface and
band index �. For a ballistic interface k�� and s are
conserved during scattering. This expression can be
compared with that for a homogeneous point contact
of the materials A and B with (Sharvin) conductances
GA�GB. It is clear that any mismatch in the electronic
structure will reduce the conductance GA/B�GA.

2.1. Interface resistance

Of interest is the microscopic explanation of the
interface resistance parameter RA/B in Eq. (1) and its
relation with Eq. (4). The success of the 2CSRM pro-
vides the guidance for a quantitative understanding of
the experiments. The parameters, which fit so many
experiments turn out to be universal for a given mate-
rial combination. The absence of a measurable depen-
dence on the geometrical parameters dN and dF (when
everything else is kept the same) is a strong indication
that quantum interference terms are negligibly small.
For the large thicknesses, which have predominantly
been studied experimentally, this is not surprising. But
also for significantly exchange-coupled multilayers,
quantum well states should not affect significantly

transport since disorder causes a large semiclassical
background. A semiclassical model, therefore, should
be appropriate for all but the cleanest samples with
very thin layers. A simple yet efficient first principles
procedure to incorporate the interfaces comes down to
chopping the sample into slices of bulk layers and
interfaces which scatter electrons, separated by fictitious
non-scattering regions [18]. The bulk layer scattering
can be treated in terms of transmission and reflection
matrices, modeled in two simple limits; the ballistic
limit, in which no scattering occurs during the transmis-
sion through the bulk and the diffuse limit in which the
scattering is isotropic, which means that the transmitted
electrons do not retain any memory of the incident
wave vectors. The transmission probabilities for the
combined system then follows the semiclassical concate-
nation of transmission and reflection probability ma-
trices of the resistive elements in series [19,20]. Indeed,
the 2CSRM is recovered with interface resistances

RA/B=
h
e2

1

� T���

−
1
2
� 1

GA+
1

GB

�
. (5)

where we have corrected for the spurious geometrical
Sharvin resistances [21]. For ballistic bulk layer trans-
mission [18]

[RA/B]−1=
e2

h
�
��

[(I−T−R)−1T ]��, (6)

which is in fact the ‘old’ Landauer formula. Both Eqs.
(5) and (6) do not contain any parameters and provide
a first-principles prescription for the semiclassical inter-
face resistances. They hold not only in the metallic case
but should be also valid when the interface is in the
tunneling regime. Stiles and Penn [22] confirmed that
the expression (Eq. (5)) agrees very well with the solu-
tions of the Boltzmann equation.

Levy et al. [23] recently found strong effects of
disorder in the leads on transport through tunnel junc-
tions. Our discussion implies that these effects should
be absent in a semiclassical description, which is at
odds with the conclusions of Levy et al. Interference
effects between impurities and resonance states at the
tunnel junction might provide an explanation [24].

2.2. First-principles calculations

The interface resistance has been calculated by first
principles for specular interfaces in [18,22,26] for ballis-
tic magnetic domain walls in [25] and diffuse interfaces
in [26]. In Table 1 we summarize our results for specu-
lar and rough interfaces, the latter modeled as a 50%/
50% bilayer alloy, and compare them with available
experiments. Remarkable is the different behavior of
the Co�Cu as compared with the Fe�Cr interface with
respect to the interface roughness: the spin contrast of
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the Co�Cu interface transparency is weakly enhanced by
disorder, but strongly reduced in Fe�Cr. The message
for experimentalists is that in Fe�Cr it should pay off to
optimize the epitaxial techniques.

The Boltzmann equation has been solved numerically
by Butler et al. [28] for Co�Cu�Co perpendicular spin
valves. The constant relaxation time approximation for
the bulk materials was used and distribution functions
were matched via the transmission and reflection coeffi-
cients for specular interfaces. They found results for the
interface resistance slightly different from that of
[18,26]. Butler et al. find a dependence of the interface
resistance on small Cu thicknesses, which appears to
contradict the universality of the parameters of the
2CSRM. These corrections are not the small quantum
size effects found by Xia et al. [26] and by Tsymbal
[27,29], but are purely classical effects due to evanescent
terms in the distribution functions. These can be inter-
preted as the corrections to the assumption of complete
isotropy by Schep et al. [18]. The isotropy conditions is
expected to be much better fulfilled when interface
disorder is taken into account. It is clear that more,
also experimental, work is needed to understand trans-
port for very thin layer thicknesses in which the incom-
plete randomization and the appearance of quantum
corrections will cause deviations from the two-channel
resistor model.

3. Non-collinear magnetization

Electron transport in devices with non-collinear mag-
netizations have come into focus by the recent interest
in the torque exerted on the magnetization by a spin-
polarized injected current [30]. The theories for
collinear magnetization mentioned above have been
extended to the case in which the magnetizations are
not collinear, i.e. not parallel or antiparallel, namely via
a magnetoelectronic circuit theory [31], and for CPP

spin-valve structures, random matrix theory of trans-
port [32] as well as a direct solution of the diffusion
equation in the presence of an external magnetic field
[33]. Recently also exchange-biased CPP spin-valves are
under scrutiny [43]. We find that these approaches are
equivalent and reduce to previous theories in the limit
of collinear magnetizations. An interesting point is that
[31,32] do not start from the outset with a semiclassical
approximation, but derive it from an isotropy assump-
tion, thus put previous more or less ad hoc approaches
on firm theoretical foundations.

3.1. Circuit theory

Transport in hybrid metallic systems can be described
by a generalization of Kirchhoff’s theory of electronic
circuits when parts of the system are not phase-coher-
ently coupled. This approach has been pioneered in
[35,36] for electronic networks with superconducting
elements. It has recently been adopted also for magne-
toelectronic circuits [31], like the Johnson spin transis-
tor [37] or the 4-terminal mesoscopic spin valve of
Jedema et al. [12]. For a different approach to the many
terminal magnetolectronic circuits, see [38,39]. The cir-
cuit theory can be derived from a given Stoner Hamil-
tonian in terms of the Keldysh non-equilibrium Green
function formalism in spin space [34]. The basic physics
is provided by splitting up the system into reservoirs,
resistors and nodes, where the latter can be real or
fictitious (as discussed above). In order to arrive at a
useful formalism, an isotropy assumption has to be
introduced for the nodes, namely that the electron
distributions in the nodes are isotropic, which implies
sufficient disorder (or chaotic scattering) to allow for
configurational averaging. It does not require any in-
elastic or dephasing scattering mechanism, although,
when happening in the nodes, they will not hurt either.
Because the spin-accumulation is not necessarily paral-
lel to the spin-quantization axis, at each node the
electron distribution at a given energy � can be denoted
as f� (�), where the hat denotes a 2×2 matrix in spin-
space. The external reservoirs are assumed to be in
local equilibrium so that the distribution matrix is
diagonal in spin-space and attains its local equilibrium
value f� =1� f(�, ��), 1� is the unit matrix, f(�, ��) is the
Fermi–Dirac distribution function and �� is the local
chemical potential in reservoir �. The direction of the
magnetization of the ferromagnetic nodes is denoted by
the unit vector m�. The current through each contact
can be calculated as a function of the distribution
matrices on the adjacent nodes in terms of 2×2 con-
ductance matrices. The current matrix (for an F�N
junctions) reads

eI� =G�û�(f� F− f� N)û�+G�û�(f� F− f� N)û�−G��û�f� Nû�

− (G��)*û�f� Nû�, (7)

Table 1
Results of first principles calculation of Eq. (5) [26]

Roughness Rmaj (f�m2) Rmin (f�m2)System

Clean 0.094Au/Ag(111) 0.094
2 Layers 50–50 0.118 0.118Au/Ag(111)
alloy

0.100�0.008Exp. [1,2] 0.100�0.008Au/Ag(111)
CleanCo/Cu(100) 0.33 1.79

Cohcp/Cu(111) Clean 2.240.60
CleanCo/Cu(111) 0.39 1.46

Co/Cu(111) 2 Layers 50–50 1.82�0.030.41
alloy

1.84�0.140.26�0.06Exp. [1,2]Co/Cu(111)
CleanFe/Cr(100) 2.82 0.50
2 Layers 50–50 0.50Fe/Cr(100) 0.99
alloy
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in terms spin-1/2 rotation matrices û�, distribution ma-
trices f� F,f� N on ferromagnetic and normal node, the
spin-dependent conductances G� and G� (which in pla-
nar junctions should be corrected as discussed in Sec-
tion 2)

G s=
e2

h
�

M−�
nm

�r s
nm�2n=

e2

h
�
nm

�t s
nm�2,

and the mixing conductance

G s,−s=
e2

h
�

M−�
nm

r s
nm(r−s

nm )*
n

, (8)

where r s
nm, t s

nm are the reflection and transmission coeffi-
cients, and M is the number of modes in the absence of
reflections. Spin-flips in the contacts have been disre-
garded. The spin-current conservation law

�
�

I� ��=
��f� �

�t
�

sf

, (9)

then allows computation of the circuit properties as a
function of the applied voltages, where I� �� denotes the
current from node (or reservoir) � to node (or reservoir)
� and the term on the right hand side describes spin-re-
laxation in the (normal) node. The right hand side of
Eq. (9) can be set to zero when the spin current in the
node is conserved, i.e. when an electron resides on the
node sufficiently shorter than the spin-flip relaxation
time �sf. When the size of the node in the transport
direction is smaller than the spin-flip diffusion length
lsf=�D�sf, where D=�Flf/3 is the (3-D) diffusion co-
efficient then the spin-relaxation in the node can be
introduced as (�f� N/�t)sf= (1� Tr(f� N)/2− f� N)/�sf.

Some insight can be gained by re-writing the current
and the distribution function in the form of a scalar
particle and a vectorial spin contribution, I� = (I0+
� · Is)/2, f� N= fp

N+� · s�f N and f� F= fp
F+� · m�f F.

The spin current through an F�N interface can then be
expanded into different vector components as

Is=m[(G�−G�)( fp
F− fp

N)+ (G�+G�)�f F

+ (G�+G�−2ReG��)s · m�f N]s2ReG���f N

+ (s×m)2ImG���f N. (10)

The vector spin current component perpendicular to
the magnetization direction equals the spin-torque ex-
erted by the polarized current on the ferromagnet
[30,32].

3.2. Random matrix theory

Waintal et al. [32] have extended the random matrix
theory of transport [40] to include non-collinear magne-
tizations in F�N�F junctions. This paper is focussed on
the spin torque, but the physics is essentially the same
as for transport in a disordered CPP spin valve with
arbitrary magnetization configuration as discussed
above. The objects, which are averaged are the scatter-

ing matrices of the bulk layer of the normal metal
assuming that all members of the ensemble fulfil the
symmetry requirements of the problem and are equally
probable. The theory is more intricate than in the case
of superconducting S�N�S junctions [40], because the
averaging has to be carried out over the eigenvalues
and eigenvectors. Analytical results can be obtained for
the leading term of an expansion into 1/M, i.e. the
inverse of the number of transport channels.

It is easily seen that the analytical relations obtained
by Waintal et al. [32] for halfmetallic ferromagnetic
elements agree with those from the circuit theory for
the symmetric two-terminal device. The general case is
less obvious, but by somewhat tedious manipulations a
complete equivalence of the final equations for both
theories can be proven [41]. We may conclude from
Waintal’s results that what seemed to be an assumption
in the procedure of Schep et al. [18], viz. the semiclassi-
cal concatenation, can be deri�ed from the isotropy
assumption.

Although not yet worked out, Waintal et al.’s ap-
proach can be generalized to include quantum correc-
tions, which become important for a small number of
channels, as well as many terminal configurations. It is
not clear how spin-flip-relaxation processes can be in-
corporated, which is quite straight-forward for the cir-
cuit theory.

3.3. Diffusion equation for non-collinear transport

In some cases the theories above are not sufficient
and the spatially dependent distribution has to be eval-
uated. The spin-polarized electron distribution is char-
acterized by a 2×2 matrix in spin space of the form

f� N(x)=
�f��

N
(x) f

��

N(x)
f��

N (x) f��
N (x)

�
. (11)

When the size of the system L is larger than the spin
diffusion length lsf, f� N(x) depends on the position. We
have studied transport through an F�N�F device under
the condition lf� lsf, where lf=�F(1/�+1/�sf)−1 is the
mean free path, �F is the Fermi velocity, � the spin-con-
serving scattering time and �sf the spin-flip scattering
time [33]. Under the condition lf� lsf=�D�sf,, we ob-
tain the generalized diffusion equation in the normal
metal
�2f� N(x)

�x2 =
1
l sf

2

�
f� N(x)−1� Tr(f� N(x))

2
�

−
i
h
�g�B

2D
(�̂ · Bb ), f� N(x)

n
–

. (12)

Its solution, with boundary conditions at the inter-
face governed by the conductance matrix, describes e.g.
the precession of the spin-accumulation in an applied
magnetic field and leads to a physical interpretation of
the imaginary part of the mixing conductance [33].
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3.4. CPP spin �al�e

The different approaches described above lead to an
analytical expression for the total conductance of CPP
spin valves as a function of the angle between the
magnetizations of the different ferromagnets 	, when
lsf�L, at zero magnetic field (Bb =0) and for symmetric
contacts

GT(	)=
G
2
�

1−P2 tan2 	/2
tan2 	/2+ (�
 �2/Re
)

�
where G=G�+G�, P= (G�+G�)/G,


=
2G��

G
;

�
 �2
Re


=
4�G���2

G2

G
2ReG��=

2�G���2
GReG�� (13)

The angular magnetoconductance reads

GT(	)−GT(0)
GT(�)−GT(0)

=
tan2 	/2

tan2 	/2+ (�
 �2/Re
)

=
� sin2 	/2

(Re
/�
 �2)tan2 	/2
for


=Re
�1

��

(14)

Balents and Egger [9] arrive at the same result in
their study of spin-injection into carbon nanotubes in
the non-interacting limit. The electron–electron interac-
tion is found to enhance the mixing conductance.

4. Discussion

Our understanding of the transport properties of the
CPP multilayers is semi-quantitative for the parallel
aligned and the as grown ‘virgin’ samples, in which to
a good approximation neighboring magnetization vec-
tors are antiparallel. The basis of this understanding is
(1) knowledge of the magnetization configuration and
(2) the 2CSRM. Bozec et al. [27] claimed to have found
evidence for a breakdown of the 2CSRM. However, a
recent study with intentionally alloyed bulk layers
comes to different conclusions, i.e. that the 2CSRM
should remain unchallenged for collinear magnetic
structures, be they ‘type I’ or ‘type II’, interleaved or
separated [42].

The situation of the magnetic-field cycled ‘deflow-
ered’ samples is more difficult. The experiments of
Bozec et al. [27] could be explained by a ‘spin-memory’
effect caused by spin-flip at the interfaces, which can be
incorporated into the 2CSRM [42]. This picture re-
quires that the magnetization at all intermediate fields is
random but essentially collinear (except possibly at
interfaces). An alternative explanation is Wiser’s hy-
pothesis that the angle between the magnetizations of
different layers is rotated during magnetization reversal
[27]. The transport properties based on this hypothesis
can be computed in principle by the generalizations of

the 2CSRM to non-collinear transport discussed above,
which we may call ‘matrix series resistor model’. At the
moment the magnetization distribution is not known
sufficiently well, but it seems likely that non-collinearity
and randomness both play a role. Exchange-biased
CPP spin valves appear to be better suited to test the
new theories than multilayers [43].
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