
Efficient UMTS

Lodewijk T. Smit and Gerard J.M. Smit

CADTES, email:smitl@cs.utwente.nl

May 9, 2003

This article gives a helicopter view of some
of the techniques used in UMTS on the
physical and link layer. Additional, we in-
dicate how we can adapt a UMTS mobile
receiver to the current environment at run-
time. This ensures an adequate quality of
service with minimal energy consumption.

1 Introduction

Rapidly, the world is getting more and more con-
nected. Internet plays a prominent role in this trend.
At the same time, the world is getting less and less
wired. People are becoming more and more mobile,
carrying mobile devices such as laptops and mobile
phones around. The combination of both trends re-
sults in a huge demand for wireless communication.

When we consider current mobile devices as lap-
tops, mobile phones and all other kind of gadgets
people are carrying around some painful shortcom-
ings becomes clear.

First, a mobile device is by definition too big and
too heavy. You do not want to lug with all that heavy
equipment. The source of the problem is mainly the
battery. About 60% of the size and the weight of a
mobile device is due to the battery.

Indeed, that brings us to the second problem: the
battery is too fast exhausted. After a few hours of
working, your laptop craves for the main outlet. You
can use a bigger battery, but that does not contribute
to our first problem. The good news is that the ca-
pacity of the battery is increasing every year (more
energy for same weight/size). The bad news is that
this increase goes obnoxiously slow (about 10% per

year). The increase in energy needed for computing
power (for additional features) is much faster then the
increase in battery capacity, things become worse in
the future.

The third problem is the dynamic environment of
a mobile device that may change dramatically in the
short term as well as in the long term. You are calling
with your mobile phone, you walk around the corner
and... the connection is broken...

The fourth problem is more an indirect problem for
the consumer. More and more standards for wire-
less communication are coming up, new standards
become complexer, have more options and require
more tuning. Therefore, the lifetime of devices be-
come shorter and the time to market has to be faster.
These conflicting issues tend to make a manufacturer
crazy. It has to produce faster complexer devices and
services with more features. And last but not least,
it should also be cheap! Ultimately, at the end of
the chain, the consumer will pay for these disasters
in one way or other.

It is clear that there is room for improvement. To
summarize, we want an energy efficient, flexible archi-
tecture that provides an adequate quality of service.
Unfortunately, increasing the capacity of batteries is
not the area of expertise of computer science. That
is more expertise in the area of, let us say, chemistry.
Therefore, we do not search for ‘more’ energy, but
we search for ways to use the existing energy budget
in a more efficient way. Or stated better, in a more
effective way. Do more with the same amount of en-
ergy. But how to achieve this? Well, you are on the
right spot. Within our computer science building,
on the fourth floor, people are tackling this problem
within the Chameleon project. This project is funded

1



by STW Progress. The approach of the Chameleon
project is to use reconfiguration at different levels of
the architecture to adapt — like a Chameleon — the
mobile device perfectly to the current situation. So,
given the QoS requirement of the user and the current
environment we adapt everything — from hardware
to application software — to fit exactly to the user’s
needs.

Most people can imagine what low-power hardware
means. But energy-efficient software? How can you
achieve energy efficiency at higher levels? We will
give a real world example. We will show how to make
a UMTS receiver more energy efficient. But first,
we will have an intermezzo and explain in the next
section a little bit about the technical background of
UMTS so that you are able to follow the rest of the
story.

2 UMTS Background

This section explains some of the basic principles
of the physical and link layer of UMTS. The full
specification of UMTS can be downloaded from
www.3gpp.org. However, the specification covers
thousands of pages and the database that describes
the status of the separate documents is already 47
Mbyte, so be warned! Because we are mainly inter-
ested in the mobile, we consider only the down-link
connection (connection from base station to mobile
receiver). Especially for data, the link is asymmetri-
cal. The UMTS terminal will receive more data from
the base station than it will transmit to the base sta-
tion. So, we focus on down-link reception.

2.1 WCDMA

The ultimate goal is to send a bit from the base sta-
tion to the mobile receiver and — even more impor-
tant — to receive this bit correctly. Beside all other
kind of distortions of a wireless channel, one of the
problems is that you have to share the wireless link
with other people. A well known technique (used
in GSM) is to use Time Division Multiple Access
(TDMA). So, users transmit in sequence and only
one user is sending at the same time. Therefore, the
users do not disturb each other. Another technique is

that users transmit on a different frequency, so called
Frequency Division Multiple Access (FDMA). Using
this technique, users may send at the same time,
but do not ‘see’ each other. UMTS utilizes another
technique: Wideband Code Division Multiple Access
(WCDMA). Using WCDMA, users send at the same
time at the same frequency but all using a different
associated code. In analogy, all transmitters (mu-
sicians) transmit the sound of an orchestra and the
receiver’s objective is to recognize one of the instru-
ments and to filter out this specific instrument. The
technique to do this is called spreading. The process
of transmission of a bit is as follows (see Figure 1 for
an example):

1. The bit is modulated. A ‘1’ and ‘0’ are modu-
lated to a ‘1’ and ‘-1’ respectively.

2. The modulated bit is multiplied by a so called
spreading code that is a vector of so called chips
∈ {-1,1}. The length of the spreading code is
called the spreading factor (SF). The multiplica-
tions of the bit with the chips of the spreading
codes are very simple. If the modulated bit is
‘1’, the result is equal to the spreading code. If
the modulated bit is ‘-1’, the result is equal to
the negated spreading code. The result of the
multiplication is a sequence of chips. The num-
ber of chips to transmit one bit is equal to the
spreading factor.

3. The chips are transmitted over the wireless chan-
nel. Additional techniques such as pulse shape
filtering and modulation are required, but they
are not explained here because they are irrele-
vant for understanding the basic principles.

4. The received chips are correlated with the same
spreading code as used by the transmission. Cor-
relation means multiplication of the spreading
code with the received chips and adding all the
products. When SF products are added, the re-
sult is a soft value that is used and the process
starts again with the sum initialized to zero. A
high (or low) soft output value means that a ‘1’
(or a ‘-1’) was transmitted with a high probabil-
ity.

2



Note that the received chips are not exactly ∈
{1,-1} but can be higher or lower due to the dis-
turbance of the wireless channel. The distur-
bance of the channel is a result of many differ-
ent effects, among others: noise, interference be-
tween symbols, interference between different re-
flections, not perfect orthogonal spreading codes
due to e.g. differences in arrival time of different
signals etc.

1

0

Modulated
data bits

1

-1
Spreading code

1

-1

Transmitted chips

1

-1
Received chips

0

2

4

6

8

Soft output
values

-4

-2

-6

-8

Despreading =

Correlation

+

Integration

1

-1

Original data bits

Figure 1: Spreading principle of WCDMA

The secret is that the spreading codes for different
users are orthogonal. For example, two orthogonal
codes are:

spreading code user 1 1 1 -1 -1
spreading code user 2 1 -1 1 -1 ×
result of multiplication 1 -1 -1 1

When the two spreading codes are multiplied with
each other and the resulting chips are added, the re-
sult will be zero. This means that different users
do not disturb each other. UMTS can use different
spreading factors, between 4 and 512. This means
that for 1 bit between 4 and 512 chips are transmit-
ted. The higher the spreading code, the better the
resistance against other users and other external in-
fluences that makes the quality of the wireless chan-
nel worse. UMTS always operates at 3.84 Mchip/s.
Increasing the spreading factor means decreasing the
throughput (and the other way around).

2.2 RAKE Receiver

The previous section explained that the receiver has
to multiply the received signal with the spreading
code of the specific user and to add the results of this
multiplications. This result is the probability that
a ‘1’ or a ‘0’ has been received. However, the re-
ceiver used in UMTS operates even smarter. When
a base station transmits to a mobile, most frequently
different reflections of the signal are received (see Fig-
ure 2). In most wireless systems, only the strongest
signal is used and the other reflections are considered
as distortion and filtered out. UMTS uses a RAKE
receiver that rakes (hence the name!) the different
reflections together and combines them to make a
stronger signal. Figure 3 depicts such a RAKE re-
ceiver. A RAKE receiver has multiple so called fin-
gers. A finger can be used to de-spread one reflection.
A reflection that travels a longer path has a longer
delay. Therefore, the RAKE finger delays the differ-
ent received reflections until they are synchronized.
Using more reflections may improve the signal when
the reflections contain enough power. However, it
requires more computation.

2.3 Forward Error Decoding

Unfortunately, wireless links are not as reliable as
fixed links. It is no exception to have a Bit Error Rate
(BER) of 10−3 or even 10−2. This means that every
1 out of 1000 or 100 bits is received incorrectly. Using
a packet size of 512 bytes, this implies that almost no
packet will be received correctly. To cope with this,

3



Figure 2: Multiple reflections

UMTS supports two types of forward error correction
(FEC) codes: convolutional coding and turbo coding.
Forward error correction coding adds redundant bits
at the transmitter side, which makes it possible to
decode the frame without errors at the receiver side.
Using these codes frames can still be received cor-
rectly when the channel has a BER of 10−1. Turbo
coding is currently one of the most sophisticated for-
ward error correction codes available. It performs
better than (traditional) convolutional codes but re-
quires also more computation power. The FEC de-
coder is located after the RAKE receiver.

3 Adaptivity

In the previous section we saw already a number of
choices for parameters. What spreading factor should
we use, how many finger should the RAKE receiver

Delay d1Delay d1

Delay d2Delay d2

Delay d3Delay d3

correlators

finger 1

finger 3

signal outsignal

from channel

Combining

Figure 3: Basic Principle Of A RAKE Receiver

use and what kind of FEC coding should we use. In
reality, much more options are available, which com-
plicates the exploration of all possible combinations
to search for the best set of parameters. At this time,
we can start asking interesting questions. When we
are not satisfied with the current quality of the out-
put of the RAKE receiver, should we increase the
spreading factor or should we increase the number
of fingers? Or, maybe, it is better to replace the
currently used convolutional decoder (called Viterbi
decoder) by a turbo decoder. What is the smartest
thing to do? Let us discuss these questions a little bit
more structured. First we identify the goal, next we
discuss the approach, then we look at the behaviour
of the FEC decoders and the RAKE receiver and fi-
nally we can draw conclusions.

3.1 The Goal

Our goal is to select the optimal set of parameters to
adapt the receiver to the current environment mini-
mizing the amount of energy at run-time, while still
providing an adequate level of QoS. So, our starting
point is the requested QoS of the end user. Doing
nothing is the most energy efficient way of operation,
but does not make an end user happy. Given this
QoS constraint and given the current environment we
want to minimize the amount of effort to achieve this.
Compare it with doing exams, you (probably) mini-
mize the amount of effort to pass it, but you do not
want to fail too many times because the amount of ef-
fort increases again with re-exams and it makes some-
one unhappy. So, we try to optimize the parameters
to minimize the amount of effort. Thus we perform
a functional optimization independent of the imple-
mentation and underlying architecture. This should
be done at run-time, because the dynamic environ-
ment changes continuously. So, a one-time optimiza-
tion at design time is not possible. Furthermore, the
optimization process should be fast and cheap. Of
course, the cost of finding the best set of parame-
ters should not exceed the potential saving that could
be achieved. And this optimization may not take
too long, because the environment could have been
changed already again.

Summarizing, we want a control system that se-

4



lects the best set of parameters at run-time to min-
imize the energy while still providing an adequate
QoS. Figure 4 depicts such a configuration.

3.2 Approach

Everything starts with the end user that requested
a certain QoS. This may be specified in different di-
mensions, e.g. the desired throughput, the maximum
delay (e.g. are re-transmits allowable?) and the reli-
ability (does the application of the end user tolerate
that received packets might still contain errors?) In
general, a packet has to be received error free, ex-
cept for some specific data types used for e.g. video
or voice. So, even if the packet contains only one
bit error, it is useless and has to be re-transmitted if
this is useful anyhow. For streaming data (e.g. video)
the re-transmitted packet may arrive too late to be
useful. In this case, it is better to save the effort of
retransmission. A good quality measure at the appli-
cation level is the packet error rate (PER).

3.3 FEC Decoder Characteristics

A FEC decoder processes usually on a block of bits.
How many faulty bits may be received in a block such
that the FEC decoder is still able to decode this block
correctly? Unfortunately, no nice functions from the-
ory are known that give the error correction capac-
ity of a turbo decoder. To answer this question, we
simulated the transmission of blocks under many dif-
ferent circumstances and investigated how often the
FEC decoder was able to decode a block correctly as

Rake receiverRake receiver Turbo decoderTurbo decoder

Bit error rate 
estimation unit

Bit error rate 
estimation unit

Control systemControl system

Parameters
for RAKE
receiver

Channel
estimation Parameters

for turbo
decoder

bits to 
higher layer

soft 
bits

signal 
from 
channel

Requested
quality

Figure 4: The Control System Of The Terminal

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25

F
ra

m
e 

er
ro

r 
pr

ob
ab

ili
ty

Ber after RAKE

Frame error probability of rate=1/3 turbo decoder

c.d.f.

Figure 5: Frame error probability of Turbo decoder
with rate=1/3 - 646464 blocks

a function of the BER of the input block. Figure 5
shows the result for a turbo decoder (with some spe-
cific settings). So, if the incoming block has a BER
of 10%, the turbo decoder is (almost) always able
to decode the block correctly. For a BER of 20%,
the turbo decoder is almost never able to decode the
block correctly. And for a BER of 16.5%, the turbo
decoder can decode the block correctly in about 50%
of the cases. The same kind of graphs can be ob-
tained for a Viterbi decoder and FECs with different
parameter settings.

Irrespective whether the BER of the input block is
1% or 10%, in both cases the turbo decoder is able
to decode the block correctly. Therefore, it is useful
to tune the RAKE receiver in such a way that the
output of the RAKE receiver is just good enough so
that the turbo decoder is able to correct these blocks
correctly. Spending more effort in the RAKE receiver
to produce a better output is a waste of effort.

3.4 Performance of RAKE Receiver

Given the results from the previous section, it is in-
teresting to know the BER of the RAKE Receiver for
a specific situation. Given this BER, we can predict
whether the FEC is able to decode the received block
correctly or not. Knowing the BER at the receiver
side is not trivial, because - of course - you do not

5



know what kind of data is transmitted.
UMTS utilizes pilot symbols to discover the BER.

Pilot symbols are a sequence of bits that are prede-
fined. So, this sequence is known at the transmitter
as well as at the receiver side. With the reception
of this well known sequence of pilot symbols, the re-
ceiver is able to compute the BER.

We developed a new algorithm to estimate the
BER. This algorithm uses the real data and does not
need any pilot symbols. This has two advantages.
First the overhead of transmitting pilot symbols is
avoided. Second, much more data is available and
more samples lead to better statistics. The most im-
portant advantage of our method is that we are able
to predict what will happen with the BER when we
plan to change parameters. For example, we can es-
timate what will happen with the quality when we
add an extra finger to the RAKE receiver or what
will happen when we double the spreading factor. We
will not bother you with the mathematics behind the
algorithm.

Figure 6 depicts several parameters settings for a
RAKE receiver for a certain situation. The horizon-
tal axis shows the quality (expressed in BER) and the
vertical axis shows the costs. So, for every set of pa-
rameters, it depicts the relation between quality and
costs. Note that when the channel changes, the qual-
ity will differ for the same set of parameters, so the
crosses move in the horizontal direction. Each cross
depicts a certain set of parameters (number of fingers,
spreading factor, number of simultaneously transmit-
ting users, etc.). Next to each cross the spreading
factor is shown. Crosses which use the same number
of fingers are connected by a line. Two different ex-
ternal situations are shown: one for 6 users and one
for 24 users.

We know the limit of the turbo decoder, which is
displayed with a thick vertical line. We must stay at
the left side of the thick vertical line, otherwise the
turbo decoder is not able to decode the block cor-
rectly. So, the task is to select the set of parameters
with minimum cost with a quality that is to the left
of the thick vertical line. With the use of our BER es-

timation algorithm, we can predict what will happen
with the quality when we hop between different set
of parameters. The costs for the algorithms are also
known and independent of the quality of the channel.
Because we know the behaviour of the whole system,
selection of the right set of parameters is now piece
of cake.

Figure 6: Different parameter settings

4 Concluding Remarks

Although the example of UMTS might appear to be
very specific, we also showed that the same methodol-
ogy with only minor adaptation can be used for other
standards, like HiperLAN/2 and the new 54Mbit/s
IEEE 802.11g wireless LAN standard. These stan-
dards use quite different wireless link technologies for
the physical layer, with different modulation schemes
and using Orthogonal Frequency Division Multiplex-
ing (OFDM) instead of WCDMA.

Interested people are invited to visit us for fur-
ther explanation or doing their master assignment. A
wide range of subjects - from physical level to applica-
tion level - are available in the area of energy efficient
wireless communications. Also check the Chameleon
website: http://chameleon.ctit.utwente.nl. See you!

6


