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Various recent experiments hint at a geometry dependence of scaling relations in
Rayleigh–Bénard convection. Aspect ratio and shape dependences have been found.
In this paper a mechanism is suggested which can account for such dependences,
based on Prandtl’s theory for laminar boundary layers and on the conservation of
volume flux of the large-scale wind. The mechanism implies the possibility of different
thicknesses of the kinetic boundary layers at the sidewalls and at the top/bottom
plates, as found experimentally, and also different Ra-scaling of the wind over the
plates and at the sidewalls. A scaling argument for the velocity and temperature
fluctuations in the bulk is also developed.

1. Introduction
Turbulent Rayleigh–Bénard convection is one of the classical problems in fluid

dynamics, see e.g. Siggia (1994), Kadanoff (2001), Ahlers, Grossmann & Lohse (2002).
The great interest in this problem also originates from the relevance of thermal
turbulence to meteorology, geophysics, oceanography, and astrophysics. However,
unlike these flows in nature, in laboratory experiments the thermal convection is
confined to a container. Because of the confinement, boundary layers (BL) play a
prominent role. This is the case for both the thermal and the kinetic BLs and for
both the top/bottom and the sidewall BLs.

While it is obvious that the thermal BLs at the (heated or cooled) plates and at the
(thermally isolated) sidewalls are different in nature from each other, unexpectedly
the kinetic BLs at the plates and at the sidewalls not only have different thicknesses,
but even scale differently: Qiu & Xia (1998a) and Lam et al. (2002) found that these
velocity BL thicknesses (which are set by the mean flow velocity profile above the wall)
scale with Rayleigh number Ra and Prandtl number Pr as δw/L =3.6 Ra−0.26±0.03 at
the sidewalls and as δp/L = 0.65 Ra−0.16±0.02 Pr0.24±0.01 at the top or bottom plates,
both measured in an aspect ratio Γ =1 cylindrical cell. Moreover, Qiu & Tong (2001)
find different mean velocity amplitudes (not different Ra-scaling) at the sidewalls and
at the plates, Uw �= Up . The notation is summarized in figure 1.

No existing theory of Rayleigh–Bénard convection accounts for these differences in
the BL thicknesses or the flow velocities. The unifying theory of thermal convection
of Grossmann & Lohse (2000, 2001, 2002) allows only for one kinetic boundary layer
thickness, and gives an effective power-law exponent −0.22 (for Γ =1 and Pr =6)
(Grossmann & Lohse 2002), close to the average (−0.16 − 0.26)/2 = −0.21 of the
experimental results for the plate and the wall BLs thicknesses. The mechanisms
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Figure 1. Notation for the plate and sidewall BLs. The cell is cylindrical and heated from
below and cooled from above. Subscript p denotes variables at the top and bottom plates, and
w those at the sidewalls. The large-scale wind is sketched.

suggested in the present paper to deal with the observed BL differences are
independent of our recent unifying theory (Grossmann & Lohse 2000, 2001, 2002).
However, that unifying theory can be extended to reflect the differences between the
sidewall and plate BLs, as sketched in the Appendix.

The different BL thicknesses and velocities near the sidewalls and the top/bottom
plates lead to an aspect-ratio dependence of various quantities. Xu, Bajaj & Ahlers
(2000), Ahlers & Xu (2001) and Qiu & Tong (2001) find in experiments with cylindrical
cells that the prefactors of the effective Nu versus Ra power laws depend on the aspect
ratio. Also Niemela & Sreenivasan (2003) find an aspect ratio dependence of the heat
flow at large Ra, and conclude that the focus of the next generation of experiments
must be on large-aspect-ratio cells. Daya & Ecke (2001) find that the bulk temperature
and velocity fluctuations in a cylindrical cell and in a square cell are very different,
again an indication that the geometrical details of the container are important and
measurable.

In this paper we set out to suggest a physical mechanism to account for the
difference between the wall and plate velocity field BLs and for the aspect ratio
and shape dependence in Rayleigh–Bénard convection. We restrict ourselves to a
cylindrical cell with an aspect ratio about 1. The starting point is Prandtl’s BL theory.
The main physical ingredient is the conservation of the volume flux of the large-scale
wind (§ 2). The main results (§ 3) are (3.4a) and (3.4b), the ratios of the wall and plate
BL thicknesses and the wall and plate velocities, which now both have a Reynolds
and thus Rayleigh number dependence. We hope these equations capture the physical
mechanism to account for the different behaviour of the sidewall and plate BLs (§ 3)
and for the aspect ratio dependences (§ 4). In § 5 we present scaling arguments for the
fluctuations of the velocity and the temperature in the bulk. These were not included
in the unifying theory of Grossmann & Lohse (2000, 2001, 2002). We do this here,
because the bulk fluctuations also seem to show geometry effects, cf. Daya & Ecke
(2001).
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2. Implications of Prandtl–Blasius theory for laminar boundary layers
Laminar BL flow is described by the well-known Prandtl equations (Prandtl 1904;

Blasius 1908; Landau & Lifshitz 1987). The BL thickness is not constant over
the plates or the walls, see Qiu & Xia (1998b). The values of δp or δw should
be understood as typical thicknesses at the centre of the plates or at half-height,
respectively. In the equations streamwise lengths are scaled by the streamwise length
scale l, while wall-normal lengths are (re)scaled by l/

√
Re. Here, Re = lU0/ν is the

Reynolds number based on l and the streamwise velocity scale U0. Correspondingly,
streamwise velocities are scaled by U0 and wall-normal velocities by U0/

√
Re. The

immediate consequence is that the thickness of the laminar BL scales as δ ∼ l/
√

Re;
see e.g. Landau & Lifshitz (1987, section 39).

In the context of Rayleigh–Bénard convection this means that the relevant
streamwise length scales are the width d of the cell for the plates and the height
L of the cell for the walls, i.e. different for cells with non-unity aspect ratio Γ = d/L.
Correspondingly, according to the Prandtl theory, the widths of the velocity field BLs
at the walls and at the plates are also different, namely

δw = a
L√

UwL/ν
, δp = a

d
√

Upd/ν
, (2.1a, b)

respectively. Here, a is a dimensionless prefactor of order 1; Blasius (1908) gave
a =1.72 for a semi-infinite kinetic BL, cf. also Landau & Lifshitz (1987)†.

The naive assumption now would be that the streamwise wall and plate velocities
are the same, Uw =Up . The immediate consequence would be aspect-ratio-dependent

BL widths δw = δp/
√

Γ , but (i) δw and δp would still show the same Reynolds and
therefore Rayleigh number scaling and (ii) the experiments by Qiu & Tong (2001)
have shown that the assumption Uw = Up does not hold.

Therefore, we must find a more realistic argument. Our suggestion is that volume
flux conservation is an appropriate (and weak) starting assumption, i.e. we assume
equal volume fluxes of the wind over the walls and the plates,

V̇w = V̇p. (2.2)

We consider volume flux conservation to be an expression of incompressibility. To
proceed further, we must examine the flow geometry more closely.

3. Laterally restricted vs. plate filling flow
The flow geometry is only roughly known, e.g. from flow visualizations (Tong-

group) or from numerical simulations (Verzicco & Camussi 1999, 2003; Verzicco
2002). For a cylindrical cell with an aspect ratio of about 1 (say 1/2 < Γ < 2), to
which we restrict ourselves here, one large convection roll seems to exist.‡ How does
this roll flow over the plates? We shall discuss two extremes, which we denote as the
‘laterally restricted’ flow, and the ‘plate filling’ flow, see figure 2. The flow is called
laterally restricted if the convection roll has the same spanwise extent both at the

† For large enough Rayleigh number the laminar BL will become turbulent and then the theory
presented here must be modified. Both Grossmann & Lohse (2002) and Niemela & Sreenivasan
(2003a) expect the transition towards a turbulent BL to occur around Ra ∼ 1014 (for Pr ∼ 1).

‡ In a square box the flow pattern can be very complicated, including region of backflow and
secondary flows, see e.g. figure 1 of Qiu & Xia (1998b). These geometrical complications are the
reason why we restrict consideration to flow in a cylindrical box with an aspect ratio of about 1.
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Figure 2. (a) Laterally restricted and (b) plate filling flow in a cylindrical cell. For each, the
left-hand drawings show sketches of the three-dimensional flow, the right-hand ones a top
view on the bottom plate. The flow area above the plate is shaded. The spanwise extent of the
wind along the walls is 2

√
dδw and follows from trigonometry for given layer width δw and

cylinder radius d/2.

plates and the walls. In contrast, the flow is said to be plate filling if it covers the
full plate width d in the middle, whereas towards the walls its extent is only 2

√
dδw .

Physically this smaller spanwise size of the BL at the wall expresses the idea that for
a wall layer of width δw above a curved wall with radius of curvature d/2 the layer’s
lateral extent is automatically restricted. Mathematically this follows from applying
Pythagoras’ theorem, see figure 2(a), right, valid for small δw � d . The real flow
will be between these two extremes, but in order to reveal the mechanism, we shall
restrict ourselves to these well-defined extremes. The different physics of these extreme
situations is obvious from figures 2(a) and 2(b): in the plate filling case the flow over
the plate has more spanwise extent. Due to mass flow conservation, the flow velocity
over the plate therefore can be smaller and according to Prandtl’s theory (2.1b) the
plate BL thickness is larger than for the laterally restricted case.

Laterally restricted flow: The spanwise length scale of the flow is 2
√

dδw at the walls

and at the plates (see figure 2a). The corresponding volume fluxes are V̇w = 2
√

dδwδwUw

at the walls and V̇p =2
√

dδwδpUp at the plates. With volume flux conservation (2.2)
and the Prandtl relations (2.1a, b) we immediately obtain

δw/δp = Γ −1, Up/Uw = Γ −1. (3.1a, b)

Thus the wall and plate BLs have different thicknesses and velocities. But there is no
difference in the Ra-scaling of δw and δp , in contrast to what was found by Qiu &
Xia (1998a). The ratio of the boundary layer Reynolds numbers Reδw

= Uwδw/ν and
Reδp

=Upδp/ν is

Reδw
/Reδp

= 1. (3.1c)

Plate filling flow: The spanwise length scale of the flow at the cylindrical walls
still is 2

√
dδw . But now by definition the flow over the plates is extended spanwise

to fully cover the plate area, laterally of order d . The corresponding volume fluxes
are now V̇w = 2

√
dδwδwUw at the wall, as before, but V̇p = dδpUp at the plate. Using

again volume flux conservation (2.2) and the Prandtl relations (2.1a, b) we now obtain
U 2

p/Uw = νL−1Γ −424a4 and

δw/δp = Γ −1/2
√

Up/Uw . (3.2)
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For convenience we nondimensionalize the wall and the plate wind velocities with the
same molecular velocity ν/L and introduce the wall and plate Reynolds numbers,

Rew = UwL/ν, Rep = UpL/ν. (3.3)

Note that both are defined with the height L of the cell. With these definitions we
find

δw/δp = Γ −5/24aRe−1/2
p =

√
4aΓ −3/2Re−1/4

w , (3.4a)

Up/Uw = Rep/Rew = Γ −416a2Re−1
p = 4aΓ −2Re−1/2

w , (3.4b)

Reδw
/Reδp

= (4a)−1Γ 3/2Re1/2
p = (4a)−1/2Γ 1/2Re1/4

w . (3.4c)

Equations (3.4a) and (3.4b) are our main results. They show, for plate filling flow,
a Reynolds number and thus a Rayleigh number dependence of the ratio between
the BL thicknesses at the wall and at the plate, due to the cylindrical shape of the
container; δw and δp scale differently with Ra, as experimentally observed by Qiu
& Xia (1998a). The physics of the mechanism is that the extent of the flow (fully
covering the plates in the assumed extreme case) allows a larger flow cross-section,
which slows down the plate velocity Up . Due to Prandtl’s theory (2.1b) this means a
thicker BL above the plates. Equation (3.4c) means that the BL Reynolds number at
the wall grows faster (with Ra) than at the plates, implying that the first instability
of the BLs towards turbulence should occur at the sidewalls, not at the plates – a
prediction which is directly testable.

Since experimental flows are expected to lie in between the laterally restricted and
the plate filling cases, δw/δp should be between Re−1/2

p and Re0
p or between Ra−0.22

and Ra0; here we have used the effective scaling Rep ∼ Ra0.45 which holds for Pr = 5
and Γ = 1 both experimentally (Qiu & Tong 2001, who measure the plate Reynolds
number Rep which they call Reγ , extracted from the slope of the (linear) profile
of the horizontal velocity above the bottom plate.) and theoretically (Grossmann &
Lohse 2002) for 108 < Ra < 1010. The experimental ratio has a scaling exponent in
between the values given by the plate filling and the laterally restricted cases, namely
δw/δp ∼ Ra−0.11 (Qiu & Xia 1998). That the exponent is just the arithmetic mean is
presumably just incidental. Note however that the cell in the experiments by Qiu &
Xia (1998b) is a square box, and not a cylinder as here, and, in those square box
experiments no Rayleigh number dependence of the velocity ratio Up/Uw is found –
though the ratio is clearly different from unity.

4. Aspect-ratio dependences
We now come to the aspect ratio dependence of δw/δp and Up/Uw . For Γ = 1/2

and Γ = 2 these ratios (normalized to Γ = 1) are summarized in table 1. The
experimental data are obtained from figure 3 (Γ = 1, Ra= 3.7×109), figure 6 (Γ = 2,
Ra = 4.9×108), and figure 8 (Γ = 1/2, Ra= 3.28×1010) of Qiu & Tong (2001). In these
figures both Γ and Ra were changed at the same time. In order to compare the ratios
at Γ = 2 measured at Ra= 5 × 108 with those at Γ = 1 measured at Ra= 3.7 × 109,
they first have to be extrapolated to this higher Ra. Correspondingly, in the Γ = 1/2
case we have to extrapolate the ratios from the original value Ra = 3.3 × 1010 to
Ra= 3.7 × 109. These extrapolations have been done according to the plate filling
case formulas (3.4a, b) or according to the laterally restricted case ones (3.1a, b). In
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Model Γ = 1 Γ = 1/2 Γ = 2

δw/δp

exp., extrapol: laterally restricted 1 2.1 0.29
exp., extrapol: plate filling 1 3.3 0.19
theory, laterally restricted 1 2.0 0.50

{
theory, plate filling 1 5.6 0.18

Up/Uw

exp., extrapol: laterally restricted 1 1.2 2.0
exp., extrapol: plate filling 1 3.1 0.8
theory, laterally restricted 1 2.0 0.5

{
theory, plate filling 1 16 0.063

Table 1. δw/δp and Up/Uw = Rep/Rew for different aspect ratios, normalized to Γ = 1, where

we have put these ratios to 1. The Reynolds number Rep =3.7 × 109 is fixed and the
experimental values are extrapolated to that Rep , see text. Note that the error in reading
off in particular the boundary layer widths from the figures 3, 6, and 8 of Qiu & Tong (2001)
is at least 25% and therefore the experimental ratios should only be taken as a very rough
estimate.

the latter case no extrapolation is necessary as in those equations there is no Ra or
Re dependence. We always suppose that there is one-roll state for all Γ .

From table 1 we conclude that the experimental results (if extrapolated with the
plate filling flow model) in general lie in between the predictions of the laterally
restricted and plate filling cases, just as expected. An exception is Up/Uw for Γ = 2;
we have no explanation for that. If extrapolated with the laterally restricted flow
model the velocity ratios for neither Γ = 1/2 nor Γ = 2 lie between the predictions
of the two flow cases.

The physics of the aspect-ratio dependence is as follows. For increasing aspect
ratio the available plate area of the flow increases and the plate velocity can decrease.
According to the Prandtl law (2.1b), the plate BL thickness then increases. At the
walls there is no additional lateral space for larger aspect ratios, therefore the flow
has to accelerate, Uw > Up , and correspondingly δw < δp .

Note that the above dependence on Γ was derived assuming there is one convection
roll. Once the convection develops two rolls on top of each other (for Γ less than 1)
or next to each other (for Γ larger than 1), the aspect ratio dependence has to be
considered in a more sophisticated way. For small Γ � 1/2 a transition from one roll
to two rolls has been observed numerically by Werne (1993) and Verzicco & Camussi
(2003). In experiments both states of convection have also possibly been realized, see
the discussion in Niemela & Sreenivasan (2003). Thus one cannot formally consider
Γ → 0 or Γ → ∞ in (3.1)–(3.4) without checking the proviso for their validity that
precisely one convection roll is obtained.

Can one manipulate a system such that it is no longer between the laterally
restricted and the plate filling cases? An option may be to take a square box and
slightly tilt it in order to disfavour the flow along the diagonal, which seems to
occur without tilting (Daya & Ecke 2001). Such tilting experiments have successfully
been done by Ciliberto, Cioni & Laroche (1996). Such flow is expected to follow the
laterally restricted flow model with confinement by the left and right walls. For this
type of flow (3.1a) should hold, i.e. the wall and the plate BLs should show the same
Ra-scaling. An experimental test of this prediction seems a worthwhile check on the
proposed theory.
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5. Scaling relations for bulk velocity and temperature fluctuations
Up to now we have dealt with the BLs. Since experiments, cf. Daya & Ecke (2001),

show that the bulk velocity and temperature fluctuations u′ and θ ′ also seem to depend
on the geometry, we should consider these too. Experiments, see e.g. Castaing et al.
(1989) and Lam et al. (2002), suggest that u′ scales differently from the large-scale
velocity U , namely with a weaker Ra dependence. Typically, the fluctuation Reynolds
number is Re′ = u′L/ν ∼ Ra0.40±0.03 while the large-scale velocity Reynolds number is
Re = UL/ν ∼ Ra0.43...0.50 (Castaing et al. 1989; Niemela et al. 2001; Lam et al. 2002;
Siggia 1994; Qiu & Tong 2001). In previous discussions Rew and Rep have not yet
been distinguished. We therefore understand Re to be an unknown average of them.
In Grossmann & Lohse (2000, 2001, 2002) we developed a theory for the dependences
of the large-scale quantities Re(Ra, Pr) and Nu(Ra, Pr) on Ra and Pr. Here we add
the argument that the bulk fluctuations Re′ and θ ′ should behave as functions of Ra
and Pr.

The turbulence in the bulk is driven by the large-scale wind; therefore the energy
dissipation rate in the bulk εu,b scales as εu,b ∼ U 3/L as in Grossmann & Lohse (2000,
2001, 2002). The energy cascades down and will be dissipated on scales comparable
to the Kolmogorov scale η = (ν3/εu,b)

1/4. Thus we can estimate the bulk dissipation
also by εu,b ∼ νu′2/η2. Relating u′ with U yields

Re′ ∼ Re3/4. (5.1)

With Re ∼ Ra0.43...0.50 this means Re′ ∼ Ra0.32...0.38, which is close to the experimental
finding Re′ ∼ Ra0.40±0.03 by Lam et al. (2002) and also to the finding by Daya & Ecke
(2001) Re′ ∼ Ra0.36±0.05 for a square cell.

The same reasoning can be followed to calculate the scaling of the typical bulk
temperature fluctuations θ ′. The thermal bulk dissipation is driven by the large-scale
temperature �; its time scale again is taken as L/U . Thus the thermal dissipation
rate in the bulk scales as εθ,b ∼ �2U/L. On the other hand, the thermal energy in
the bulk is dissipated by the temperature fluctuations θ ′ on scale ηθ = (κ3/εu,b)

1/4 ∼
LPr−3/4Re−3/4, according to εθ,b ∼ κθ ′2/η2

θ . Thus

θ ′/� ∼ Pr−1/4Re−1/4 . (5.2)

Experimentally Lam et al. (2002) measured Re ∼ Ra0.43 Pr−0.76, which holds for
108 <Ra < 3 × 1010 and 3 <Pr< 1200. This means θ ′/� ∼ Pr−0.06 Ra−0.11. For
Re ∼ Ra1/2 (Castaing et al. 1989; Niemela et al. 2001) one obtains θ ′/� ∼ Ra−0.13.
Both power laws are very close to the experimental findings θ ′/� ∼Ra−1/7 (Castaing
et al. 1989) or θ ′/� ∼ Ra−0.10±0.02 (Daya & Ecke 2001) for cylindrical cells.

6. Conclusions
We have suggested a possible mechanism to qualitatively understand the different

Ra behaviours of the kinetic BLs near the plates and the sidewalls and the recently
observed effects of the Rayleigh–Bénard cell geometry. Our picture has yet to be
confirmed in more experimental detail. In particular, the comparison of Rayleigh–
Bénard convection in a square cell with diagonal (plate filling case) and with edge
parallel (laterally restricted case) wind seems promising. Another problem is to
distinguish the one-roll from the two-roll (or more) states. Also the exact orientation of
the roll in the cylindrical cell is relevant and needs attention: Niemela & Sreenivasan
(2003b) speculate that for lower Ra it takes an elliptical form, whereas it becomes
increasingly squarer for larger Ra.
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In any case, measuring the large-scale wind velocity should take into consideration
that possibly Up �= Uw . Circulation time measurements average over both, while
local methods can distinguish Up and Uw . An obvious first experimental step to gain
insight into whether the suggested mechanism is correct would be to directly measure
the ratios Up/Uw and δp/δw as a function of aspect ratio, exact position in the
cell, and Reynolds number; for both ratios we have offered qualitative predictions,
namely that they lie between our results for the laterally restricted and the plate filling
cases. Finally, we have indicated how the different scalings of bulk fluctuations and
large-scale quantities are related.

We thank X. van Doornum for drawing figure 2. The work is part of the research
program of FOM, financially supported by NWO. It was also supported by the
European Union (EU) under contract HPRN-CT-2000-00162 and by the German-
Israeli Foundation (GIF).

Appendix. Kinetic and thermal dissipation in the BLs
Within the framework of the present paper, the different behaviours of the sidewall

and plate BLs and their aspect-ratio dependences can also be included into the
unifying theory of thermal convection by Grossmann & Lohse (2000, 2001, 2002).
The main idea of that theory is to split the velocity field dissipation rate εu and the
thermal dissipation rate εθ , for which exact global relations can be derived from the
Boussinesq equations, into their bulk and BL contributions.

For the kinetic dissipation this splitting obviously can be extended to

εu = εu,p + εu,w + εu,b, (A 1)

where εu,p , εu,w denote the kinetic dissipation rates in the plate or wall BLs, and
εu,b the bulk kinetic dissipation rate. Following Grossmann & Lohse (2000), the BL
dissipations are estimated as

εu,p = ν
U 2

p

δ2
p

δp

L
=

ν3

L4

1

aΓ 1/2
Re5/2

p =
ν3

L4
25a3/2Γ −9/2Re5/4

w , (A 2)

εu,w = ν
U 2

w

δ2
w

δw

l
=

ν3

L4

Γ 9

210a6
Re5

p =
ν3

L4

1

aΓ
Re5/2

w . (A 3)

The bulk dissipation rate εu,b has already been dealt with in § 5.
For the thermal dissipation rate the partition into BLs and bulk contributions is

different. Though in ideal Rayleigh–Bénard convection the sidewalls are perfectly
isolated (no-flux condition), thermal BLs can develop at the sidewalls, as observed
both in numerical simulations and in experiment (Ahlers 2000; Ching & Lo 2001;
Ching & Pang 2002; Verzicco & Camussi 2003; Verzicco 2002; Qiu & Tong 2001).
However, within the unifying theory of Grossmann & Lohse (2000, 2001, 2002) the
sidewall and bulk thermal dissipation rates are not separated. Instead, we introduce
the notation εθ,p for the thermal dissipation rates in the BLs near the top and bottom
plates and εθ,p̄ for the thermal dissipation elsewhere, i.e. within the bulk and within
the sidewall BLs (p̄ indicates ‘non-plate’).

The physical reason for the different treatment of the top and bottom thermal BLs
and the sidewall thermal BLs originates from the exact relation εθ = κ�2L−2Nu.
Now, Nu is the temperature flux density from bottom to top. This flux is a vector
perpendicular to the top/bottom plates but parallel to the sidewalls. It furthermore is
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defined as an average over the plane A (and time t) at height z, parallel to the plates.
The z-dependence (p or p̄) is different from the x,y-dependence in the A-average
(wall or bulk).

To estimate εθ,p and εθ,p̄ , recall that εθ = κ�2L−2Nu and that the heat flux Nu
consists of two terms

Nu = (〈uzθ〉A,t (z) − κ∂z〈θ〉A,t (z))/(κ�L−1)

= (εθ,p̄ + εθ,p)/(κ�2L−2) = εθ/(κ�2L−2). (A 4)

Here 〈...〉A,t denotes the average over time and the (x,y)-plane.
For z outside the plate thermal BLs, i.e. for εθ,p̄ , the first term in (A 4) dominates.

We estimate 〈uzθ〉A,t ∼ U� and obtain εθ,p̄/(κ�2/L2) ∼ PrRe. We again emphasize
that the thermal dissipation in the sidewall BLs is included in εθ,p̄ and may even
dominate the contributions from the bulk, as the numerical simulations by Verzicco
& Camussi (2003) suggest.

For εθ,p , z is within the plate thermal BLs, i.e. z/L ≈ 0 or z/L ≈ 1. Then
the second term in (A 4) dominates. Estimating the temperature gradient as �/λθ

gives εθ,p/(κ�2/L2) ∼ L/λθ . To connect the BL width λθ with Re, we use the
temperature equation ∂tθ = uj∂j θ + κ∂j∂j θ , leading to Ud−1 ∼ κλ−2

θ , which implies

εθ,p/(κ�2/L2) ∼
√

RePr. These expressions for εθ,p and εθ,p̄ are given in Grossmann
& Lohse (2000). According to this derivation the Reynolds number one has to use in
εθ,p̄ is Rew , while εθ,p is determined by Rep .
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