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Abstract. In this paper we show that the h-p spectral element method developed
in [3,8,9] applies to elliptic problems in curvilinear polygons with mixed Neumann
and Dirichlet boundary conditions provided that the Babuska—Brezzi inf—sup conditions
are satisfied. We establish basic stability estimates for a non-conforming h-p spectral
element method which allows for simultaneous mesh refinement and variable polynomial
degree. The spectral element functions are non-conforming if the boundary conditions
are Dirichlet. For problems with mixed boundary conditions they are continuous only
at the vertices of the elements. We obtain a stability estimate when the spectral element
functions vanish at the vertices of the elements, which is needed for parallelizing the
numerical scheme. Finally, we indicate how the mesh refinement strategy and choice
of polynomial degree depends on the regularity of the coefficients of the differential
operator, smoothness of the sides of the polygon and the regularity of the data to obtain
the maximum accuracy achievable.
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1. Introduction

In this paper we generalize all the results we have obtained in [3] and seek a numerical
solution to an elliptic boundary value problem where the differential operator satisfies the
Babuska—Brezzi inf-sup conditions. We solve the boundary value problem on a curvilin-
ear polygon whose sides are piecewise analytic (smooth) and we assume the boundary
conditions are of mixed Neumann and Dirichlet type as in [1,2,5].

‘We now briefly describe the contents of this paper. In §2 we discuss function spaces and
obtain differentiability estimates for the solution in modified polar coordinates in a sectoral
neighbourhood of the vertices. Here we examine two cases viz. when the coefficients of
the differential operator, sides of the polygon and the data are analytic and when they have
finite regularity.

In §3 we obtain a stability theorem for a non-conforming spectral element representation
of the solution for problems with mixed boundary conditions. We let the spectral element
functions to be polynomials of variable degree, where the degree of all these polynomials
is bounded by W, and let M denote the number of elements or layers in a sectoral neigh-
bourhood of each of the vertices in the radial direction as shown in figure 1. We then define
a quadratic form VM-W which measures the sum of squares of a weighted squared norm of
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the partial differential equation and fractional Sobolev norms of the boundary conditions
and a term which measures the jumps in the function and its derivatives at inter-element
boundaries in appropriate Sobolev norms. In each of the sectoral neighbourhoods of the
corners we use modified polar coordinates and a global coordinate system in the remaining
part of the domain. We prove that the sum of the squares of the H2 norms of the spectral
element functions is bounded by the quadratic form VM-W multiplied by a factor which
grows logarithmically in W for problems with Dirichlet boundary conditions. For prob-
lems with mixed boundary conditions this factor can grow as M*, provided W is not too
large, and thus the method displays algebraic instability.

We choose as our approximate solution the unique spectral element function which
minimizes a functional r™-W closely related to the quadratic form VM-W as defined in
[3,8,9]. In case the solution is analytic, we choose M proportional to W, and show that
rM-W decays exponentially in M. Now the error is bounded by M- multiplied by a
factor which grows at most algebraically in M. Hence the order of convergence remains
exponential. If the solution has finite regularity then we choose M proportional to In W and
show that »™-W decays algebraically in W. Now the error is bounded by ™-W multiplied
by a factor which grows polylogarithmically in W and hence the error decays algebraically
in W.

We now come to the aspect of parallelization of the numerical scheme. For problems
with Dirichlet boundary conditions the spectral element functions are non-conforming and
we can use the stability theorem to parallelize the scheme in an optimal manner. It should
be noted that the method is assymptotically faster then the h-p finite element method.
For problems with mixed boundary conditions we cannot use this stability theorem to
parallelize our method since the factor in the stability estimate can grow as M*. To get
around this problem we make the spectral element functions continuous at the vertices
of the elements only. We then prove a stability theorem for mixed problems when the
spectral element functions vanish at the vertices of their elements. The values of the
spectral element functions at the vertices of their elements constitute the set of common
boundary values we have to solve for. It should be noted that the cardinality of the set
of common boundary values is much smaller than for finite element methods where the
functions have to be continuous along the edges of the elements. Since the cardinality of
the set of common boundary values is small we can construct an accurate approximation
to the Schur complement matrix from its definition. As a result the method is faster than
the standard h-p finite element method [8].

2. Function spaces and differentiability estimates

Let €2 be a curvilinear polygon with vertices Ay, Az, ..., A, and corresponding sides
', Iz, ..., '), where I'; joins the points A; 1 and A; . We shall assume that the sides I';
are analytic (smooth) arcs, i.e.

T; = {(@i &), vi@)IE el =[-1,1].}

with ¢; (£) and v, (£) being analytic (smooth) functions on I and 74 &) + [/ ®)? >
o > 0. By I'; we mean the open arc, i.e. the image of I = (—1, 1). Let the angle subtended
at A; be @;. We shall denote the boundary 32 of € by I'. Further let I’ = 'l (Tl
o = UiGDFi’ ril = UieNFf where D is a subset of theset {i | i = 1,..., p} and
N=1{i|li=1,..., p}\D.Letx denote the vector x = (x1, x2).
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Let £ be a strongly elliptic operator

2

2
L) =— Y (ars(ug)y, + Y br(Dity, + c(x)u, @1
r=1

r,s=1

where as , (x) = a(x), by(x), ¢,(x) are analytic (smooth) functions on £ and for any
(&1,&) € Rand any x € €,

2
D anskE > poEl + ) 22)

r,s=1

with po > 0. Moreover let the bilinear form induced by the operator £ satisfy the inf-sup
conditions.
In this paper we shall consider the boundary value problem

Lu=f on £,

U= g[o] on F[O],
a
e e 23)
IN /4

where (g—j’(,) A denotes the usual conormal derivative which we shall now define. Let A

denote the 2 x 2 matrix whose entries are given by

Ar,s(x) = drs (x)

forr,s =1,2. Let N = (N1, N;) denote the outward normal to the curve I'; fori € N.
Then (g—l’f/) , 1s defined as follows:

(a—”) D=3 N2l 2.4)
aN ), T P '

rs=1 $

We shall assume that the given data f is analytic (smooth) on Qand g[l lis analytic (smooth)
on every closed arc T; and g!¥ is continuous on "9,

We need to state our regularity estimates in terms of local variables which are defined
on a geometrical mesh imposed on €2 as in §5 of [2]. We first divide €2 into subdomains.
Thus we divide 2 into p subdomains § L .., 8P where S’ denotes a domain which
contains the vertex A’ and no other, and on each S’ we define a geometrical mesh. Let
&k = {Qﬁj, j=1...,Jr,i=1,..., I ;} be apartition of Sk andlet G = U,‘?:l &k,
Here Jy = M + O(1) and Iy ; < I for all k and j, where I is a constant. As has been
stated earlier M denotes the number of elements or layers in a sectoral neighbourhood of
each of the vertices in the radial direction.

We now put some restrictions on &. Let (rg, 6% ) denote polar coordinates with center at
Ag. Let tp = Inri. We choose p so that the curvilinear sector QF with sides I’y and Tit1,
center at Ay and radius p satisfies

k —k
ot c |J 9
Q{ijGk
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Figure 1. Geometric mesh with M layers in the radial direction in the curvilinear

domain.

Q* may be represented as

QF={(x,y)€Q:0<r < p}.

The geometrical mesh we have imposed on €2 is as shown in figure 1.

(2.5)

Let yi]f InL 1 <[ < 4 be the side of the quadrilateral Q;" j € S. Then we assume that

x = hk ok (),
ﬁuz{ T 0<g<10=13

y = hf,lﬁ,"”(é),
k k
yk . {x = hi,jfﬂi,j,[(n),
e
" y = hﬁjwfj,l(n),

and that for some C > 1 and L > 1 independent of 7, j, k and [

0O<n<1,1=204

t

d k
@%,;,;(8)

’

d’ «
@‘Pi,j,l(s)

<CLt!,t=1,2,....

(2.62)

(2.6b)

2.7)

We shall also examine the case when they are smooth. Some of the elements may be
triangles too [7]. We shall place further restrictions on the geometric mesh we impose on

QF 1ater.
0, :fll((rk)
= Fk+ . (I"k ) ek)
P
O O,

k ' (p k ¢k) x \O

u X Wu ek:f:() (rk)
\ Wl rk

A, Ay

Figure 2. Curvilinear sectors.
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Let (rg, 6x) be polar coordinates with center at Ag. Then QF is the open set bounded

by the curvilinear arcs I'x, '+ and a portion of the circle ry = p. We subdivide QF into

curvilinear rectangles by drawing M circular arcs ry = O']I»( = ,o,u,iVHFj, j=2,... ., M+

1, where ux < 1 and Iy — 1 analytic curves C, ..., Cj, whose exact form we shall
prescribe in what follows. We define alk = 0. Thus Iy, ; = I for j < M; in fact, we shall
let Iy j = I for j < M + 1. Moreover I ; < I forall k, j where I is a fixed constant. Let

T = {0k, 0016k = f7 (1), 0 < 1 < p),

j =0, 1 in a neighbourhood A of QX. Then the mapping

[(bx — V) £ (o) — (x — v fE o], (2.8)

Tk = Pk, Ok

1
S Wk —uh
where f Jk is analytic in r¢ for j = 0, 1, maps locally the cone
(ks 810 10 < o < 0, Uf < i < ¥y}

onto a set containing ¥ as in §3 of [2]. The functions f ]k satisfy f(;‘ 0) = 1plk , flk 0) = W,f

and (f;‘)/(O) = 0for j = 0, L. It is easy to see that the mapping defined in (2.8) has two
bounded derivatives in a neighbourhood of the origin which contains the closure of the
open set

Q= {(pk 1) 1 0 < pr < p. Y < < YL}
We choose the Iy curves Ca, ..., Cy, as
Cit u(ric. ) = vt

fori =2,... I Here yf = yf <y <--- <y} | =¥k Let Ayl =yl — vl
Then we choose {W,-k}i,k so that

max(Ayf) < Amin(Ay;)) (2.9)

for some constant L. We need another set of local variables (7, 6¢) in a neighbourhood of
QF where 7, = In ry. In addition we need one final set of local variables (v, ¢¢) in the cone

{0k d1) 1 0 < pr < p, ¥f < < ¥k},

where vy = In p. Let S/]i = {(r¢, 6k) : 0 <rry < pu} N . Then the image TS’\l]j in (v, ¢r)
variables of Sl’j is given by

SE = (k. )+ —00 < v < Inp,yf < ¢k < yf)

Now the relationship between the variables (tx, 6x) and (vg, ¢x) is given by (tx, Ox) =
M* (v, p), viz.

Tk = Vk,

1
= Gy @ YDIE) = =D L (2.10)
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Hence it is easy to see that Jy« (vk, ¢« ), the Jacobian of the above transformation, satisfies
C1 < |y Uk, @r)| < Co for all (v, ¢x) € Sk, forall0 < u < p.

We should mention here that it is not necessary to choose the system of curves we have
chosen to impose a geometric mesh on Sﬁ. However it is necessary to choose the curve

rx = p as the boundary of F and no other, as will become apparent in what follows. Any
other additional set of analytic curves which imposes a geometrical mesh on Sﬁ would do
equally well. However the set of curves we have chosen is, in some sense, the most natural
as the image Qk of a curvilinear rectangle Qk i for j > 2 in (v, ¢ ) variables is given by
a rectangle w1th straight lines for sides and for Jj = 11is a semi-infinite strip with straight
lines for sides.

We now state the differentiability estimates for the solution u of (2.3) which will be
needed in this paper.

PROPOSITION 2.1

Consider the case when the coefficients of the differential operator are analytic on Q
and the sides of the curvilinear polygon are analytic. Moreover let the geometric mesh
vansfy (2 7). Let the data f be analytic on Q2 and let g be analytic on every closed

arc Fi ,forl =0, 1, and let g[O] be continuous on TO1. Let Ul.kj(vk, or) = u(vg, dr)
for (v, o) € ﬁi‘] for j < M and ay = u(Ay). Now there is an analytic mapping
Ml.’fj 0 S —> Qj{jforj > M given by M{fj(g, n) = (ngj(.g, 1), Yl.’fj(g, ). Here S is the
unit square. Let Ul.]fj &,n) = u(Xf’j(é, n), Y[]fj (&, n)). Then we can show as in [3,8] that

1— M—j+2
IUE ok, ) — a2, o < (Cmld™ ! ~POM =422 (2.11a)
o
forl<j<Mk=1,...,p,1<i<Iand
1Uf ;& mly s < (Cmld™)? (2.11b)

forM < j < Ji,1 <i < I, 1 <k < p. Here C,d and By are constants and
0<Br<lforl <k<p. |

We next consider the case when the data has finite regularity. To state the differentiability
results in this case we shall need to use the space HE’I(Q) with k > [ defined in [1].
We now cite Remark 3 after Theorem 2.1 of [1]. Let F_/ EC””‘Z(I_) for j 1,...,p

_ 33
and let the coefficients of the differential operator eC™ (£2). Let g% eH ) nte

11
g e H};HTZ (CMyand f e H’” 9(Q). Then there exists a constant K, such that

1
K § [J]
m < m : : . .
”M“Hﬂ 220y = Km (”fHHﬂ 0@ + = g™l :Jr%]'%](ﬂj])) (2.12)

PROPOSITION 2.2

Consider the case when the differential operator and data satisfy the conditions stated
above. We assume moreover that the curves ¢f il and I//l-k il defined in (2.6a), (2.6b) satisfy

k ok
195, .1 lms2.00,7 1V jillmga,00, 7 < Emt2
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where E,4 2 is a constant independent of i, j, k and l. Let Ul.kj Wk, dr) = u(v, ¢r) for
vk, ¢r) € fz:ﬁjforj < M and ay = u(Ag). Now there is a smooth mapping M{fj S -
Qi{jforj > M given by Ml.'fj(é, n) = (Xf’j(é, n), Yi'fj(é, n)). Here S is the unit square.
Let Ui]fj &, n) = U(Xl]fj(s, n), Yl.kj (&, n)). Then using (2.12) we can show that

1UEj 0 80 =l e = Ko (uy POM=I2)2 (2.13)
forl <j<Mk=1,...,p, 1 <i<Iyand

U5 E Mg s < Kmao (2.13b)
JorM < j < Ji,1<i<I;, 1 <k=p. Here K, denotes a constant. |

3. Stability estimates

3.1 Preliminaries

Let
2 2
Lu == ) (s, + ) by (s, + ey 3.1)
r,s=1 r=1

be a strongly elliptic operator which satisfies the inf-sup conditions. Hence there exists a
positive constant (g > 0 such that

2
Z ar,s(x)gr‘i:s > MO(&]Z + 522)7

r,s=1

forall x € Q.
Let H = H, (Q) where w € H} (Q) if w € H!(S) and trace(w) |0 = 0. Consider the
bilinear form B(u, v) defined on H x H as follows:

2 2
B(u, = r,s xs Ux, T b, x»V+ dx. 3.2
(u, v) /Q <Z Ay, s (X) Uy, Uy, ; (uy, v cuv) x (3.2)

r,s=1

Then B(u, v) is a continuous mapping from H x H — R and there exists a constant C
such that

[B(u, v)| < Cillullgrollvll g (3.3)
forall u,v € HO1 (£2). Moreover we assume that the inf—sup conditions [7]

. B(u, v)
inf  sup >Cyr >0, (3.4a)
0#ueH oxven lull g1 lvllg )

and

sup B(u,v) >0 forevery0#veH (3.4b)
ueH
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hold. Then for every continuous linear functional F(v) defined on H(} (R2) there exists
unique ug € Hy () such that B(ug, v) = F(v) forall v € H} (). Moreover, the a priori
estimate

”MO”H](Q) = = & 3.5
0 C2 OaéUEHé(Q) ”U“HI(Q)
holds.
Now consider the following mixed boundary value problem
Lu=f ing, (3.6a)
You = ulpo = g%, (3.6b)
and
au
7o — — ol
yiu=|— =gt (3.6¢)
: <8N>A rii

Here the conormal derivative 3 u is defined as follows. Let I'; C Ul and let T and
N denote the unit tangent vector and unit outward normal at a point P on I'; which we
traverse in the clockwise direction. Let 7 = (T, T»)" and N = (N, N»)'. Then

_ ou
7l = 5w ),

In the same way we define the cotangential derivative

2

9

= 3 Netry e = N'AV,u. (3.72)
r,s=1 3)65

i

du ) 2 du
— = Tyars— = T'AV,u, (3.7b)
(BT alr; r,xZ=:1 0xg
and the tangential vector
0
2) =1V (3.7¢)
oT /|r,

We now consider the spectral elements which are not contained in the sectoral neigh-
bourhoods of the vertices QX fork = 1, ... , p. Now ij CQfforl <i < I, j and
1 <j<M.Let

OPH ={Qf ;1 <k<p,M<j<J1<i<Ij)
Once more Jy = M + O(1). We shall relabel the elements of 0?1 and write

ortl @t 1<i<L).

We shall now introduce some notation so that the reader may proceed directly to the
stability theorem 3.2 and examine the proof later as it is quite involved.
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Consider the domain le ™ Then there is a mapping Mlp *1 from the master square
S =1(0,1) x(0,1) to le +]. Let le + (&, n) denote the Jacobian of the transformation
M/ T We let

w W o
W E =YY hi gy

=0 i=0

We choose the spectral element functions {ufj(vk, otijrforl <i <h,1<j<M
and 1 < k < p to be polynomials of the form

ui ik, dr) = Z Zamvkqsk

s=0 r=

forj #1.Herel < W; < W.If j = 1 we choose uﬁl(vk, or) = gk where g is a constant
for 1 <i < I. Let ™% denote the space of polynomials {{ (vk Db, j ks {up+1

. mh}.

Remark 1. We shall always choose M = O(W). In case the conditions of Proposition 2.1
are satisfied so that u is analytic we choose W = M. Once we have obtained the numerical
solution we can define a correction to it so that the corrected solution is conforming and
converges to the actual solution exponentially in M in the H'(€2) norm [8,9]. Thus the
error in the H'!(€2) norm is bounded by Ce ™ where C and b are constants. In case
ueH g’ +2’Z(Q) we would choose M proportional to m In W. Once more we can define
a corrected version of the solution so that it is conforming and converges to the actual
solution in the H'(£2) norm and the error is bounded by C(In W)3W~"+1_ Hence for the
method to converge we must have m > 2.

The stability theorem 3.2 holds provided the coefficients of the differential operator
€ C3() and the curves ¢l AL 1//ilf il defined by (2.6a), (2.6b) satisfy

k k
”gbi’j,l”})oo’ia ”wi,j,l”loo,i < Ks,

where K3 is a constant independent of i, j, k and /. In this paper however we prove
Theorem 3.2 assuming that the coefficients of the differential operator are analytic on Q
and the curves qbl i Yk . defined in (2.6a), (2.6b) are analytic and satisfy the condition
(2.7). Now

i,j,l

/Q / 2™ s y)Pdxdy = / / el & mldgdn.

Here

1 1 1 1
PP E ) = (Sl T, I
Now
Slpr = A;’Hwéé + 2Blp+1w$n + Clprrm + DIPHWS

+EP  w, + P
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where the coefficients of the differential operator are analytic (smooth) functions of £ and

n. Let le ! be the unique polynomial which is the orthogonal projection of Alp *!into the
space of polynomials of degree W in £ and n with respect to the usual inner product in

HZ(S). We define EPH, 6{7“, 5{7“, EI‘"H and I?lerl in the same way. We then define
(ElpH)“w = Xf“wgg + 21’37)“11)5,7 + 6[’7+]w,,,, + 5lp+1wg
B w4 B

Now let y; be a side of the element Q,[:f] and let it be the image of the side £ = 0 under
the mapping M,ﬁ“. Clearly

8up+1 1 1

o = G ek + Wl Dy

We now define

8uf,7,+1 ¢
0x

Here?x (0, n) and 77x (0, n) are the unique polynomials which are the orthogonal projections
of £,(0, n) and 1, (0, n) into the space of polynomials of degree W in £ and n with respect
to the usual inner product in HZ(I). In the same way we can define (Bufnﬂ/ay)“ on y.
Now let y; be a side common to Qﬁ,ﬂ and QF 1 and let it be the image of & = 0 under
the mapping MZH and the image of £ = 1 under the mapping M, +

= (Wh™)eE, + Wh™), 70, n).
Yi

. . . . —p+l1

Let [w] denote the jump in w across y;, where w is a smooth function on Qfl and
=p+l1
Q""" We now define

2
NCATE: aul 1\ aul ™\
8_x = o (0, 7]) - ax (1» 77)
/2,y 1/2,(0,1)
and
2
au\“7|° aultt\* dup ™\
y 12,1 y Y 1/2,(0,1)

Finally we consider a side I'y of the polygonal domain €2 as shown in figure 1. Let y; be a
side of Qf,’fl such that y; € I'x and such that y; is the image of £ = 0 under the mapping
M,ﬁ“ and which maps the master square S to Qf,’fl. Then we can define (auﬁf‘/a T)¢
and (8145,+1 /ON)¢ in the same way. Finally we define

au\“ 2 8up+1 ¢ ?
m
H <8_T> = ( oT ) 0, m)
1/2n 1/2,(0,1)

H(au )a 2 (aup+l)a 2
m
ON J 4ll1/2.9, N, 1/2,(0,1)

and
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Now consider the sectoral domain 2. Let us define the differential operator

Ekw(rk, 0) = 2% Lw(x, y)
as in [3]. Then

Sw(t, ) = dFwyg + 28 wee, + vFwee + 8Fwy + we, + pfw,

where the coefficients of £ are analytic functions of their arguments. Consider the element
Qk with 1 < j < M. Now the image of Qk in (vg, ¢) coordinates is the rectangle Qk
Clearly

/ / @ w (. ) dnedey = ﬁ / (28w, ) dviedgy.
o af

Here

£ wr, ¢u) = L w (. 00y Ty (e, b,

where Jy« denotes the Jacobian of the transformation MK defined in (2.10). Once more

we can define a differential operator (Sk )“ by replacing the coefficients of Sk by poly-

nomials of degree W in vy and ¢ Wthh are exponentially close approx1mat10n to them.
Now the highest order terms of the differential operator ¢k are given by MK, where

~ EI dw
Tk — 9 [~k
=3 (@)

ij=1 dyi

Here y; = t; and y, = 6. Let Ak denote the 2 x 2 matrix such that Ak = a Let Vi

be a side of the element Qk such that y; C T'y, where 'y is a side of the polygon Q. Let
1 be the image of y; in (y1 y2) coordinates given by y; = yi(o), and y, = y2(0). Let
t and n denote the unit tangent and normal vector at a point P on ;. We now define the
conormal derivative

dw t 7k
— =n A"Vyw.
on ;{k

Now the transformation M* defined in (2.10) maps the rectangle Qk to Qk Once more
we can define (dw/ Bn)“ |7 by replacing the coefficients of the ﬁrst order differential
operator (dw/dn)zx by polynomials of degree W in v; which are exponentially close
approximations to them. We can now define ||(dw/ 8n)%k ||% 2.7 as we have done before.

The reader can now proceed directly to the stability theorem 3.2 stated in §3.3 and
examine the proof later.

3.2 Technical results

. 1 . 1. .. .
Consider some Q7' ¢ OP*! as shown in figure 3. Then Q7 s a curvilinear quadri-
i g i q

p+1
Ql

lateral whose sides are analytic arcs and the boundary 9 is traversed in the clockwise

direction.
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2
T p+l 4
| T

Q
> o
\
Q, ZNI 11 Q,

Figure 3. Element Q7"

Let y be a smooth curve and let N and T denote the unit outward normal and tangent
vectors to y ata point P on y. Let s be the arc length measured from a point on the curve
in the clockwise direction. Then the second fundamental form is given by

oN oT
BE,n)=——— -Tén=—"-N&n=«é&n, (3.8)
as as
where
dT
K=+—
ds

is the curvature of y at P. Clearly Trace(*B8) = «.

Now we need to use Theorem 3.1.1.2 of [4]. Let v be a smooth vector field defined on
52” + where v = (v, v2)’. Consider the restriction of v to the boundary HQIP 1 Now
BSZIPH = (U?:l Vi) U(U?:l 0,), where y; are the sides ofBleH with end points deleted
and Q; are the vertices of le *1 We shall denote by vr the projection of v on the tangent

vector T to BQf i except at the vertices where this cannot be defined. Similarly by vy
we shall denote the component of v in the direction of N. Thus we have

vy =v-N

and

2
8%u

0X,0Xg

2 4 du\? du\?
§f " [9Mu|“dx + / |k | (—) + (—) ds
QIP —1Y; IN A oT A

J




Stability estimates for h-p spectral element methods 407

512R4 4 (o
/;ZPH dx—l—ZJX:/y ( ) <W) ds

¢ ou ou ou

; {<8N/+1>A (aTj+1>A - (W>A <W>A} Q). GY

We shall say that a bounded open subset of R? with Lipschitz boundary I' has a piecewise
C? boundary if I' = I’y | J Ty, where

0Xy

(a) T has zero measure (for the arc length measure ds)
(b) Ty isopenin I' and each point x € I'] has a Cc? boundary as defined in 1.2.1.1 of [4].
Then Theorem 3.1.1.2 of [4] may be stated as follows:

Let O be a bounded open subset of R? with Lipschitz boundary I'. Assume in addition
that I is piecewise C2. Then for all v € (H?(2))? we have

dv, 0v
2 r s
[ |div(v)] dx—/ Z oxs er

d d
= f {—(vaT) - 2vT—vN} ds — [ {(trB)vi + B(vr, vr))ds.
r ds r

ds
(3.10)
To apply (3.10) we define the vector field
v=AV,u,
where A is the matrix
(A)r,s =dyrs-
We then observe that
29 du .
Mu = Z ol G = div(v), (3.11a)
r,s=1
ou XZ:N o _ vy N (3.11b)
— ) = Ay s— = v) - .
IN A rs=1 o ax‘y 7o

and

( ) ZTa” = Fov)-T. (3.11c)
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Hence (3.10) takes the form

v, 0
. e - [ ey
QP+1 X axr

r,s=1

5 Sowon$f () (),
- ,Z;/y, K ((;)—;)i + (%)1) ds. (3.12)

Now by Lemma 3.1.3.4 of [4] the following inequality holds for all u € H*(S):

2
2 ?u 3%
/LO Z = Z ArkQs ] 7

rs =1 0x50x) 0X,0x;
a.e. in 2. Thus it follows that

Moz

ax,axb

9%u das, du
8xs8xk 0Xy 8x1

8xr8x5

2.9 vy 0V 2
+2
Z Xs 0xy r,s%}:l

a.e. in . Integrating, we have
2

M%Z/

r,s=1

dvy v
Z / 8x: Bxi
+32R2/ Z

where R is a common bound for all the C! norms of all the ars. Hence

8)6,8)6Y
2 82

eraxs

er

3 22: / 9%u Z / dur By | 512R4 /
2 52 0x,0Xg 0X; er Xy
(3.13)
Next
4 4
d au ou
S| (s8) 58
;/yj ds ; aNJ+l ) \aTit+ ),
ou au
— — ). 3.14
+<3N’)A <8T1>A}(Q]) G149
Then combining (3.12)—(3.14) we obtain the result. |

In a neighbourhood of the vertex Ay we move to polar coordinates. We take a curvilinear
rectangle Qf‘ j which comprises part of the sectoral neighbourhood QX of the vertex Ag

and consider its image Qf‘ j in (7%, Oy) variables as shown in figure 4.
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As in [3] we write the differential operator 9t in modified polar coordinates, where

2
a ou
Mu = Z a—xr <(1r,sa_xs> .

r,s=1
Now
— K Tk
xX|p = x| +e*cost
and
Xy = x§ + e™ sin 6.
Here A, = (x{‘, x§ ). We would like to obtain an estimate for
/ r,3|imu|2dx = / |93?ku|2drkd9k.
Qk Ok
i,j L]
Let us define the new differential operator

2 2
~ d ou d ou
mk — 2Tk § — E JRE— a E— . 315
Hee axy <ar’sax ) Ay (ar,sa ) G19

r,s=1 $ r,s=1 Vs

Here y; = 7 and y, = 6. Let O* denote the matrix

k cos @ —sin b
o= | (3.16a)
sinf; cos 0O
and A* denote the matrix
~k o~k
ak |:a1,1 a2 :|
~k o~k )
41 942
Then it can be easily shown that
Ak = (0" AOF. (3.16b)

O

Figure 4. Element 55‘ i
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Hence, since OF is an orthogonal matrix, we have that

2
> @ nens = o + ). (3.17)

r,s=1

Moreover the following relations hold:

@ o = 2d1 , + 0@™), (3.18a)
@) 2)e = a5, —d)  + O@E™), (3.18b)
@ 5)o, = —2a} , + 0(™), (3.18¢)
@) Dy @) 5)y and (@5 ,)g = 0(e™), (3.18d)

as 7y — —oo. Next let y be a curve given by
x1 = x1(s),
X2 = x2(8),

where s is the arc length along the curve y. Then the curvature « at a point P on the curve
is given by

_ dx; d%xy  dxy d3x;
T ds ds2 ds ds?°

Let ¥ be the image of the curve in (y;, y2) coordinate given by
y1=y1(9),
y2 = y2(0),

where o is the arc length along the curve 7. Then it is easy to verify that

ds

— el 3.19
o = (3.19)

Now we can show that the curvature ¥ of the curve ¥ is given by

~ dy>
=re’ + —.
K=K + io
Hence
K| < |kle™ +1 <K, (3.20)

where K is a uniform constant, for all the curves y; C Qk.
We shall denote by ¢ and n the unit tangent and outward normal vector at a point P on
y, the boundary of Qf‘ ; except at its vertices where these are not defined.
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Lemma 3.2. Letu(y) € H3(§].C .). Then

MOZ/

ayr a}’s

ou ou ou du A
<8t1+1>gk <8nj+l>gk B <7>Zk <%>Xk} @)
du\> du\> 512 74
(T) o <5>;k) Z/ ‘3”

Now once more we use Theorem 3.1.1.2 of [4]. Clearly SNZZC j for j > 2 is a bounded

(3.21)

open subset of R? with Lipschitz boundary T thatisa piecewise C2. Thus T'= ( U?:l %)
U ( U;;] Qi) where }; are the sides of the open rectangle 525‘ j with the end points removed

and Q; are its vertices.
Now

/ rZ|9Mu|>dx =/~ e4fk|fmu|2drkd9k=fN 19t u)2dy.
Q Q) i

Here
2
~ d ou
Ftu= 3 (ak _)
r,_;Z::I ayr s 8)’s
as defined in (3.15). Then for all w € (H2(§~2§"j))2 we have

ow, 8wY
|div(w)|?dy — /
/ Y Z ar, 9ys Byr

r,s=1

4
=> ! / — (wawy) — 2w, }do - Z f R(w? +whdo. (3.22)

Jj=1

Here w, and w; are the projections of w on the normal and tangent vectors n and ¢
respectively. We define

w = XkVyu.

Then

2
~ | ou
mk ~k = di , 3.23
u = E — <am 3ys) = div(w) ( a)

u 2 ~ Ou
duy  _ o, 3.23b
(3}1);1( rz nra, s 3y Wp ( )
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and

~k 81/{
Z tas,— T (3.23¢)

So (3.22) takes the form
2
~ dw, dws
|9 ul*dy — ——dy
/(z. ”2:1 dys dyr
RGN
7 7 do on J 3k
au\2
(RN
on

4
2@ )~ ()a ) @ oo
« [\ ot/ +! onitl | = atd )z \ont ) z S

J=
9%u 35k1 du
”8yv3yz dy, dy

Now using Lemma 3.1.3.4 of [4] we obtain

2 aws 2
< Z 22
i,j=

1 dys 3yr

2
2

BYrayv

and by (3.18a)—(3.18d) there exists a constant R such that R is a common bound for the

C! norms of all Ezt(f j Hence
/ Jw, E)wY
ar, 9ys 8yr

MOZ

rs=1 Qk ayray“ rs=1
512 4 / du |?
+ —R —1 dy. (3.25)
M% ; fzk oy
Thus combining (3.22), (3.24) and (3.25) we get the result. |

We now need to write terms such as

ey

in (3.21) where y; C B’; = {(x1, x2) : pr = p}interms of (y;, y2) coordinates. Let y be a

smooth curve in SZZ = {(x1,x2) : (x1,x2) € Q and px < u}, where p < u, and let P be
a point on y such that P in polar coordinates has the representation (o, 6x) with pr = p.
Now

e Vyou = 05 Vyu, (3.26)
where O is the matrix defined in (3.16a), and

T = O*t, N = O*n. (3.27)
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Hence

oVl <8_”) (P) = 1" (0%) AO*Vu(P) = 1' A*V, u(P) = (a—u> (P)
9T A ot Ak

(3.282)

using (3.16a), (3.26) and (3.27). Here P is the image of the point P in (y1, y2) coordinates.
Similarly, we have

o <3_”> (p)z(a_”> (B). (3.28b)
oN ) , on ) 7

PROPOSITION 3.1

Thus we can conclude that

2p /y,( ) dS< )Ads_2/7j<8t) do (a );kd" (3.292)
2(du) (D _ [ (om
{,0 (3T>A <3N>A}(P)_{<8t>gk<8n>g}(P) (3.29)

and

In the same way we obtain the following results.

PROPOSITION 3.2

Consider the boundary y common to Qf‘ 41 and Qf - Then the following relations hold

(figure 5):
2 du) (9 _ (Y (3 =
P <3T3>A (8 3>A Q1 = <8t3>gk<an3);k (Q1),  (3.30a)
2 9w ( Du Cf(ou [Bu -
o <8T2>A <3N2>A Q) = (8t4>gk <3n4>gk (01), (3.30b)
2(8_”> <3u> (02) = <8_“) <3_”> (B (3.300)
P ar?) , \aN?) 4 2=\ 5 < \ont ) 5 2), -30c
and
2w\ (9w (Y (2 =
g <8T1>A <a l)A (Q2) = (aﬂ);k( n1>;k (02).  (3.30d)

Now let y; € 89" i for some j < M and further suppose ¥, € F where j € D. Letn
and 7 be the unit outward normal and tangent vectors, respectively, deﬁned at every point
of ¥;. Then

u “k
<_8 ) (o)=4¢ (0) ( ) (o) + h" (o) ( >~ (o). (3.31a)
t 811 Ak
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Figure 5. Elements ?2{‘ y and Qf‘ M4l

Here o is the arc length measured from the point G (figure 6) where

(t' Ak n(0))?

~k t Ak
o)=t'A"t(c) — ———, 3.31b

g (o) (o) i An(o) ( )
and

~ 1! Ak

o) = LECUICoN (3.31c)

nt Akn(o)

Hence

+
=
=2
[\):
Q
N
o
q|CL
S
o gl
| @
S
~— =
v
SNS—
o
Q

And so we can conclude that the following holds.

PROPOSITION 3.3

/ (50) 0 ar (5)
do
5 \ 0t ) Zx do Ak
~k ou d [ou
(0)— —
% ot do on J zi

dhk 2 hk du\?
_ = / ot (@) (du (3.32)
2/ an 2 \on/)x| .
Here §¥(c') and h* (o) are defined in (3.31b) and (3.31c). [ |

Next let y;,, € Bfoj for some j > M such that y,,, € I'j where j € D.Let N and T
be the unit normal and tangent vectors, respectively, defined at every point of y,,. Then

(g—;) (S)—g(S)( >(S)+h(S)<aN> (5), (3.33a)
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Xy

~ G Ym
Y

X
A, 2

Figure 6. Arc length measured from the point G.

where s is the arc length measured from the point G as shown in figure 6. Here

(T'AN)?
=T'AT — ———, 3.33b
g(s) NIAN ( )
and
T'AN
h(s) = ) 3.33
)= YAy (3.330)
So we obtain the following result.
PROPOSITION 3.4
] d /o
[ Gr) o (),
vm \OT J 4 ds \ON / ,
2] ()Bu d [/ ou d
= §)—— | — s
o) 88T as \on ),
o2 ( dh [ ou\? 0%h [ ou\?
- — — | —) ds+ — | — (3.34)
2 J,, ds \oN /4 2 \oN/, v
Now by (3.28b) we have that
du \? u\?> ~
P’ (8—) (G) = (—) G).
N A 8n Ak
And moreover by (3.16a) and (3.27)
2(G) =2“(G), (3.352)
and
h(G) = h*(G). (3.35b)

We can now prove the following estimate.



416 Pravir Dutt and Satyendra Tomar

Lemma 3.3. Let ulpJrl € H3(Qf+1). Then

> / / D& D& ul ! & ) Pdedn

||=2

_ C( //|Da1Da2 p+1|2d$dn>
la|<1
+1 +1
<K//|£P+l p+l 2d$dn+2p22/ du p 8ulp ds
ds aN
A A
4 s 3uf+1 3uf+1 8Mlp-i—l 8uf+1
+Z’O aNrJrl) 9T +1 _( ON” ) oT" (Qr)
r=1 A A A A
f lp+1 B 8uf+1 2
lic| (—) +< ) ds. (3.36)
, oN |, or |,

Here S is the unit square and Slp s the differential operator £ written in (&, ) coordi-
nates. Here K and C are positive constants.

Recall that
2
Lu=— ) (ars()uy)x, + Zb (), + c(x)u
r,s=1
= Mu + Nu, (3.37)
where

2
Nu = Zbr(x)uxr + c(x)u.
r=1

Hence
,02/ |Mu|>dx < 2,02/ |£u|2dx+2p2/ 9| dx.
le+l le+l S2[p+1

Using Lemma 3.1 we can conclude that there is a constant C such that the following
estimate holds.

32 p+1

8xr8xs

2
2
~er (|
1

ault! 2

0x;

dx | + PTARIENE:
le+l
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4 p+1 p+1
ou d [ou
<o,2 P 2y 4 22 / I o d
_,O/Q|u|x+pZ.BT as\ av | ©
j=17Yi A A
4 5 aulp+1 aulp+l auzzﬂ-l aufﬂ
2 awr) \armr) o o1 ) [
j=1 A A A A
p+1 2 auP T\
2 l
ds. 3.38
v Z/ “ ( >A+( or )A ' o

Writing the above in (€, ) coordinates we obtain the result. |

In the same way we can prove the following estimate.

Lemma3.4. Let uf j € H3(Qf ;) Then

/ /|D°"D°‘2 § P duedey
Ia\ 2
a  k k 12 4y
_C( 2 1/91{ /|D°‘1D¢k l]| dvkdq&k—i_/@{;j/'ui,j' e devkd¢k>
duf . d [ouf.
J a iJ
<K/sz’< /'S” il dvkd¢k+22/y ( o1 >~, do( on ) %0
Ak Ak
8u. j Bui’j Buf.‘,j -
8nr+1 8tr+1 on" ).\ ot |- (Qr)
Ak Ak Ak

(s

4 2 uk . 2

Z/ q ( ) + (—”) do. (3.39)
r=1Y" Ak d1 Ak

Here ﬁf} = (Ip le) X (a H_1) and B, C and K are positive constants.

For
Ghy = e ( Z (ars(X)uy,)x, + Zb (Xuy, +c(x)u>
r,s=1 r=1
2 2 -
= (Z —(Eﬁ‘,s(y)uk)y,) + (Z by (y)uy, +E"<y)u)
r,s=1 r=I1
= S)Ajtku + ‘itku.
Here

2
Nou = BE(yuy, +F(yu (3.40)
r=1
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and y = (y1, y2) = (1%, 6k) for some k. Moreover the coefficients of Mk satisfy
b = 0@™) forr =1,2

and

& =0

as T, — —o0.
Once more

/~ IMMFu|?dy < 2 f~ |Z:’<u|2dy+f~
Qf Qf; o

ij

I‘Ylku|2dy> .

Using Lemma 3.2 we can conclude that there exists a constant C such that the following

estimate holds.
uw
S5 L oS (2o, werw)
ij

u d Bu
<2 kuPdy +2 f d
_/Qt_|u|y+z i) a0 (5r). o

4 ou ou ou ~
()5 () —(am) (57) @
2 au\2
+ /|K|<< ) —i—(—) )da. (3.41)
j=177j Ak ot 'Zk

Rewriting (3.41) in (vg, ¢x) coordinates (3.39) follows. |

ayra}’s

We now need to obtain estimates for the spectral element functions in the H' norm
which we do in the following theorem.

Theorem 3.1. The following estimate holds:

P Ik
22|u{‘1|2+222nu,,<vk o017 o +Z||up“<e, DI

k=1i=1 =1j=2i=1

I

p M
<Cu Y Y D el jur ¢>k)||09k

k=1 j=2 i=1

P
+ )0 il g, + N 1G5, + Mg, 1155,
k=1 y,cQk

=

l

'y Yo Uulfg + luylds)

leDk=I-1 yTC()QI‘ BIVE n(Fs)<oo
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p
Y03 Al g, + N 1155, + Mg 1155,

k=1 V.rgBé
d ou
+2 2 2 ).
A
L 1 1
+y° /S f 17 ul &, ) Pdedy
=1

[eN k=I—1y,coQk O T
+ > (G, + N 15, + M ]05,,)

Vs cQ !
)
anS

Yy (nuné% + Hg—;

leD y,caqprti NIy
ou

Here Cyy = CM?* if there exists a vertex A j such that Neumann boundary conditions are
imposed on the adjoining sides T"; and T j11 and Cyy = C otherwise. C denotes a constant
and p(ys) the length of 7.

2

0.7

LIS

leN ycoQrtl N,

(3.42)

To prove the estimate (3.42) we shall use (3.5). To do so we have to define a corrected
version of the spectral element functions so that it is conforming.

Let {{uf’j(vk D) Yi, j<M.k {ufj(é M}i,j>m k}k be a set of spectral element functions
e 7MW Here nM W is the set of spectral element functions such that u* ¥| = gk aconstant
for all i, and u i is a polynomial of degree W in each variable for j > 2. Then there is a
set of spectral element functions

A ks )i j<ak (f jE Y jomk € o™V

such that the function ¢(x1, x») defined as

@(x1,x2)
B (ul, + 25 D(er, x2), g (xr, x12)) i (x1,x2) € @ for j <M
| Wt +Ak PEGL, x2), (1, x2) i (x1,x0) € @ for j > M
is a differentiable function of its arguments and ¢ € HOl (€2). This can be shown as in

Lemma 4.57 of [7].
Moreover the estimate

~

k

P
DX P +ZZZIIA (ks ¢k>||19k

k=1i=1 =1j=2i=1

Jk Ik

)4
+Z 0 I EITs

=1 j=M+1i=1
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[

<c{I> > 3 (el 5, + Nt 15 5)

1€D k=I—1 y, )Nk, w(F;) <co

p
+Y Y g, + M 1G5, + Mg 1155,

k=1 y,cQk n@)<oco

+ Z Z (111G 5, + Nlaen UG 5, + Nl 111G 5,)

ou
oT

+y ) (nuné% + ‘

2
) (3.43)
1D y,caQr+inr 0,ys
holds.

We now explain the notation we have used in (3.43). Let do denote an element of arc
length in (v, ¢x) coordinates. Then

2 2 3~
lwlg,p, = [ lw(vk, ¢x)|"do.
Vs

Moreover if y; is given by y; = 89,1,71+1 oy *! then

2
au|? / aul™ gult! .
— = _ s.
oT Jlo,,  J \ 0T aT

Here d/0T denotes the tangential derivative in (x1, x2) variables, i.e.

ou /
ﬁ =T qu.

The other terms in the right-hand side of (3.43) are similarly defined.
Now consider the bilinear form

2
B(p,v) = / (Z ar,5 (X) @, v, + Zbr(xm,v + cwv) dx
Q

r,s=1

~

k

M L
:ZZ B(gp, U)ij +ZB((Pa U)QIP-H.
' =1

k=1 j=1i=1

Here

r,s=1

B(p, VA = / (Z ars(x)(pxgvxr + Zb (x)%c,v + CQOU) dx,
A

where A is a domain contained in 2 and v € HO1 ().
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Now

rs=1

a
:/ £<pvdx+/ (_(p) vds.
Q]p+1 aglp+1 oN A

Similarly if 1 < j < M we have

- 9
B(p, v)gt = / T pudrdo; + / (—‘0> vdo.
i Jgk ok \On ) G

L)

B(p, U)le+l = / (Z ars(x)‘Px3 Uy, + Zb (x)(pxrv + cpv
2

Moreover if j = 1,

B(p, v = cove*™dr,do +/ (—) vdo
(¢ )Qﬁl /ﬁk (4] £ A0 s, \an )

i1

since ¢ is a constant on Qk
Finallyif j =M + 1 we obtam

d¢
B(p, U)Qf,MH = ./;z’.‘ £<pvdx+/ (811) vdo

i,M+1

Gl
+/ (_(p) vds.
09 41\ B N/
For by (3.28b)

I _ B_(p ~
(5,0 (2), 7

)d

421

and ds = pdo. Here P is any point on the circular arc B'; and P is its image in (g, 6k)

coordinates. Now

=~

B(p,v) =

-

B(p, v)gs + Z B(p, v)gps

~

eain
M= T

»—
I
-
~.
I
—_
I
-

I,

~

+

Mz

1i=1

1/

£y LG e

k=1 y, CQk, u(¥5)<oo

=

Il
M=
M§ EM*:

»
Il
-
~.
I
-
I
.’O

B(ul It U)Qk + Z B(ul v)Q/pH

L
1
B()»ﬁ-ij, U)Qi_cj + Z B(A;"" , v)le+|>
' =1

L
1
Sk vdrddy + ; /Q . Cul M vdxydx,
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ERACARER AN

ysCQPHl

+> Xl: > /Ns(a—u>~vda

leN k=1—1y,cINIQ*, u(F;) <oo

+ZXL: > /y (;—;)Avds

leN r=1y coal*'nr,

p I M I
IR ITLIENES 9 LA

k=1 i=1 k=1 j=2i=1
L 1
+;B(Af+ gt |- (3.44)
Now
/ Ekkf (vdrdéy = f C)Li-( lvezrk dtidoy.
QK ' Qk ’
i1 i1

Here

A= _M;{,I’ if [ or Ty € T
" 0, otherwise

Now cx = ¢(Ag), a constant, and c(x1, x2) is an analytic function of x; and x;. Hence

12
< 2cx (/ |)¥{'€,1|2621kd77kd9k)
12
X (/ v2e2”‘drkd0k>

for M large enough. And so we obtain

/“‘k Ekkflvdtdek
24

k
< elA e, 1)l o

/;k Ekkfﬁlvdtdek
24

where ¢ is exponentially small in M. Now, let 2 < j < M. Then

/ Ekuf -vdTrdog
=k . 5]

ij

Skok
<g ui,j("-'kvQk)“()ﬁf,ii”U(fk,ek)no,ﬁfi.

Finally

+1
< lLuf 1wl gt IvGer 2l g

p+l
Lpﬂ (Lu; " Hvdx
1
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Now

Ik

p M
DY v, Ploq = Kulven, w)lig.

=1 j=2i=1

=~

Here K)y = K M? if there is a vertex A; such that Neumann boundary conditions are
imposed on the adjoining sides I'; and I'j;; and K) = K, otherwise. K denotes a
constant. Hence

I

M'ﬁ
Ms

ook 6012 5 < KnrllvGer, x|} . (3.45)

~
Il
—_

~.
||
)

i=1
Now using the trace theorem for Sobolev spaces we obtain

I

P M
2
DD D Il < KulloGen, )l o
i=1

=1j=2

=~

And so we can conclude that

M

/ vido < Kyllv(xi, 2l o (3.46)
k=1 ]—21 1

Using the Cauchy—Schwartz inequality in (3.44) and using (3.45) and (3.46) we can con-
clude that

Iy

M
Y ST gkt (. 00112 @, +228|u,1|2

k=1 j=2i=1

B2 LIES w2 L16).] )

2 T ()

leN k=I—1y,cr Mok 7 Ps

|B(p, v)* < K

38

rm—

L
+Z/p+1/.|£ul (xl’x2)| dxidx;

=1

' Y, CQPFI /yx [(;_;)A]st
+2 / < >ids
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Now v € HO1 (2) and £ satisfies the inf—sup conditions (3.4). Hence using (3.5), (3.43)
and (3.46) we obtain

p M
lolT o < Km {ZZ 1€4u (rk,ewnmk

p
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1
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P 5 ) 2
+) (||[u]||0 o Il 15,5, + Mg 115 5,)

L

+Z/ /mu "1, x2)[Pdxy dxa
=1

+ > Iy, + w115, + N 111G,

Vs _CSZP 1
)
Oy)’s

DY (||M||g%+”§—;
PP /(38—;) ds+sf2<|u,l| + 1 1|>}.

1€D y,coQr+I Ty
[eN y,carti NIy =1i=1
Here ¢ is exponentially small in M.
Using (3.43) and (3.45) once more we obtain the result. |
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We now define differential operators (2" )¢ which are second order differential opera-
tors with polynomial coefficients in vx and ¢k of degree W such that these coefficients are
exponentially close approximation to the coefficients of (£k ) as has been described in the
beginning of this section. In the same way we define the dlfferentlal operator (du /8n)“
to be a first order differential operator with polynomial coefficients in v; and ¢ such that
these coefficients are exponentially close approximations to the coefficients of (du /9n) 3x.
The other approximations are similarly defined.

From the above, it is easy to conclude that

p Ik
ZZ(m 1 +Z||u,,(vk POl g1 )
k=1i=1 j=2
+ Z Il & I35 < Cu (D). (3.47)

where
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1 2
ou
+ > G
[eN k=l—1y,CoQk M Ty, u(P5) <00 Ak 0.
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IVSQB
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+ Y I T E )G
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+ 0 Gy, + M 14055, + 1105,
J/,rEQ”'H
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04’5)

D X (”””(2)% * H <88_T>

I€D y,co0rt I (T
du \“||*
(3N)A 0.7

OIS

leN yscortl NIy

Here Cyy is as defined in Theorem 3.1.
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3.3 The estimates

We now define the quadratic form
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We can now state the main result of this section.

DY

leN ycoQrtl N,

Theorem 3.2. Let VM’W({ui." 1 ks B ks {u;’+ Y&, M) be as defined in (3.48). Then
for M and W large enough the estimate

A
Y3 (|ul P+ Z a0 S5, g6 ) + Z luf " &) 113 5
k=1 i=1 j=2

< Curw VM (s g b ] T E D) (3.49)

holds for all {{uf ;(ve, ¢} j {ul T & mh} € MW

Here Cy.w = C maximum (M*, (In W)?) if there is a vertex Aj such that Neumann
boundary conditions are imposed on the adjoining sides I'j and T'j11 and Cyw =
C(In W)? otherwise. C is a constant, independent of M and W.
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Adding a weighted combination of (3.36), (3.39) and (3.47) and using the techniques
and results of [3] the result follows. |

Remark 2. The stability theorem 3.2 holds provided the coefficients of the differential
operator € C3(Q) and the curves ¢{f il and wi’f il defined in (2.6a), (2.6b) satisfy (2.7) for
t=1,...,3. '

For problems with mixed boundary conditions the factor multiplying the right-hand side
of (3.49) grows rapidly with M. This creates difficulties in parallelizing the numerical
scheme. To overcome this we make the spectral element functions continuous at the vertices
of the elements. Let n\ly ‘W denote the space of spectral element functions which are

continuous at the vertices of their elements. We define néw ‘W {0 be the space of spectral
element functions which vanish at the vertices of their element. We now need to state a
version of Theorem 3.2 when the spectral element functions vanish at the vertices of their
elements.

To do so, we have to prove the following result.

Lemma 3.5. Let uk (é n) be a polynomial of degree W in & and n separately, defined on
the unit square S = (0 1) x (0, 1), and which is zero at all the vertices of the square. Then
there exists a positive constant C such that

luf ;& IG5 < CQuf ;G I s + luf ;€ M) (3.50)

Consider u (E n) defined on (0, 1) x (0, 1). Now u (0 0) = 0. Hence

uk (6 0>=/E Y o
b o 0§
And so we can conclude that
2
juf (&, 0)2 ”(s 0)| di.

Integrating the above with respect to £ we obtain
ou k
—1(.0)

/wfn(s 0)|2ds<—/ -

< K(luf ;& )T g+ luf j13.9) (3.51)

2
dg

by the trace theorem for Sobolev spaces. Again

n duk
X X i,j / /
i ; (&) =u; ;(§,0) /0 o (& n')dn

Therefore
2
dn.

uk

ij
o )

1
juf ;G P < 20uf ;€ 0)F +2n/0
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Integrating the above with respect to £ and n we get

1
[ [k mPagan <2 [ 1k .0
S 0

BM?j
8’ (¢, m)| d&dn.
n

Combining the above with (3.51) we obtain the required result. |

Clearly Lemma 3.5 applies equally well to any of the function elements uk i (v, ¢r) for
2<j<M,1<i<I, 1 <k < p,although with a constant C; which depends on k.
Taking the supremum over the constant Cy (as given in (3.50)) we conclude that

lu ;(vr, ¢k)|mk < Cuf ;o $01T s + 11 ;o g1 ), (3.52)
R PRELg

for all function elements with 1 < k < p,1 <i < I,2 < j < M. Here C, of course,
denotes a generic constant. We can now state the final result of this section.

Theorem 3.3. Let {{ui.‘j(vk, D) }i,j ks {ufH(E, mh} belong to the space of functions

7TOM ‘W \vhich are zero at the vertices of the elements on which they are defined. Then the

following estimate holds:

M I 1
ZZ luf ;s B0 o +||u”+ & 3.

IM"@

< Can WP VM Y (b o i T 6 ) (3.53)
for M and W large enough.

In the above uf 1 (Vk, i) s taken to be identically zerofor 1 <k < pand1 <i < I .
Combining the estimates (3.50) and (3.52) with the earlier results (3.53) follows. ]

4. Conclusion

We can use the stability theorem 3.2 to formulate a numerical scheme to obtain an approx-
imate solution to the elliptic boundary value problem (2.1) as has been described in [8,9].
For problems with Dirichlet boundary conditions we choose our solution to be a non-
conforming spectral element representation which minimizes a functional which is the
sum of the squares of weighted squared norms of the residuals in the partial differential
equation and fractional Sobolev norms of the residuals in the boundary conditions and a
term which measures the sum of the jumps in the function and its derivatives in appropri-
ate Sobolev norms at inter-element boundaries. In a sectoral neighbourhood of the corners
these quantities are computed using modified polar coordinates and in the remaining part
of the domain we use a global coordinate system. This method is faster than the h-p finite
element method as there are no common boundary values to solve for [8,9].

For problems with mixed boundary conditions we have to make the spectral element
functions continuous only at the vertices of the elements. As a result the Schur complement
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matrix has a small dimension and an accurate inverse can be computed. Hence the numerical
scheme has a computational complexity which is less for finite element methods.

Moreover, the construction of a pre-conditioner for the Schur complement matrix is
very simple unlike the case for finite element methods. In fact, for problems in three
dimensions the construction of pre-conditioners for the Schur complement matrix becomes
quite complex for finite element methods [6].

Though the ideas in these papers deal with problems in two dimensions, they generalize
to three dimensions. We intend to study these problems both theoretically and computa-
tionally in future work.
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