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Abstract. In this paper we show that the h-p spectral element method developed
in [3,8,9] applies to elliptic problems in curvilinear polygons with mixed Neumann
and Dirichlet boundary conditions provided that the Babuska–Brezzi inf–sup conditions
are satisfied. We establish basic stability estimates for a non-conforming h-p spectral
element method which allows for simultaneous mesh refinement and variable polynomial
degree. The spectral element functions are non-conforming if the boundary conditions
are Dirichlet. For problems with mixed boundary conditions they are continuous only
at the vertices of the elements. We obtain a stability estimate when the spectral element
functions vanish at the vertices of the elements, which is needed for parallelizing the
numerical scheme. Finally, we indicate how the mesh refinement strategy and choice
of polynomial degree depends on the regularity of the coefficients of the differential
operator, smoothness of the sides of the polygon and the regularity of the data to obtain
the maximum accuracy achievable.
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1. Introduction

In this paper we generalize all the results we have obtained in [3] and seek a numerical
solution to an elliptic boundary value problem where the differential operator satisfies the
Babuska–Brezzi inf–sup conditions. We solve the boundary value problem on a curvilin-
ear polygon whose sides are piecewise analytic (smooth) and we assume the boundary
conditions are of mixed Neumann and Dirichlet type as in [1,2,5].

We now briefly describe the contents of this paper. In §2 we discuss function spaces and
obtain differentiability estimates for the solution in modified polar coordinates in a sectoral
neighbourhood of the vertices. Here we examine two cases viz. when the coefficients of
the differential operator, sides of the polygon and the data are analytic and when they have
finite regularity.

In §3 we obtain a stability theorem for a non-conforming spectral element representation
of the solution for problems with mixed boundary conditions. We let the spectral element
functions to be polynomials of variable degree, where the degree of all these polynomials
is bounded by W , and let M denote the number of elements or layers in a sectoral neigh-
bourhood of each of the vertices in the radial direction as shown in figure 1. We then define
a quadratic form VM,W which measures the sum of squares of a weighted squared norm of
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the partial differential equation and fractional Sobolev norms of the boundary conditions
and a term which measures the jumps in the function and its derivatives at inter-element
boundaries in appropriate Sobolev norms. In each of the sectoral neighbourhoods of the
corners we use modified polar coordinates and a global coordinate system in the remaining
part of the domain. We prove that the sum of the squares of the H 2 norms of the spectral
element functions is bounded by the quadratic form VM,W multiplied by a factor which
grows logarithmically in W for problems with Dirichlet boundary conditions. For prob-
lems with mixed boundary conditions this factor can grow as M4, provided W is not too
large, and thus the method displays algebraic instability.

We choose as our approximate solution the unique spectral element function which
minimizes a functional rM,W closely related to the quadratic form VM,W as defined in
[3,8,9]. In case the solution is analytic, we choose M proportional to W , and show that
rM,W decays exponentially in M . Now the error is bounded by rM,W multiplied by a
factor which grows at most algebraically in M . Hence the order of convergence remains
exponential. If the solution has finite regularity then we chooseM proportional to lnW and
show that rM,W decays algebraically inW . Now the error is bounded by rM,W multiplied
by a factor which grows polylogarithmically inW and hence the error decays algebraically
in W .

We now come to the aspect of parallelization of the numerical scheme. For problems
with Dirichlet boundary conditions the spectral element functions are non-conforming and
we can use the stability theorem to parallelize the scheme in an optimal manner. It should
be noted that the method is assymptotically faster then the h-p finite element method.
For problems with mixed boundary conditions we cannot use this stability theorem to
parallelize our method since the factor in the stability estimate can grow as M4. To get
around this problem we make the spectral element functions continuous at the vertices
of the elements only. We then prove a stability theorem for mixed problems when the
spectral element functions vanish at the vertices of their elements. The values of the
spectral element functions at the vertices of their elements constitute the set of common
boundary values we have to solve for. It should be noted that the cardinality of the set
of common boundary values is much smaller than for finite element methods where the
functions have to be continuous along the edges of the elements. Since the cardinality of
the set of common boundary values is small we can construct an accurate approximation
to the Schur complement matrix from its definition. As a result the method is faster than
the standard h-p finite element method [8].

2. Function spaces and differentiability estimates

Let � be a curvilinear polygon with vertices A1, A2, . . . , Ap and corresponding sides
01, 02, . . . , 0p where 0i joins the points Ai−1 and Ai . We shall assume that the sides 0i
are analytic (smooth) arcs, i.e.

0i = {(ϕi(ξ), ψi(ξ))|ξ ∈ I = [−1, 1].}

with ϕi(ξ) and ψi(ξ) being analytic (smooth) functions on I and |ϕ′
i (ξ)|2 + |ψ ′

i (ξ)|2 ≥
α > 0. By 0i we mean the open arc, i.e. the image of I = (−1, 1). Let the angle subtended
at Aj be ωj . We shall denote the boundary ∂� of � by 0. Further let 0 = 0[0]⋃0[1],

0[0] = ⋃
i∈D 0i, 0[1] = ⋃

i∈N 0i where D is a subset of the set {i | i = 1, . . . , p} and
N = {i | i = 1, . . . , p} \ D. Let x denote the vector x = (x1, x2).
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Let L be a strongly elliptic operator

L(u) = −
2∑

r,s=1

(ar,s(x)uxs )xr +
2∑
r=1

br(x)uxr + c(x)u, (2.1)

where as,r (x) = ar,s(x), br (x), cr (x) are analytic (smooth) functions on � and for any
(ξ1, ξ2) ∈ R and any x ∈ �,

2∑
r,s=1

ar,sξrξs ≥ µ0(ξ
2
1 + ξ2

2 ) (2.2)

with µ0 > 0. Moreover let the bilinear form induced by the operator L satisfy the inf–sup
conditions.

In this paper we shall consider the boundary value problem

Lu = f on �,

u = g[0] on 0[0],(
∂u

∂N

)
A

= g[1] on 0[1], (2.3)

where
(
∂u
∂N

)
A

denotes the usual conormal derivative which we shall now define. Let A
denote the 2 × 2 matrix whose entries are given by

Ar,s(x) = ar,s(x)

for r, s = 1, 2. Let N = (N1, N2) denote the outward normal to the curve 0i for i ∈ N .

Then
(
∂u
∂N

)
A

is defined as follows:(
∂u

∂N

)
A

(x) =
2∑

r,s=1

Nrar,s
∂u

∂xs
. (2.4)

We shall assume that the given dataf is analytic (smooth) on� and g[l] is analytic (smooth)
on every closed arc 0i and g[0] is continuous on 0[0].

We need to state our regularity estimates in terms of local variables which are defined
on a geometrical mesh imposed on � as in §5 of [2]. We first divide � into subdomains.
Thus we divide � into p subdomains S1, . . . , Sp, where Si denotes a domain which
contains the vertex Ai and no other, and on each Si we define a geometrical mesh. Let
Sk = {�ki,j , j = 1, . . . , Jk, i = 1, . . . , Ik,j } be a partition of Sk and let S = ⋃p

k=1 Sk.

Here Jk = M + O(1) and Ik,j ≤ I for all k and j , where I is a constant. As has been
stated earlier M denotes the number of elements or layers in a sectoral neighbourhood of
each of the vertices in the radial direction.

We now put some restrictions on S. Let (rk, θk) denote polar coordinates with center at
Ak. Let τk = ln rk.We choose ρ so that the curvilinear sector�k with sides 0k and 0k+1,

center at Ak and radius ρ satisfies

�k ⊆
⋃

�ki,j∈Sk

�
k

i,j .
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Figure 1. Geometric mesh with M layers in the radial direction in the curvilinear
domain.

�k may be represented as

�k = {(x, y) ∈ � : 0 < rk < ρ}. (2.5)

The geometrical mesh we have imposed on � is as shown in figure 1.
Let γ ki,j,l , 1 ≤ l ≤ 4 be the side of the quadrilateral �ki,j ∈ S. Then we assume that

γ ki,j,l :

{
x = hki,j ϕ

k
i,j,l(ξ),

y = hki,jψ
k
i,j,l(ξ),

0 ≤ ξ ≤ 1, l = 1, 3 (2.6a)

γ ki,j,l :

{
x = hki,j ϕ

k
i,j,l(η),

y = hki,jψ
k
i,j,l(η),

0 ≤ η ≤ 1, l = 2, 4 (2.6b)

and that for some C ≥ 1 and L ≥ 1 independent of i, j, k and l∣∣∣∣ dt

dst
ϕki,j,l(s)

∣∣∣∣ , ∣∣∣∣ dt

dst
ψki,j,l(s)

∣∣∣∣ ≤ CLt t!, t = 1, 2, . . . . (2.7)

We shall also examine the case when they are smooth. Some of the elements may be
triangles too [7]. We shall place further restrictions on the geometric mesh we impose on
�k later.
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Figure 2. Curvilinear sectors.
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Let (rk, θk) be polar coordinates with center at Ak. Then �k is the open set bounded
by the curvilinear arcs 0k, 0k+1 and a portion of the circle rk = ρ. We subdivide �k into
curvilinear rectangles by drawingM circular arcs rk = σkj = ρµ

M+1−j
k , j = 2, . . . ,M+

1, where µk < 1 and Ik − 1 analytic curves C2, . . . , CIk whose exact form we shall
prescribe in what follows. We define σk1 = 0. Thus Ik,j = Ik for j ≤ M; in fact, we shall
let Ik,j = Ik for j ≤ M+1.Moreover Ik,j ≤ I for all k, j where I is a fixed constant. Let

0k+j = {(rk, θk)|θk = f kj (rk), 0 < rk < ρ},

j = 0, 1 in a neighbourhood Ak of �k . Then the mapping

rk = ρk, θk = 1

(ψku − ψkl )
[(φk − ψkl )f

k
1 (ρk)− (φk − ψku)f

k
0 (ρk)], (2.8)

where f kj is analytic in rk for j = 0, 1, maps locally the cone

{(ρk, φk) : 0 < ρk < σ,ψkl < φk < ψku}
onto a set containing�k as in §3 of [2]. The functions f kj satisfy f k0 (0) = ψkl , f

k
1 (0) = ψku

and (f kj )
′
(0) = 0 for j = 0, 1. It is easy to see that the mapping defined in (2.8) has two

bounded derivatives in a neighbourhood of the origin which contains the closure of the
open set

�̂k = {(ρk, φk) : 0 < ρk < ρ,ψkl < φk < ψku}.
We choose the Ik−1 curves C2, . . . , CIk as

Ci : φk(rk, θk) = ψki

for i = 2, . . . , Ik. Here ψkl = ψk1 < ψk2 < · · · < ψkIk+1 = ψku. Let 1ψki = ψki+1 − ψki .

Then we choose {ψki }i,k so that

max
i,k
(1ψki ) < λ(min

i,k
(1ψki )) (2.9)

for some constant λ. We need another set of local variables (τk, θk) in a neighbourhood of
�k where τk = ln rk. In addition we need one final set of local variables (νk, φk) in the cone

{(ρk, φk) : 0 ≤ ρk ≤ ρ,ψkl ≤ φk ≤ ψku},
where νk = ln ρk. Let Skµ = {(rk, θk) : 0 ≤ rk ≤ µ} ∩�. Then the image Ŝkµ in (νk, φk)
variables of Skµ is given by

Ŝkµ = {(νk, φk) : −∞ ≤ νk ≤ lnµ,ψkl ≤ φk ≤ ψku}.
Now the relationship between the variables (τk, θk) and (νk, φk) is given by (τk, θk) =
Mk(νk, φk), viz.

τk = νk,

θk = 1

(ψku − ψkl )
[(φk − ψkl )f

k
1 (e

νk )− (φk − ψku)f
k
0 (e

νk )]. (2.10)
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Hence it is easy to see that JMk (νk, φk), the Jacobian of the above transformation, satisfies
C1 ≤ |JMk (νk, φk)| ≤ C2 for all (νk, φk) ∈ Ŝkµ, for all 0 < µ ≤ ρ.

We should mention here that it is not necessary to choose the system of curves we have
chosen to impose a geometric mesh on Skµ. However it is necessary to choose the curve
rk = ρ as the boundary of�k and no other, as will become apparent in what follows. Any
other additional set of analytic curves which imposes a geometrical mesh on Skµ would do
equally well. However the set of curves we have chosen is, in some sense, the most natural
as the image �̂ki,j of a curvilinear rectangle�ki,j for j ≥ 2 in (νk, φk) variables is given by
a rectangle with straight lines for sides and for j = 1 is a semi-infinite strip with straight
lines for sides.

We now state the differentiability estimates for the solution u of (2.3) which will be
needed in this paper.

PROPOSITION 2.1

Consider the case when the coefficients of the differential operator are analytic on �
and the sides of the curvilinear polygon are analytic. Moreover let the geometric mesh
satisfy (2.7). Let the data f be analytic on � and let g[l] be analytic on every closed

arc 0i
[l]

, for l = 0, 1, and let g[0] be continuous on 0[0]. Let Uki,j (νk, φk) = u(νk, φk)

for (νk, φk) ∈ �̂ki,j for j ≤ M and ak = u(Ak). Now there is an analytic mapping

Mk
i,j : S → �ki,j for j > M given by Mk

i,j (ξ, η) = (Xki,j (ξ, η), Y
k
i,j (ξ, η)). Here S is the

unit square. Let Uki,j (ξ, η) = u(Xki,j (ξ, η), Y
k
i,j (ξ, η)). Then we can show as in [3,8] that

‖Uki,j (νk, φk)− ak‖2
m,�̂ki,j

≤ (Cm!dmµ(1−βk)(M−j+2)
k )2 (2.11a)

for 1 ≤ j ≤ M, k = 1, . . . , p, 1 ≤ i ≤ Ik and

‖Uki,j (ξ, η)‖2
m,S ≤ (Cm!dm)2 (2.11b)

for M < j ≤ Jk, 1 ≤ i ≤ Ik,j , 1 ≤ k ≤ p. Here C, d and βk are constants and
0 < βk < 1 for 1 ≤ k ≤ p. ¥

We next consider the case when the data has finite regularity. To state the differentiability
results in this case we shall need to use the space Hk,l

β (�) with k ≥ l defined in [1].

We now cite Remark 3 after Theorem 2.1 of [1]. Let 0j ∈Cm+2(Ī ) for j = 1, . . . , p

and let the coefficients of the differential operator ∈Cm(�). Let g[0] ∈Hm+ 3
2 ,

3
2

β (0[0]),

g[1] ∈ Hm+ 1
2 ,

1
2

β (0[1]) and f ∈ Hm,0
β (�). Then there exists a constant Km such that

‖u‖
H
m+2,2
β (�)

≤ Km

(
‖f ‖

H
m,0
β (�)

+
1∑
j=0

‖g[j ]‖
H
m+ 3

2 −j, 3
2 −j

β (0[j ])

)
. (2.12)

PROPOSITION 2.2

Consider the case when the differential operator and data satisfy the conditions stated
above. We assume moreover that the curves φki,j,l andψki,j,l defined in (2.6a), (2.6b) satisfy

‖φki,j,l‖m+2,∞,Ī , ‖ψki,j,l‖m+2,∞,Ī ≤ Em+2
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where Em+2 is a constant independent of i, j, k and l. Let Uki,j (νk, φk) = u(νk, φk) for

(νk, φk) ∈ �̂ki,j for j ≤ M and ak = u(Ak). Now there is a smooth mapping Mk
i,j : S →

�ki,j for j > M given by Mk
i,j (ξ, η) = (Xki,j (ξ, η), Y

k
i,j (ξ, η)). Here S is the unit square.

Let Uki,j (ξ, η) = U(Xki,j (ξ, η), Y
k
i,j (ξ, η)). Then using (2.12) we can show that

‖Uki,j (νk, φk)− ak‖2
m+2,�̂ki,j

≤ Km+2(µ
(1−βk)(M−j+2)
k )2 (2.13a)

for 1 ≤ j ≤ M, k = 1, . . . , p, 1 ≤ i ≤ Ik and

‖Uki,j (ξ, η)‖2
m+2,S ≤ Km+2 (2.13b)

for M < j ≤ Jk, 1 ≤ i ≤ Ik,j , 1 ≤ k ≤ p. Here Km+2 denotes a constant. ¥

3. Stability estimates

3.1 Preliminaries

Let

Lu = −
2∑

r,s=1

(ar,s(x)uxs )xr +
2∑
r=1

br(x)uxr + c(x)u (3.1)

be a strongly elliptic operator which satisfies the inf–sup conditions. Hence there exists a
positive constant µ0 > 0 such that

2∑
r,s=1

ar,s(x)ξrξs ≥ µ0(ξ
2
1 + ξ2

2 ),

for all x ∈ �.
LetH = H 1

0 (�) where w ∈ H 1
0 (�) if w ∈ H 1(�) and trace(w)|0[0] = 0. Consider the

bilinear form B(u, v) defined on H ×H as follows:

B(u, v) =
∫
�

(
2∑

r,s=1

ar,s(x)uxs vxr +
2∑
r=1

br(x)uxr v + cuv

)
dx. (3.2)

Then B(u, v) is a continuous mapping from H ×H → R and there exists a constant C1
such that

|B(u, v)| ≤ C1‖u‖H 1(�)‖v‖H 1(�) (3.3)

for all u, v ∈ H 1
0 (�). Moreover we assume that the inf–sup conditions [7]

inf
0 6=u∈H

sup
0 6=v∈H

B(u, v)

‖u‖H 1(�)‖v‖H 1(�)

≥ C2 > 0, (3.4a)

and

sup
u∈H

B(u, v) > 0 for every 0 6= v ∈ H (3.4b)
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hold. Then for every continuous linear functional F(v) defined on H 1
0 (�) there exists

unique u0 ∈ H 1
0 (�) such that B(u0, v) = F(v) for all v ∈ H 1

0 (�).Moreover, the a priori
estimate

‖u0‖H 1
0 (�)

≤ 1

C2
sup

0 6=v∈H 1
0 (�)

|F(v)|
‖v‖H 1(�)

(3.5)

holds.
Now consider the following mixed boundary value problem

Lu = f in �, (3.6a)

γ 0u = u|0[0] = g[0], (3.6b)

and

γ 1u =
(
∂u

∂N

)
A

∣∣∣∣
0[1]

= g[1]. (3.6c)

Here the conormal derivative γ 1u is defined as follows. Let 0i ⊆ 0[1] and let T and
N denote the unit tangent vector and unit outward normal at a point P on 0i which we
traverse in the clockwise direction. Let T = (T1, T2)

t and N = (N1, N2)
t . Then

γ 1u
∣∣
0i

=
(
∂u

∂N

)
A

∣∣∣∣
0i

=
2∑

r,s=1

Nrar,s
∂u

∂xs
= NtA∇xu. (3.7a)

In the same way we define the cotangential derivative(
∂u

∂T

)
A

∣∣∣∣
0i

=
2∑

r,s=1

Trar,s
∂u

∂xs
= T tA∇xu, (3.7b)

and the tangential vector(
∂u

∂T

)∣∣∣∣
0i

= T t∇xu. (3.7c)

We now consider the spectral elements which are not contained in the sectoral neigh-
bourhoods of the vertices �k for k = 1, . . . , p. Now �ki,j ⊆ �k for 1 ≤ i ≤ Ik,j and
1 ≤ j ≤ M . Let

Op+1 = {�ki,j , 1 ≤ k ≤ p,M < j ≤ Jk, 1 ≤ i ≤ Ik,j }.

Once more Jk = M +O(1). We shall relabel the elements of Op+1 and write

Op+1 = {�p+1
l , 1 ≤ l ≤ L}.

We shall now introduce some notation so that the reader may proceed directly to the
stability theorem 3.2 and examine the proof later as it is quite involved.
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Consider the domain �p+1
l . Then there is a mapping Mp+1

l from the master square

S = (0, 1) × (0, 1) to �p+1
l . Let Jp+1

l (ξ, η) denote the Jacobian of the transformation

M
p+1
l . We let

u
p+1
l (ξ, η) =

W∑
j=0

W∑
i=0

hi,j ξ
iηj .

We choose the spectral element functions {uki,j (νk, φk)}i,j,k for 1 ≤ i ≤ Ik , 1 ≤ j ≤ M

and 1 ≤ k ≤ p to be polynomials of the form

uki,j (νk, φk) =
Wj∑
s=0

Wj∑
r=0

ar,sν
r
kφ

s
k

for j 6= 1. Here 1 ≤ Wj ≤ W . If j = 1 we choose uki,1(νk, φk) = gk where gk is a constant

for 1 ≤ i ≤ Ik . Let πM,W denote the space of polynomials {{uki,j (νk, φk)}i,j,k, {up+1
l

(ξ, η)}l}.
Remark 1. We shall always chooseM = O(W). In case the conditions of Proposition 2.1
are satisfied so that u is analytic we chooseW = M . Once we have obtained the numerical
solution we can define a correction to it so that the corrected solution is conforming and
converges to the actual solution exponentially in M in the H 1(�) norm [8,9]. Thus the
error in the H 1(�) norm is bounded by Ce−bM where C and b are constants. In case
u ∈ H

m+2,2
β (�) we would choose M proportional to m lnW . Once more we can define

a corrected version of the solution so that it is conforming and converges to the actual
solution in the H 1(�) norm and the error is bounded by C(lnW)3W−m+1. Hence for the
method to converge we must have m ≥ 2.

The stability theorem 3.2 holds provided the coefficients of the differential operator
∈ C3(�̄) and the curves φki,j,l , ψ

k
i,j,l defined by (2.6a), (2.6b) satisfy

‖φki,j,l‖3,∞,Ī , ‖ψki,j,l‖3,∞,Ī ≤ K3,

where K3 is a constant independent of i, j, k and l. In this paper however we prove
Theorem 3.2 assuming that the coefficients of the differential operator are analytic on �
and the curves φki,j,l , ψ

k
i,j,l defined in (2.6a), (2.6b) are analytic and satisfy the condition

(2.7). Now ∫
�
p+1
l

∫
|Lup+1

l (x, y)|2dxdy =
∫
S

∫
|Lp+1
l u

p+1
l (ξ, η)|dξdη.

Here

L
p+1
l u

p+1
l (ξ, η) = (Lu

p+1
l )(x, y)

√
J
p+1
l .

Now

L
p+1
l w = A

p+1
l wξξ + 2Bp+1

l wξη + C
p+1
l wηη +D

p+1
l wξ

+ E
p+1
l wη + F

p+1
l w,
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where the coefficients of the differential operator are analytic (smooth) functions of ξ and
η. Let Âp+1

l be the unique polynomial which is the orthogonal projection ofAp+1
l into the

space of polynomials of degree W in ξ and η with respect to the usual inner product in
H 2(S). We define B̂p+1

l , Ĉ
p+1
l , D̂

p+1
l , Ê

p+1
l and F̂ p+1

l in the same way. We then define

(L
p+1
l )aw = Â

p+1
l wξξ + 2B̂p+1

l wξη + Ĉ
p+1
l wηη + D̂

p+1
l wξ

+ Ê
p+1
l wη + F̂

p+1
l w.

Now let γl be a side of the element �p+1
m and let it be the image of the side ξ = 0 under

the mapping Mp+1
m . Clearly

∂u
p+1
m

∂x
= (u

p+1
m )ξ ξx + (u

p+1
m )ηηx.

We now define(
∂u

p+1
m

∂x

)a∣∣∣∣∣
γl

= ((u
p+1
m )ξ ξ̂x + (u

p+1
m )ηη̂x)(0, η).

Here ξ̂x(0, η) and η̂x(0, η) are the unique polynomials which are the orthogonal projections
of ξx(0, η) and ηx(0, η) into the space of polynomials of degreeW in ξ and η with respect
to the usual inner product in H 2(I ). In the same way we can define (∂up+1

m /∂y)a on γl .
Now let γl be a side common to �p+1

m and �p+1
n and let it be the image of ξ = 0 under

the mapping Mp+1
m and the image of ξ = 1 under the mapping Mp+1

n .

Let [w] denote the jump in w across γl , where w is a smooth function on �
p+1
m and

�
p+1
n . We now define∥∥∥∥[(∂u∂x

)a]∥∥∥∥2

1/2,γl

=
∥∥∥∥∥
(
∂u

p+1
m

∂x

)a
(0, η)−

(
∂u

p+1
n

∂x

)a
(1, η)

∥∥∥∥∥
2

1/2,(0,1)

and ∥∥∥∥[(∂u∂y
)a]∥∥∥∥2

1/2,γl

=
∥∥∥∥∥
(
∂u

p+1
m

∂y

)a
(0, η)−

(
∂u

p+1
n

∂y

)a
(1, η)

∥∥∥∥∥
2

1/2,(0,1)

.

Finally we consider a side 0k of the polygonal domain� as shown in figure 1. Let γl be a
side of �p+1

m such that γl ⊆ 0k and such that γl is the image of ξ = 0 under the mapping
M
p+1
m and which maps the master square S to �p+1

m . Then we can define (∂up+1
m /∂T )a

and (∂up+1
m /∂N)aA in the same way. Finally we define∥∥∥∥( ∂u∂T

)a∥∥∥∥2

1/2,γl

=
∥∥∥∥∥
(
∂u

p+1
m

∂T

)a
(0, η)

∥∥∥∥∥
2

1/2,(0,1)

and ∥∥∥∥( ∂u∂N
)a
A

∥∥∥∥2

1/2,γl

=
∥∥∥∥∥
(
∂u

p+1
m

∂N

)a
A

(0, η)

∥∥∥∥∥
2

1/2,(0,1)

.
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Now consider the sectoral domain �k . Let us define the differential operator

L̃kw(τk, θk) = e2τkLw(x, y)

as in [3]. Then

L̃kw(τk, θk) = αkwτkτk + 2βkwτkθk + γ kwθkθk + δkwτk + εkwθk + µkw,

..
where the coefficients of L̃k are analytic functions of their arguments. Consider the element
�ki,j with 1 < j ≤ M . Now the image of�ki,j in (νk, φk) coordinates is the rectangle �̂ki,j .
Clearly ∫

�ki,j

∫
(L̃kw(τk, θk))

2dτkdθk =
∫
�̂ki,j

∫
(Lki,jw(νk, φk))

2dνkdφk.

Here

Lki,jw(νk, φk) = L̃kw(τk, θk)
√
JMk (νk, φk),

where JMk denotes the Jacobian of the transformation Mk defined in (2.10). Once more
we can define a differential operator (Lki,j )

a by replacing the coefficients of Lki,j by poly-
nomials of degree W in νk and φk which are exponentially close approximation to them.

Now the highest order terms of the differential operator L̃k are given by M̃k , where

M̃kw =
2∑

i,j=1

∂

∂yi

(
ãki,j

∂w

∂yj

)
.

Here y1 = τk and y2 = θk . Let Ãk denote the 2 × 2 matrix such that Ãki,j = ãki,j . Let γl
be a side of the element �ki,j such that γl ⊆ 0k , where 0k is a side of the polygon �. Let
γ̃l be the image of γl in (y1, y2) coordinates given by y1 = y1(σ ), and y2 = y2(σ ). Let
t and n denote the unit tangent and normal vector at a point P on γ̃l . We now define the
conormal derivative(

∂w

∂n

)
Ãk

= nt Ãk∇yw.

Now the transformation Mk defined in (2.10) maps the rectangle �̂ki,j to �̃ki,j . Once more
we can define (∂w/∂n)a

Ãk
|γ̂l by replacing the coefficients of the first order differential

operator (∂w/∂n)Ãk by polynomials of degree W in νk which are exponentially close
approximations to them. We can now define ‖(∂w/∂n)a

Ãk
‖2

1/2,γ̂l
as we have done before.

The reader can now proceed directly to the stability theorem 3.2 stated in §3.3 and
examine the proof later.

3.2 Technical results

Consider some �p+1
l ∈ Op+1, as shown in figure 3. Then �p+1

l is a curvilinear quadri-

lateral whose sides are analytic arcs and the boundary ∂�p+1
l is traversed in the clockwise

direction.
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Figure 3. Element �p+1
l .

Let γ be a smooth curve and let N and T denote the unit outward normal and tangent
vectors to γ at a point P on γ . Let s be the arc length measured from a point on the curve
in the clockwise direction. Then the second fundamental form is given by

B(ξ, η) = −∂N
∂s

· T ξη = ∂T

∂s
·Nξη = κξη, (3.8)

where

κ = ±dT

ds

is the curvature of γ at P . Clearly Trace(B) = κ .
Now we need to use Theorem 3.1.1.2 of [4]. Let v be a smooth vector field defined on

�
p+1
l where v = (v1, v2)

t . Consider the restriction of v to the boundary ∂�p+1
l . Now

∂�
p+1
l = (

⋃4
i=1 γi)

⋃
(
⋃4
i=1Qi),where γi are the sides of ∂�p+1

l with end points deleted

andQi are the vertices of �p+1
l .We shall denote by vT the projection of v on the tangent

vector T to ∂�p+1
l except at the vertices where this cannot be defined. Similarly by vN

we shall denote the component of v in the direction of N. Thus we have

vN = v ·N

and

vT = v · T .

Lemma 3.1. Let u ∈ H 3(�
p+1
l ). Then

µ2
0

2

2∑
r,s=1

∫
�
p+1
l

∣∣∣∣ ∂2u

∂xr∂xs

∣∣∣∣2 dx

≤
∫
�
p+1
l

|Mu|2dx +
4∑
j=1

∫
γj

|κ|
((

∂u

∂N

)2

A

+
(
∂u

∂T

)2

A

)
ds
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+ 512R4

µ2
0

2∑
r=1

∫
�
p+1
l

∣∣∣∣ ∂u∂xr
∣∣∣∣2 dx + 2

4∑
j=1

∫
γj

(
∂u

∂T

)
A

d

ds

(
∂u

∂N

)
A

ds

+
4∑
j=1

{(
∂u

∂Nj+1

)
A

(
∂u

∂T j+1

)
A

−
(
∂u

∂Nj

)
A

(
∂u

∂T j

)
A

}
(Qj ). (3.9)

We shall say that a bounded open subset of R
2 with Lipschitz boundary 0 has a piecewise

C2 boundary if 0 = 00
⋃
01, where

(a) 00 has zero measure (for the arc length measure ds)
(b) 01 is open in 0 and each point x ∈ 01 has a C2 boundary as defined in 1.2.1.1 of [4].

Then Theorem 3.1.1.2 of [4] may be stated as follows:

Let O be a bounded open subset of R
2 with Lipschitz boundary 0. Assume in addition

that 0 is piecewise C2. Then for all v ∈ (H 2(�))2 we have

∫
O

|div(v)|2dx −
∫
O

2∑
r,s=1

∂vr

∂xs

∂vs

∂xr
dx

=
∫
01

{
d

ds
(vNvT )− 2vT

d

ds
vN

}
ds −

∫
01

{(trB)v2
N + B(vT , vT )}ds.

(3.10)

To apply (3.10) we define the vector field

v = A∇xu,

where A is the matrix

(A)r,s = ar,s .

We then observe that

Mu =
2∑

r,s=1

∂

∂xr

(
ar,s

∂u

∂xs

)
= div(v), (3.11a)

(
∂u

∂N

)
A

=
2∑

r,s=1

Nrar,s
∂u

∂xs
= (γ 0v) ·N (3.11b)

and

(
∂u

∂T

)
A

=
2∑

r,s=1

Trar,s
∂u

∂xs
= (γ 0v) · T . (3.11c)
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Hence (3.10) takes the form∫
�
p+1
l

|Mu|2dx −
2∑

r,s=1

∫
�
p+1
l

∂vr

∂xs

∂vs

∂xr
dx

=
4∑
j=1

∫
γj

d

ds
(vNvT )ds −

4∑
j=1

2
∫
γj

(
∂u

∂T

)
A

d

ds

(
∂u

∂N

)
A

ds

−
4∑
j=1

∫
γj

κ

((
∂u

∂N

)2

A

+
(
∂u

∂T

)2

A

)
ds. (3.12)

Now by Lemma 3.1.3.4 of [4] the following inequality holds for all u ∈ H 2(�):

µ2
0

2∑
r,s=1

∣∣∣∣ ∂2u

∂xr∂xs

∣∣∣∣2 ≤
2∑

r,s,k,l=1

ar,kas,l
∂2u

∂xs∂xk

∂2u

∂xr∂xl
,

a.e. in �. Thus it follows that

µ2
0

2∑
r,s=1

∣∣∣∣ ∂2u

∂xr∂xs

∣∣∣∣2 ≤
2∑

r,s=1

∂vr

∂xs

∂vs

∂xr
+ 2

2∑
r,s,k,l=1

∣∣∣∣ar,k ∂2u

∂xs∂xk

∂as,l

∂xr

∂u

∂xl

∣∣∣∣ ,
a.e. in �. Integrating, we have

µ2
0

2∑
r,s=1

∫ ∣∣∣∣ ∂2u

∂xr∂xs

∣∣∣∣2 dx ≤
2∑

r,s=1

∫
∂vr

∂xs

∂vs

∂xr
dx

+ 32R2
∫
�

2∑
r=1

∣∣∣∣ ∂u∂xr
∣∣∣∣ 2∑
r,s=1

∣∣∣∣ ∂2u

∂xr∂xs

∣∣∣∣ dx

where R is a common bound for all the C1 norms of all the ar,s . Hence

µ2
0

2

2∑
r,s=1

∫ ∣∣∣∣ ∂2u

∂xr∂xs

∣∣∣∣2 dx ≤
2∑

r,s=1

∫
∂vr

∂xs

∂vs

∂xr
dx + 512R4

µ2
0

2∑
r=1

∫ ∣∣∣∣ ∂u∂xr
∣∣∣∣2 dx.

(3.13)

Next

4∑
j=1

∫
γj

d

ds
(vNvT )ds =

4∑
j=1

{
−
(

∂u

∂Nj+1

)
A

(
∂u

∂T j+1

)
A

+
(
∂u

∂Nj

)
A

(
∂u

∂T j

)
A

}
(Qj ). (3.14)

Then combining (3.12)–(3.14) we obtain the result. ¥
In a neighbourhood of the vertexAk we move to polar coordinates. We take a curvilinear

rectangle �ki,j which comprises part of the sectoral neighbourhood �k of the vertex Ak
and consider its image �̃ki,j in (τk, θk) variables as shown in figure 4.
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As in [3] we write the differential operator M in modified polar coordinates, where

Mu =
2∑

r,s=1

∂

∂xr

(
ar,s

∂u

∂xs

)
.

Now

x1 = xk1 + eτk cos θk

and

x2 = xk2 + eτk sin θk.

Here Ak = (xk1 , x
k
2 ). We would like to obtain an estimate for∫

�ki,j

r2
k |Mu|2dx =

∫
�̃ki,j

|M̃ku|2dτkdθk.

Let us define the new differential operator

M̃ku = e2τk
2∑

r,s=1

∂

∂xr

(
ar,s

∂u

∂xs

)
=

2∑
r,s=1

∂

∂yr

(
ãr,s

∂u

∂ys

)
. (3.15)

Here y1 = τk and y2 = θk. Let Ok denote the matrix

Ok =
[

cos θk − sin θk
sin θk cos θk

]
(3.16a)

and Ãk denote the matrix

Ãk =
[
ãk1,1 ãk1,2

ãk2,1 ãk2,2

]
.

Then it can be easily shown that

Ãk = (Ok)tAOk. (3.16b)
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Figure 4. Element �̃ki,j .
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Hence, since Ok is an orthogonal matrix, we have that

2∑
r,s=1

ãkr,sηrηs ≥ µ0(η
2
1 + η2

2). (3.17)

Moreover the following relations hold:

(̃ak1,1)θk = 2̃ak1,2 +O(eτk ), (3.18a)

(̃ak1,2)θk = ãk2,2 − ãk1,1 +O(eτk ), (3.18b)

(̃ak2,2)θk = −2̃ak1,2 +O(eτk ), (3.18c)

(̃ak1,1)τk , (̃a
k
1,2)τk and (̃ak2,2)τk = O(eτk ), (3.18d)

as τk → −∞. Next let γ be a curve given by

x1 = x1(s),

x2 = x2(s),

where s is the arc length along the curve γ. Then the curvature κ at a point P on the curve
is given by

κ = dx1

ds

d2x2

ds2
− dx2

ds

d2x1

ds2
.

Let γ̃ be the image of the curve in (y1, y2) coordinate given by

y1 = y1(σ ),

y2 = y2(σ ),

where σ is the arc length along the curve γ̃ . Then it is easy to verify that

ds

dσ
= ey1 . (3.19)

Now we can show that the curvature κ̃ of the curve γ̃ is given by

κ̃ = κey1 + dy2

dσ
.

Hence

|̃κ| < |κ|eτk + 1 ≤ K, (3.20)

where K is a uniform constant, for all the curves γ̃s ⊆ �̃k .
We shall denote by t and n the unit tangent and outward normal vector at a point P on

γ̃ , the boundary of �̃ki,j except at its vertices where these are not defined.
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Lemma 3.2. Let u(y) ∈ H 3(�̃ki,j ). Then

µ2
0

2

2∑
r,s=1

∫
�̃ki,j

∣∣∣∣ ∂2u

∂yr∂ys

∣∣∣∣2 dy

≤
∫
�̃ki,j

|M̃ku|2dy + 2
4∑
j=1

∫
γ̃j

(
∂u

∂t

)
Ãk

d

dσ

((
∂u

∂n

)
Ãk

)
dσ

+
4∑
j=1

{(
∂u

∂tj+1

)
Ãk

(
∂u

∂nj+1

)
Ãk

−
(
∂u

∂tj

)
Ãk

(
∂u

∂nj

)
Ãk

}
(Q̃j )

+
4∑
j=1

∫
γ̃j

|̃κ|
((

∂u

∂t

)2

Ãk
+
(
∂u

∂n

)2

Ãk

)
dσ + 512

µ2
0

R4
2∑
r=1

∫
�̃ki,j

∣∣∣∣ ∂u∂yr
∣∣∣∣2 dy.

(3.21)

Now once more we use Theorem 3.1.1.2 of [4]. Clearly �̃ki,j for j ≥ 2 is a bounded

open subset of R
2 with Lipschitz boundary 0̃ that is a piecewise C2. Thus 0̃ = (⋃4

i=1 γ̃i
)⋃ (⋃4

i=1 Q̃i

)
where γ̃i are the sides of the open rectangle �̃ki,j with the end points removed

and Q̃i are its vertices.
Now ∫

�ki,j

r2
k |Mu|2dx =

∫
�̃ki,j

e4τk |Mu|2dτkdθk =
∫
�̃ki,j

|M̃ku|2dy.

Here

M̃ku =
2∑

r,s=1

∂

∂yr

(
ãkr,s

∂u

∂ys

)
as defined in (3.15). Then for all w ∈ (H 2(�̃ki,j ))

2 we have∫
�̃ki,j

|div(w)|2dy −
2∑

r,s=1

∫
�̃ki,j

∂wr

∂ys

∂ws

∂yr
dy

=
4∑
j=1

{∫
γ̃j

d

dσ
(wnwt )− 2wt

d

dσ
wn

}
dσ −

4∑
j=1

∫
γ̃j

κ̃(w2
n + w2

t )dσ. (3.22)

Here wn and wt are the projections of w on the normal and tangent vectors n and t
respectively. We define

w = Ãk∇yu.
Then

M̃ku =
2∑

r,s=1

∂

∂yr

(
ãkr,s

∂u

∂ys

)
= div(w), (3.23a)

(
∂u

∂n

)
Ãk

=
2∑

r,s=1

nr ã
k
r,s

∂u

∂ys
= wn, (3.23b)
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and (
∂u

∂t

)
Ãk

=
2∑

r,s=1

tr ã
k
r,s

∂u

∂ys
= wt . (3.23c)

So (3.22) takes the form∫
�̃ki,j

|M̃ku|2dy −
2∑

r,s=1

∂wr

∂ys

∂ws

∂yr
dy

= −2
4∑
j=1

∫
γ̃j

(
∂u

∂t

)
Ãk

d

dσ

((
∂u

∂n

)
Ãk

)
dσ

−
4∑
j=1

∫
κ̃

((
∂u

∂t

)2

Ãk
+
(
∂u

∂n

)2

Ãk

)
dσ

−
4∑
j=1

{(
∂u

∂tj+1

)
Ãk

(
∂u

∂nj+1

)
Ãk

−
(
∂u

∂tj

)
Ãk

(
∂u

∂nj

)
Ãk

}
(Q̃j ). (3.24)

Now using Lemma 3.1.3.4 of [4] we obtain

µ2
0

2∑
r,s=1

∣∣∣∣ ∂2u

∂yr∂ys

∣∣∣∣2 ≤
2∑

i,j=1

∂wr

∂ys

∂ws

∂yr
+ 2

2∑
r,s,t,l=1

∣∣∣∣∣̃akr,t ∂2u

∂ys∂yt

∂ãks,l

∂yr

∂u

∂yl

∣∣∣∣∣
and by (3.18a)–(3.18d) there exists a constant R such that R is a common bound for the
C1 norms of all ãki,j . Hence

µ2
0

2

2∑
r,s=1

∫
�̃ki,j

∣∣∣∣ ∂2u

∂yr∂ys

∣∣∣∣2 dy ≤
2∑

r,s=1

∫
�̃ki,j

∂wr

∂ys

∂ws

∂yr
dy

+ 512

µ2
0

R4
2∑
r=1

∫
�̃ki,j

∣∣∣∣ ∂u∂yr
∣∣∣∣2 dy. (3.25)

Thus combining (3.22), (3.24) and (3.25) we get the result. ¥
We now need to write terms such as

2ρ2
∫
γj

(
∂u

∂T

)
A

d

ds

(
∂u

∂N

)
A

ds

in (3.21) where γj ⊆ Bkρ = {(x1, x2) : ρk = ρ} in terms of (y1, y2) coordinates. Let γ be a
smooth curve in �kµ = {(x1, x2) : (x1, x2) ∈ � and ρk < µ}, where ρ < µ, and let P be
a point on γ such that P in polar coordinates has the representation (ρk, θk) with ρk = ρ.

Now

ey1∇xu = Ok∇yu, (3.26)

where Ok is the matrix defined in (3.16a), and

T = Okt, N = Okn. (3.27)
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Hence

ey1

(
∂u

∂T

)
A

(P ) = t t (Ok)tAOk∇yu(P̃ ) = t t Ãk∇yu(P̃ ) =
(
∂u

∂t

)
Ãk
(P̃ )

(3.28a)

using (3.16a), (3.26) and (3.27). Here P̃ is the image of the point P in (y1, y2) coordinates.
Similarly, we have

ey1

(
∂u

∂N

)
A

(P ) =
(
∂u

∂n

)
Ãk
(P̃ ). (3.28b)

PROPOSITION 3.1

Thus we can conclude that

2ρ2
∫
γj

(
∂u

∂T

)
A

d

ds

(
∂u

∂N

)
A

ds = 2
∫
γ̃j

(
∂u

∂t

)
Ãk

d

dσ

(
∂u

∂n

)
Ãk

dσ (3.29a)

and {
ρ2
(
∂u

∂T

)
A

(
∂u

∂N

)
A

}
(P ) =

{(
∂u

∂t

)
Ãk

(
∂u

∂n

)
Ãk

}
(P̃ ). (3.29b)

¥
In the same way we obtain the following results.

PROPOSITION 3.2

Consider the boundary γ common to�ki,M+1 and�ki,M . Then the following relations hold
(figure 5): {

ρ2
(
∂u

∂T 3

)
A

(
∂u

∂N3

)
A

}
(Q1) =

{(
∂u

∂t3

)
Ãk

(
∂u

∂n3

)
Ãk

}
(Q̃1), (3.30a){

ρ2
(
∂u

∂T 2

)
A

(
∂u

∂N2

)
A

}
(Q1) =

{(
∂u

∂t4

)
Ãk

(
∂u

∂n4

)
Ãk

}
(Q̃1), (3.30b){

ρ2
(
∂u

∂T 2

)
A

(
∂u

∂N2

)
A

}
(Q2) =

{(
∂u

∂t4

)
Ãk

(
∂u

∂n4

)
Ãk

}
(Q̃2), (3.30c)

and {
ρ2
(
∂u

∂T 1

)
A

(
∂u

∂N1

)
A

}
(Q2) =

{(
∂u

∂t1

)
Ãk

(
∂u

∂n1

)
Ãk

}
(Q̃2). (3.30d)

¥

Now let γ̃l ⊆ ∂�̃ki,j for some j ≤ M and further suppose γ̃l ⊆ 0̃j where j ∈ D. Let n
and t be the unit outward normal and tangent vectors, respectively, defined at every point
of γ̃l . Then (

∂u

∂t

)
Ãk
(σ ) = g̃k(σ )

(
∂u

∂t

)
(σ )+ h̃k(σ )

(
∂u

∂n

)
Ãk
(σ ). (3.31a)
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Figure 5. Elements �̃ki,M and �ki,M+1.

Here σ is the arc length measured from the point G̃ (figure 6) where

g̃k(σ ) = t t Ãkt (σ )− (t t Ãkn(σ ))2

nt Ãkn(σ )
, (3.31b)

and

h̃k(σ ) = t t Ãkn(σ )

nt Ãkn(σ )
. (3.31c)

Hence ∫
γ̃l

(
∂u

∂t

)
Ãk

d

dσ

(
∂u

∂n

)
Ãk

dσ =
∫
γ̃l

g̃k(σ )
∂u

∂t

d

dσ

(
∂u

∂n

)
Ãk

dσ

+
∫
γ̃l

h̃k(σ )

2

d

dσ

((
∂u

∂n

)2

Ãk

)
dσ.

And so we can conclude that the following holds.

PROPOSITION 3.3∫
γ̃l

(
∂u

∂t

)
Ãk

d

dσ

(
∂u

∂n

)
Ãk

dσ

=
∫
γ̃l

g̃k(σ )
∂u

∂t

d

dσ

(
∂u

∂n

)
Ãk

dσ

− 1

2

∫
γ̃l

dh̃k

dσ

(
∂u

∂n

)2

Ãk
dσ + h̃k(σ )

2

(
∂u

∂n

)2

Ãk

∣∣∣∣∣
∂γ̃l

. (3.32)

Here g̃k(σ ) and h̃k(σ ) are defined in (3.31b) and (3.31c). ¥

Next let γm ⊆ ∂�ki,j for some j > M such that γm ⊆ 0j where j ∈ D. Let N and T
be the unit normal and tangent vectors, respectively, defined at every point of γm. Then(

∂u

∂T

)
A

(s) = g(s)

(
∂u

∂T

)
(s)+ h(s)

(
∂u

∂N

)
A

(s), (3.33a)
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Figure 6. Arc length measured from the point G.

where s is the arc length measured from the point G as shown in figure 6. Here

g(s) = T tAT − (T tAN)2

NtAN
, (3.33b)

and

h(s) = T tAN

NtAN
. (3.33c)

So we obtain the following result.

PROPOSITION 3.4

ρ2
∫
γm

(
∂u

∂T

)
A

d

ds

(
∂u

∂N

)
A

ds

= ρ2
∫
γm

g(s)
∂u

∂T

d

ds

(
∂u

∂N

)
A

ds

− ρ2

2

∫
γm

dh

ds

(
∂u

∂N

)2

A

ds + ρ2h

2

(
∂u

∂N

)2

A

∣∣∣∣∣
∂γm

. (3.34)

¥

Now by (3.28b) we have that

ρ2
(
∂u

∂N

)2

A

(G) =
(
∂u

∂n

)2

Ãk
(G̃).

And moreover by (3.16a) and (3.27)

g(G) = g̃k(G̃), (3.35a)

and

h(G) = h̃k(G̃). (3.35b)

We can now prove the following estimate.
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Lemma 3.3. Let up+1
l ∈ H 3(�

p+1
l ). Then

∑
|α|=2

∫
S

∫
|Dα1

ξ D
α2
η u

p+1
l (ξ, η)|2dξdη

− C

(∑
|α|≤1

∫
S

∫
|Dα1

ξ D
α2
η u

p+1
l |2dξdη

)

≤ K

∫
S

∫
|Lp+1
l u

p+1
l |2dξdη + 2ρ2

4∑
r=1

∫ (
∂u

p+1
l

∂T

)
A

d

ds

(
∂u

p+1
l

∂N

)
A

ds

+
4∑
r=1

ρ2

{(
∂u

p+1
l

∂Nr+1

)
A

(
∂u

p+1
l

∂T r+1

)
A

−
(
∂u

p+1
l

∂Nr

)
A

(
∂u

p+1
l

∂T r

)
A

}
(Qr)

+
4∑
r=1

∫
γr

|κ|ρ2

(∂up+1
l

∂N

)2

A

+
(
∂u

p+1
l

∂T

)2

A

 ds. (3.36)

Here S is the unit square and L
p+1
l is the differential operator L written in (ξ, η) coordi-

nates. Here K and C are positive constants.

Recall that

Lu = −
2∑

r,s=1

(ar,s(x)uxs )xr +
2∑
r=1

br(x)uxr + c(x)u

= Mu+ Nu, (3.37)

where

Nu =
2∑
r=1

br(x)uxr + c(x)u.

Hence

ρ2
∫
�
p+1
l

|Mu|2dx ≤ 2ρ2
∫
�
p+1
l

|Lu|2dx + 2ρ2
∫
�
p+1
l

|Nu|2dx.

Using Lemma 3.1 we can conclude that there is a constant C such that the following
estimate holds.

ρ2µ2
0

2

2∑
r,s=1

∫
�
p+1
l

∣∣∣∣∣∂2u
p+1
l

∂xr∂xs

∣∣∣∣∣
2

dx

− Cρ2

 2∑
r=1

∫
�
p+1
l

∣∣∣∣∣∂u
p+1
l

∂xr

∣∣∣∣∣
2

dx

+
∫
�
p+1
l

|up+1
l |2dx
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≤ 2ρ2
∫
�
p+1
l

|Lup+1
l |2dx + 2ρ2

4∑
j=1

∫
γj

(
∂u

p+1
l

∂T

)
A

d

ds

(
∂u

p+1
l

∂N

)
A

ds

+
4∑
j=1

ρ2

{(
∂u

p+1
l

∂Nj+1

)
A

(
∂u

p+1
l

∂T j+1

)
A

−
(
∂u

p+1
l

∂Nj

)
A

(
∂u

p+1
l

∂T j

)
A

}
(Qj )

+ ρ2
4∑
j=1

∫
γj

|κ|
(∂up+1

l

∂N

)2

A

+
(
∂u

p+1
l

∂T

)2

A

 ds. (3.38)

Writing the above in (ξ, η) coordinates we obtain the result. ¥
In the same way we can prove the following estimate.

Lemma 3.4. Let uki,j ∈ H 3(�ki,j ). Then

β
∑
|α|=2

∫
�̂ki,j

∫
|Dα1

νk
D
α2
φk
uki,j |2dνkdφk

− C

(∑
|α|=1

∫
�̂ki,j

∫
|Dα1

νk
D
α2
φk
uki,j |2dνkdφk +

∫
�̂ki,j

∫
|uki,j |2e4νkdνkdφk

)

≤ K

∫
�̂ki,j

∫
|Lki,j uki,j |2dνkdφk + 2

4∑
r=1

∫
γ̃r

(
∂uki,j

∂t

)
Ãk

d

dσ

(
∂uki,j

∂n

)
Ãk

dσ

+
4∑
r=1

{(
∂uki,j

∂nr+1

)
Ãk

(
∂uki,j

∂tr+1

)
Ãk

−
(
∂uki,j

∂nr

)
Ãk

(
∂uki,j

∂tr

)
Ãk

}
(Q̃r )

+
4∑
r=1

∫
γ̃r

|̃κ|
(∂uki,j

∂n

)2

Ãk

+
(
∂uki,j

∂t

)2

Ãk

 dσ. (3.39)

Here �̂ki,j = (ψki , ψ
k
i+1)× (αkj , α

k
j+1) and β,C and K are positive constants.

For

L̃ku = e2y1

(
−

2∑
r,s=1

(ar,s(x)uxs )xr +
2∑
r=1

br(x)uxr + c(x)u

)

=
(

2∑
r,s=1

−(̃akr,s(y)uys )yr
)

+
(

2∑
r=1

b̃kr (y)uyr + c̃k(y)u

)
= M̃ku+ Ñku.

Here

Ñku =
2∑
r=1

b̃kr (y)uyr + c̃k(y)u (3.40)
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and y = (y1, y2) = (τk, θk) for some k. Moreover the coefficients of Ñk satisfy

b̃kr = O(eτk ) for r = 1, 2

and

c̃k = O(e2τk )

as τk → −∞.

Once more∫
�̃ki,j

|M̃ku|2dy ≤ 2

(∫
�̃ki,j

|L̃ku|2dy +
∫
�̃ki,j

|Ñku|2dy

)
.

Using Lemma 3.2 we can conclude that there exists a constant C such that the following
estimate holds.

µ2
0

2

2∑
r,s=1

∫
�̃ki,j

∣∣∣∣ ∂2u

∂yr∂ys

∣∣∣∣2 dy − C

(
2∑
r=1

∫
�̃ki,j

∣∣∣∣ ∂u∂yr
∣∣∣∣2 dy +

∫
�̃ki,j

|u|2e4y1dy

)

≤ 2
∫
�̃ki,j

|L̃ku|2dy + 2
4∑
j=1

∫
γ̃j

(
∂u

∂t

)
Ãk

d

dσ

(
∂u

∂n

)
Ãk

dσ

+
4∑
j=1

{(
∂u

∂nj+1

)
Ãk

(
∂u

∂tj+1

)
Ãk

−
(
∂u

∂nj

)
Ãk

(
∂u

∂tj

)
Ãk

}
(Q̃j )

+
4∑
j=1

∫
γ̃j

|̃κ|
((

∂u

∂n

)2

Ãk
+
(
∂u

∂t

)2

Ãk

)
dσ. (3.41)

Rewriting (3.41) in (νk, φk) coordinates (3.39) follows. ¥
We now need to obtain estimates for the spectral element functions in the H 1 norm

which we do in the following theorem.

Theorem 3.1. The following estimate holds:

p∑
k=1

Ik∑
i=1

|uki,1|2 +
p∑
k=1

M∑
j=2

Ik∑
i=1

‖uki,j (νk, φk)‖2
1,�̂ki,j

+
L∑
l=1

‖up+1
l (ξ, η)‖2

1,S

≤ CM


p∑
k=1

M∑
j=2

Ik∑
i=1

‖Lki,j uki,j (νk, φk)‖2
0,�̂ki,j

+
p∑
k=1

∑
γs⊆�k

(‖[u]‖2
0,γ̂s + ‖[uνk ]‖2

0,γ̂s + ‖[uφk ]‖2
0,γ̂s )

+
∑
l∈D

l∑
k=l−1

∑
γs⊆∂�k

⋂
0l,µ(γ̂s )<∞

(‖u‖2
0,γ̂s + ‖uνk‖2

0,γ̂s )
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+
p∑
k=1

∑
γs⊆Bkρ

(‖[u]‖2
0,γ̂s + ‖[uνk ]‖2

0,γ̂s + ‖[uφk ]‖2
0,γ̂s )

+
∑
l∈N

l∑
k=l−1

∑
γs⊆∂�k

⋂
0l

∥∥∥∥(∂u∂n
)
Ãk

∥∥∥∥2

0,γ̂s

+
L∑
l=1

∫
S

∫
|Lp+1
l u

p+1
l (ξ, η)|2dξdη

+
∑

γs⊆�p+1

(‖[u]‖2
0,γs + ‖[ux1 ]‖2

0,γs + ‖[ux2 ]‖2
0,γs )

+
∑
l∈D

∑
γs⊆∂�p+1

⋂
0l

(
‖u‖2

0,γs +
∥∥∥∥ ∂u∂T

∥∥∥∥2

0,γs

)

+
∑
l∈N

∑
γs⊆∂�p+1

⋂
0l

∥∥∥∥( ∂u∂N
)
A

∥∥∥∥2

0,γs

 . (3.42)

Here CM = CM4 if there exists a vertex Aj such that Neumann boundary conditions are
imposed on the adjoining sides0j and0j+1 andCM = C otherwise.C denotes a constant
and µ(γ̂s) the length of γ̂s .

To prove the estimate (3.42) we shall use (3.5). To do so we have to define a corrected
version of the spectral element functions so that it is conforming.

Let {{uki,j (νk, φk)}i,j≤M,k, {uki,j (ξ, η)}i,j>M,k}k be a set of spectral element functions

∈ πM,W .HereπM,W is the set of spectral element functions such that uki,1 = gk , a constant

for all i, and uki,j is a polynomial of degree W in each variable for j ≥ 2. Then there is a
set of spectral element functions

{λki,j (νk, φk)}i,j≤M,k, {λki,j (ξ, η)}i,j>M,k ∈ πM,W

such that the function ϕ(x1, x2) defined as

ϕ(x1, x2)

=
{
(uki,j + λki,j )(νk(x1, x2), φk(x1, x2)) if (x1, x2) ∈ �ki,j for j ≤ M

(uki,j + λki,j )(ξ(x1, x2), η(x1, x2)) if (x1, x2) ∈ �ki,j for j > M

is a differentiable function of its arguments and ϕ ∈ H 1
0 (�). This can be shown as in

Lemma 4.57 of [7].
Moreover the estimate

p∑
k=1

Ik∑
i=1

|λki,1|2 +
p∑
k=1

M∑
j=2

Ik∑
i=1

‖λki,j (νk, φk)‖2
1,�̂ki,j

+
p∑
k=1

Jk∑
j=M+1

Ik,j∑
i=1

‖λki,j (ξ, η)‖2
1,S
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≤ C


∑
l∈D

l∑
k=l−1

∑
γs⊆0l∩∂�k,µ(γ̂s )<∞

(‖u‖2
0,γ̂s + ‖uνk‖2

0,γ̂s )


+

p∑
k=1

∑
γs⊆�k,µ(γ̂s )<∞

(‖[u]‖2
0,γ̂s + ‖[uνk ]‖2

0,γ̂s + ‖[uφk ]‖2
0,γ̂s )

+
p∑
k=1

∑
γs⊆Bkρ

(‖[u]‖2
0,γ̂s + ‖[uνk ]‖2

0,γ̂s + ‖[uφk ]‖2
0,γ̂s )

+
∑

γs⊆�p+1

(
‖[u]‖2

0,γs +
∥∥∥∥[ ∂u∂T

]∥∥∥∥2

0,γs

)

+
∑
l∈D

∑
γs⊆∂�p+1∩0l

(
‖u‖2

0,γs +
∥∥∥∥ ∂u∂T

∥∥∥∥2

0,γs

) (3.43)

holds.
We now explain the notation we have used in (3.43). Let dσ̂ denote an element of arc

length in (νk, φk) coordinates. Then

‖w‖2
0,γ̂s =

∫
γ̂s

|w(νk, φk)|2dσ̂ .

Moreover if γs is given by γs = ∂�
p+1
m

⋂
∂�

p+1
n then∥∥∥∥[ ∂u∂T

]∥∥∥∥2

0,γs

=
∫
γs

(
∂u

p+1
m

∂T
− ∂u

p+1
n

∂T

)2

ds.

Here ∂/∂T denotes the tangential derivative in (x1, x2) variables, i.e.

∂u

∂T
= T t∇xu.

The other terms in the right-hand side of (3.43) are similarly defined.
Now consider the bilinear form

B(ϕ, v) =
∫
�

(
2∑

r,s=1

ar,s(x)ϕxs vxr +
2∑
r=1

br(x)ϕxr v + cϕv

)
dx

=
p∑
k=1

M∑
j=1

Ik∑
i=1

B(ϕ, v)�ki,j
+

L∑
l=1

B(ϕ, v)
�
p+1
l

.

Here

B(ϕ, v)1 =
∫
1

(
2∑

r,s=1

ar,s(x)ϕxs vxr +
2∑
r=1

br(x)ϕxr v + cϕv

)
dx,

where 1 is a domain contained in � and v ∈ H 1
0 (�).
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Now

B(ϕ, v)
�
p+1
l

=
∫
�
p+1
l

(
2∑

r,s=1

ar,s(x)ϕxs vxr +
2∑
r=1

br(x)ϕxr v + cϕv

)
dx

=
∫
�
p+1
l

Lϕvdx +
∫
∂�

p+1
l

(
∂ϕ

∂N

)
A

vds.

Similarly if 1 ≤ j ≤ M we have

B(ϕ, v)�ki,j
=
∫
�̃ki,j

L̃kϕvdτkdθk +
∫
∂�̃ki,j

(
∂ϕ

∂n

)
Ãk
vdσ.

Moreover if j = 1,

B(ϕ, v)�ki,1
=
∫
�̃ki,1

cϕve2τkdτkdθk +
∫
∂�̃ki,1

(
∂ϕ

∂n

)
Ãk
vdσ

since ϕ is a constant on �̃ki,1.
Finally if j = M + 1 we obtain

B(ϕ, v)�ki,M+1
=
∫
�ki,M+1

Lϕvdx +
∫
B̃kρ

(
∂ϕ

∂n

)
Ãk
vdσ

+
∫
∂�ki,M+1\Bkρ

(
∂ϕ

∂N

)
A

vds.

For by (3.28b)

ρ

(
∂ϕ

∂N

)
A

(P ) =
(
∂ϕ

∂n

)
Ãk
(P̃ )

and ds = ρdσ . Here P is any point on the circular arc Bkρ and P̃ is its image in (τk, θk)
coordinates. Now

B(ϕ, v) =
p∑
k=1

M∑
j=1

Ik∑
i=1

B(ϕ, v)�ki,j
+

L∑
l=1

B(ϕ, v)
�
p+1
l

=
p∑
k=1

M∑
j=1

Ik∑
i=1

B(uki,j , v)�ki,j
+

L∑
l=1

B(u
p+1
l , v)

�
p+1
l

+
(

p∑
k=1

M∑
j=1

Ik∑
i=1

B(λki,j , v)�ki,j
+

L∑
l=1

B(λ
p+1
l , v)

�
p+1
l

)

=
p∑
k=1

M∑
j=1

Ik∑
i=1

∫
�̃ki,j

L̃kuki,j vdτkdθk +
L∑
l=1

∫
�
p+1
l

Lu
p+1
l vdx1dx2

+
p∑
k=1

∑
γs⊆�k,µ(γ̃s )<∞

∫
γ̃s

[(
∂u

∂n

)
Ãk

]
vdσ
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+
∑

γs⊆�p+1

∫
γs

[(
∂u

∂N

)
A

]
vds +

p∑
k=1

∑
γs⊆Bkρ

∫
γ̃s

[(
∂u

∂n

)
Ãk

]
vdσ

+
∑
l∈N

l∑
k=l−1

∑
γs⊆0l∩∂�k,µ(γ̃s )<∞

∫
γ̃s

(
∂u

∂n

)
Ãk
vdσ

+
∑
l∈N

L∑
r=1

∑
γs⊆∂�p+1

r ∩0l

∫
γs

(
∂u

∂N

)
A

vds

+
(

p∑
k=1

Ik∑
i=1

B(λki,1, v)�ki,1
+

p∑
k=1

M∑
j=2

Ik∑
i=1

B(λki,j , v)�ki,j

+
L∑
l=1

B(λ
p+1
l , v)

�
p+1
l

)
. (3.44)

Now ∫
�̃ki,1

L̃kλki,1vdτkdθk =
∫
�̃ki,1

cλki,1ve2τkdτkdθk.

Here

λki,1 =
{

−uki,1, if 0k or 0k+1 ⊆ 0[0]

0, otherwise

}
.

Now ck = c(Ak), a constant, and c(x1, x2) is an analytic function of x1 and x2. Hence∣∣∣∣∣
∫
�̃ki,1

L̃kλki,1vdτkdθk

∣∣∣∣∣ ≤ 2ck

(∫
|λki,1|2e2τkdτkdθk

)1/2

×
(∫

v2e2τkdτkdθk

)1/2

for M large enough. And so we obtain∣∣∣∣∣
∫
�̃ki,1

L̃kλki,1vdτkdθk

∣∣∣∣∣ ≤ ε|λki,1|‖v(x1, x2)‖0,�ki,1
,

where ε is exponentially small in M. Now, let 2 ≤ j ≤ M. Then∣∣∣∣∣
∫
�̃ki,j

L̃kuki,j vdτkdθk

∣∣∣∣∣ ≤ ‖L̃kuki,j (τk, θk)‖0,�̃ki,j
‖v(τk, θk)‖0,�̃ki,j

.

Finally ∣∣∣∣∣
∫
�
p+1
l

(Lu
p+1
l )vdx

∣∣∣∣∣ ≤ ‖Lup+1
l (x1, x2)‖0,�p+1

l

‖v(x1, x2)‖0,�p+1
l

.
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Now

p∑
k=1

M∑
j=2

Ik∑
i=1

‖v(νk, φk)‖2
0,�̂ki,j

≤ KM‖v(x1, x2)‖2
1,�.

Here KM = KM2 if there is a vertex Aj such that Neumann boundary conditions are
imposed on the adjoining sides 0j and 0j+1 and KM = K , otherwise. K denotes a
constant. Hence

p∑
k=1

M∑
j=2

Ik∑
i=1

‖v(νk, φk)‖2
1,�̂ki,j

≤ KM‖v(x1, x2)‖2
1,�. (3.45)

Now using the trace theorem for Sobolev spaces we obtain

p∑
k=1

M∑
j=2

Ik∑
i=1

‖v‖2
0,∂�̂ki,j

≤ KM‖v(x1, x2)‖2
1,�.

And so we can conclude that

p∑
k=1

M∑
j=2

Ik∑
i=1

∫
∂�̃ki,j

v2dσ ≤ KM‖v(x1, x2)‖2
1,�. (3.46)

Using the Cauchy–Schwartz inequality in (3.44) and using (3.45) and (3.46) we can con-
clude that

|B(ϕ, v)|2 ≤ K

{
p∑
k=1

M∑
j=2

Ik∑
i=1

‖L̃kuki,j (τk, θk)‖2
0,�̃ki,j

+
p∑
k=1

Ik∑
i=1

ε|uki,1|2

+
p∑
k=1

( ∑
γs⊆�k

∫
γ̃s

[(
∂u

∂n

)
Ãk

]2

dσ+
∑
γs⊆Bkρ

∫
γ̃s

[(
∂u

∂n

)
Ãk

]2

dσ

)

+
∑
l∈N

l∑
k=l−1

∑
γs⊆0l

⋂
∂�k

∫
γ̃s

(
∂u

∂n

)2

Ãk
dσ

+
L∑
l=1

∫
�
p+1
l

∫
|Lup+1

l (x1, x2)|2dx1dx2

+
∑

γs⊆�p+1

∫
γs

[(
∂u

∂N

)
A

]2

ds

+
∑
l∈N

∑
γs⊆0l

⋂
∂�p+1

∫
γs

(
∂u

∂N

)2

A

ds

+ ε

p∑
k=1

Ik∑
i=1

|λki,1|2 +
p∑
k=1

M∑
j=2

Ik∑
i=1

‖λki,j (τk, θk)‖2
1,�̃ki,j
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+
L∑
l=1

‖λp+1
l (x, y)‖2

1,�p+1
l

}
·
{

p∑
k=1

Ik∑
i=1

‖v(x1, x2)‖2
0,�ki,1

+
p∑
k=1

M∑
j=2

Ik∑
i=1

‖v(τk, θk)‖2
1,�̃ki,j

+
L∑
l=1

‖vp+1
l (x, y)‖2

1,�p+1
l

+
p∑
k=1

M∑
j=2

Ik∑
i=1

∫
∂�̃ki,j

v2dσ

+
∑

γs⊆�p+1

∫
γs

v2ds +
∑
l∈N

∑
γs⊆∂�p+1

⋂
0l

∫
γs

v2ds

}
.

Now v ∈ H 1
0 (�) and L satisfies the inf–sup conditions (3.4). Hence using (3.5), (3.43)

and (3.46) we obtain

‖ϕ‖2
1,� ≤ KM

{
p∑
k=1

M∑
j=2

Ik∑
i=1

‖L̃kuki,j (τk, θk)‖2
0,�̃ki,j

+
p∑
k=1

( ∑
γs⊆�k

(‖[u]‖2
0,γ̂s + ‖[uνk ]‖2

0,γ̂s + ‖[uφk ]‖2
0,γ̂s )

+
∑
l∈N

l∑
k=l−1

∑
γs⊆∂�k

⋂
0l

∫
γ̃s

(
∂u

∂n

)2

Ãk
dσ

+
∑
l∈D

l∑
k=l−1

∑
γs⊆0l

⋂
∂�k,µ(γ̂s )<∞

(‖u‖2
0,γ̂s + ‖uνk‖2

0,γ̂s )

)

+
p∑
k=1

∑
γs⊆Bkρ

(‖[u]‖2
0,γ̂s + ‖[uνk ]‖2

0,γ̂s + ‖[uφk ]‖2
0,γ̂s )

+
L∑
l=1

∫
�
p+1
l

∫
|Lup+1

l (x1, x2)|2dx1dx2

+
∑

γs⊆�p+1

(‖[u]‖2
0,γs + ‖[ux1 ]‖2

0,γs + ‖[ux2 ]‖2
0,γs )

+
∑
l∈D

∑
γs⊆∂�p+1

⋂
0l

(
‖u‖2

0,γs +
∥∥∥∥ ∂u∂T

∥∥∥∥2

0,γs

)

+
∑
l∈N

∑
γs⊆∂�p+1

⋂
0l

∫ (
∂u

∂N

)2

A

ds +ε
p∑
k=1

Ik∑
i=1

(|uki,1|2 + |λki,1|2)
}
.

Here ε is exponentially small in M .
Using (3.43) and (3.45) once more we obtain the result. ¥
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We now define differential operators (Lki,j )
a which are second order differential opera-

tors with polynomial coefficients in νk and φk of degreeW such that these coefficients are
exponentially close approximation to the coefficients of (Lki,j ) as has been described in the
beginning of this section. In the same way we define the differential operator (∂u/∂n)a

Ãk

to be a first order differential operator with polynomial coefficients in νk and φk such that
these coefficients are exponentially close approximations to the coefficients of (∂u/∂n)Ãk .
The other approximations are similarly defined.

From the above, it is easy to conclude that

p∑
k=1

Ik∑
i=1

(
|uki,1|2 +

M∑
j=2

‖uki,j (νk, φk)‖2
1,�̂ki,j

)

+
L∑
l=1

‖up+1
l (ξ, η)‖2

1,S ≤ CM(I), (3.47)

where

I =
{

p∑
k=1

M∑
j=2

Ik∑
i=1

‖(Lki,j )auki,j (νk, φk)‖2
0,�̂ki,j

+
p∑
k=1

∑
γs⊆�k

(‖[u]‖2
0,γ̂s + ‖[uνk ]‖2

0,γ̂s + ‖[uφk ]‖2
0,γ̂s )

+
∑
l∈D

l∑
k=l−1

∑
γs⊆∂�k

⋂
0l,µ(γ̂s )<∞

(‖u‖2
0,γ̂s + ‖uνk‖2

0,γ̂s )

+
∑
l∈N

l∑
k=l−1

∑
γs⊆∂�k

⋂
0l,µ(γ̂s )<∞

∥∥∥∥(∂u∂n
)a
Ãk

∥∥∥∥2

0,γ̂s

+
p∑
k=1

∑
γs⊆Bkρ

(‖[u]‖2
0,γ̂s + ‖[(u)aνk ]‖2

0,γ̂s + ‖[(u)aφk ]‖2
0,γ̂s )

+
L∑
l=1

‖(Lp+1
l )au

p+1
l (ξ, η)‖2

0,S

+
∑

γs⊆�p+1

(‖[u]‖2
0,γs + ‖[ux1 ]a‖2

0,γs + ‖[ux2 ]a‖2
0,γs )

+
∑
l∈D

∑
γs⊆∂�p+1

⋂
0l

(
‖u‖2

0,γs +
∥∥∥∥( ∂u∂T

)a∥∥∥∥2

0,γs

)

+
∑
l∈N

∑
γs⊆∂�p+1

⋂
0l

∥∥∥∥( ∂u∂N
)a
A

∥∥∥∥2

0,γs

}
.

Here CM is as defined in Theorem 3.1.
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3.3 The estimates

We now define the quadratic form

VM,W ({uki,j (νk, φk)}i,j,k, {up+1
l (ξ, η)}l )

=
{

p∑
k=1

M∑
j=2

‖(Lki,j )auki,j (νk, φk)‖2
0,�̂ki,j

+
p∑
k=1

∑
γs⊆�k

(‖[u]‖2
0,γ̂s + ‖[uνk ]‖2

1/2,γ̂s + ‖[uφk ]‖2
1/2,γ̂s )

+
∑
l∈D

l∑
k=l−1

∑
γs⊆∂�k

⋂
0l,µ(γ̂s )<∞

(‖u‖2
0,γ̂s + ‖uνk‖2

1/2,γ̂s )

+
∑
l∈N

l∑
k=l−1

∑
γs⊆∂�k

⋂
0l,µ(γ̂s )<∞

∥∥∥∥(∂u∂n
)a
Ãk

∥∥∥∥2

1/2,γ̂s

+
p∑
k=1

∑
γs⊆Bkρ

(‖[u]‖2
0,γ̂s + ‖[(u)aνk ]‖2

1/2,γ̂s + ‖[(u)aφk ]‖2
1/2,γ̂s )

+
L∑
l=1

‖(Lp+1
l )au

p+1
l (ξ, η)‖2

0,S

+
∑

γs⊆�p+1

(‖[u]‖2
0,γs + ‖[ux1 ]a‖2

1/2,γs + ‖[ux2 ]a‖2
1/2,γs )

+
∑
l∈D

∑
γs⊆∂�p+1

⋂
0l

(
‖u‖2

0,γs +
∥∥∥∥( ∂u∂T

)a∥∥∥∥2

1/2,γs

)

+
∑
l∈N

∑
γs⊆∂�p+1

⋂
0l

∥∥∥∥( ∂u∂N
)a
A

∥∥∥∥2

1/2,γs

}
(3.48)

We can now state the main result of this section.

Theorem 3.2. Let VM,W ({uki,j (νk, φk)}i,j,k, {up+1
l (ξ, η)}l ) be as defined in (3.48). Then

for M and W large enough the estimate

p∑
k=1

Ik∑
i=1

(
|uki,1|2 +

M∑
j=2

‖uki,j (νk, φk)‖2
2,�̂ki,j

)
+

L∑
l=1

‖up+1
l (ξ, η)‖2

2,S

≤ CM,WVM,W ({uki,j (νk, φk)}i,j,k, {up+1
l (ξ, η)}l ) (3.49)

holds for all {{uki,j (νk, φk)}i,j,k, {up+1
l (ξ, η)}l} ∈ πM,W .

Here CM,W = C maximum (M4, (lnW)2) if there is a vertex Aj such that Neumann
boundary conditions are imposed on the adjoining sides 0j and 0j+1 and CM,W =
C(lnW)2 otherwise. C is a constant, independent of M and W .
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Adding a weighted combination of (3.36), (3.39) and (3.47) and using the techniques
and results of [3] the result follows. ¥

Remark 2. The stability theorem 3.2 holds provided the coefficients of the differential
operator ∈ C3(�) and the curves φki,j,l and ψki,j,l defined in (2.6a), (2.6b) satisfy (2.7) for
t = 1, . . . , 3.

For problems with mixed boundary conditions the factor multiplying the right-hand side
of (3.49) grows rapidly with M . This creates difficulties in parallelizing the numerical
scheme. To overcome this we make the spectral element functions continuous at the vertices
of the elements. Let πM,WV denote the space of spectral element functions which are

continuous at the vertices of their elements. We define πM,W0 to be the space of spectral
element functions which vanish at the vertices of their element. We now need to state a
version of Theorem 3.2 when the spectral element functions vanish at the vertices of their
elements.

To do so, we have to prove the following result.

Lemma 3.5. Let uki,j (ξ, η) be a polynomial of degreeW in ξ and η separately, defined on
the unit square S = (0, 1)× (0, 1), and which is zero at all the vertices of the square. Then
there exists a positive constant C such that

|uki,j (ξ, η)|20,S ≤ C(|uki,j (ξ, η)|21,S + |uki,j (ξ, η)|22,S). (3.50)

Consider uki,j (ξ, η) defined on (0, 1)× (0, 1). Now uki,j (0, 0) = 0. Hence

uki,j (ξ, 0) =
∫ ξ

0

∂uki,j

∂ξ ′ (ξ
′, 0)dξ ′.

And so we can conclude that

|uki,j (ξ, 0)|2 ≤ ξ

∫ 1

0

∣∣∣∣∣∂u
k
i,j

∂ξ
(ξ, 0)

∣∣∣∣∣
2

dξ.

Integrating the above with respect to ξ we obtain

∫ 1

0
|uki,j (ξ, 0)|2dξ ≤ 1

2

∫ 1

0

∣∣∣∣∣∂u
k
i,j

∂ξ
(ξ, 0)

∣∣∣∣∣
2

dξ

≤ K(|uki,j (ξ, η)|21,S + |uki,j |22,S) (3.51)

by the trace theorem for Sobolev spaces. Again

uki,j (ξ, η) = uki,j (ξ, 0)+
∫ η

0

∂uki,j

∂η′ (ξ, η
′)dη′.

Therefore

|uki,j (ξ, η)|2 ≤ 2|uki,j (ξ, 0)|2 + 2η
∫ 1

0

∣∣∣∣∣∂u
k
i,j

∂η
(ξ, η)

∣∣∣∣∣
2

dη.
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Integrating the above with respect to ξ and η we get∫
S

∫
|uki,j (ξ, η)|2dξdη ≤ 2

∫ 1

0
|uki,j (ξ, 0)|2dξ

+
∫
S

∫ ∣∣∣∣∣∂u
k
i,j

∂η
(ξ, η)

∣∣∣∣∣
2

dξdη.

Combining the above with (3.51) we obtain the required result. ¥
Clearly Lemma 3.5 applies equally well to any of the function elements uki,j (νk, φk) for

2 ≤ j ≤ M , 1 ≤ i ≤ Ik , 1 ≤ k ≤ p, although with a constant Ck which depends on k.
Taking the supremum over the constant Ck (as given in (3.50)) we conclude that

|uki,j (νk, φk)|20,�̂ki,j ≤ C(|uki,j (νk, φk)|21,�̂ki,j + |uki,j (νk, φk)|22,�̂ki,j ), (3.52)

for all function elements with 1 ≤ k ≤ p, 1 ≤ i ≤ Ik , 2 ≤ j ≤ M . Here C, of course,
denotes a generic constant. We can now state the final result of this section.

Theorem 3.3. Let {{uki,j (νk, φk)}i,j,k, {up+1
l (ξ, η)}l} belong to the space of functions

π
M,W
0 which are zero at the vertices of the elements on which they are defined. Then the

following estimate holds:

p∑
k=1

M∑
j=2

Ik∑
i=1

‖uki,j (νk, φk)‖2
2,�̂ki,j

+ ‖up+1
l (ξ, η)‖2

2,S

≤ C(lnW)2VM,W ({uki,j (νk, φk)}i,j,k, {up+1
l (ξ, η)}l ) (3.53)

for M and W large enough.

In the above uki,1(νk, φk) is taken to be identically zero for 1 ≤ k ≤ p and 1 ≤ i ≤ Ik .
Combining the estimates (3.50) and (3.52) with the earlier results (3.53) follows. ¥

4. Conclusion

We can use the stability theorem 3.2 to formulate a numerical scheme to obtain an approx-
imate solution to the elliptic boundary value problem (2.1) as has been described in [8,9].
For problems with Dirichlet boundary conditions we choose our solution to be a non-
conforming spectral element representation which minimizes a functional which is the
sum of the squares of weighted squared norms of the residuals in the partial differential
equation and fractional Sobolev norms of the residuals in the boundary conditions and a
term which measures the sum of the jumps in the function and its derivatives in appropri-
ate Sobolev norms at inter-element boundaries. In a sectoral neighbourhood of the corners
these quantities are computed using modified polar coordinates and in the remaining part
of the domain we use a global coordinate system. This method is faster than the h-p finite
element method as there are no common boundary values to solve for [8,9].

For problems with mixed boundary conditions we have to make the spectral element
functions continuous only at the vertices of the elements. As a result the Schur complement
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matrix has a small dimension and an accurate inverse can be computed. Hence the numerical
scheme has a computational complexity which is less for finite element methods.

Moreover, the construction of a pre-conditioner for the Schur complement matrix is
very simple unlike the case for finite element methods. In fact, for problems in three
dimensions the construction of pre-conditioners for the Schur complement matrix becomes
quite complex for finite element methods [6].

Though the ideas in these papers deal with problems in two dimensions, they generalize
to three dimensions. We intend to study these problems both theoretically and computa-
tionally in future work.
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