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Strong robustness in multi-phase adaptive control:
the basic scheme
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SUMMARY

The general structure of adaptive control systems based on strong robustness is introduced. This approach
splits into two phases. In the first phase, emphasis is put on identification until enough information is
obtained in order to design a controller that stabilizes the actual system, and even under adaptation. This is
achieved if the input sequence is computed in such a way that the uncertainty on the parameters of the
system to be controlled becomes sufficiently small. Then, in the second phase, effort is shifted to control via
a traditional certainty equivalence type of strategy. Copyright # 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The majority of adaptive control algorithms are based on the certainty equivalence principle
[1, 2]. In each iteration of these algorithms, a new model of the unknown true system is
computed from the previous model and measured data, and a new controller is designed on the
basis of this model as if it were the true system. However, because of the model uncertainty,
there is little reason to believe that the controller based on this model stabilizes the true system.
Hence, undesired transients may arise in the closed-loop system behaviour. In addition, even in
the case where closed-loop stability is obtained at each frozen time instant, time-variations
induced by the model adaptation might destroy the closed-loop stability of the time-varying
system and completely disrupt the performance.

To avoid bad transients, we design a test checking on-line if the model-based controller
stabilizes the true system, even when updated at each time instant. We would apply the model-
based controller to the system only when we know that the closed-loop stability is guaranteed,
this for any choice of the model in the model set, and at any (present and future) time of the
design. We construct this test on the basis of the set of all candidate models, the uncertainty set.
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At each time the uncertainty set is updated, we check whether any time-varying model taken
from this set yields a (time-varying) controller that stabilizes any fixed system in the set. If the
uncertainty set has this property, it is said to be strongly robust. In particular, since the
uncertainty set contains the true system to be controlled, this would guarantee that any model
taken from this set stabilizes the true system, even under adaptation. Moreover, since in our
framework the uncertainty set cannot expand with time, this would guarantee that stability will
be maintained at each future time of the design, independently of the model update law,
provided that the sequence of models stays within the uncertainty set.

Inspired by this idea, we construct an adaptive control system based on two phases. In the
first phase, emphasis is put on identification until the identified uncertainty set is strongly
robust. When strong robustness is achieved, the adaptive system is then allowed to switch to the
second phase where the effort is shifted to control, using a certainty equivalence routine similar
to classical adaptive control.

Our purpose in this paper is to describe at a very general level the structure of the adaptive
control scheme based on strong robustness and to refer to previous work on related issues. In
the next section, we define the problem set-up. In Section 3, we introduce the general structure
of the adaptive control system based on strong robustness. Next, in Section 4, we address two
fundamental issues: the existence of strongly robust sets of systems and their characterization. In
addition, we show how the identification input should be computed to guarantee that the
presented scheme switches to the second phase in finite time. Further, in Section 5, the analysis
of the proposed adaptive control scheme is discussed. As a suggestion for future research, we
then address in Section 6.2 two issues that would potentially lead to an improvement of the
presented scheme in the sense that the time at which the control phase can start is decreased.
Finally, we conclude in Section 7.

2. GENERAL SET-UP OF THE PROBLEM

We first introduce some notation.

Definition 2.1 (Models)
We denote by Pn the set of linear time-invariant systems of order n described in discrete time by

yðk þ 1Þ ¼ yTfðkÞ; 8k ð1Þ

where fðkÞ represents the regressor vector given by

fðkÞ ¼ ð�yðkÞ; . . . ;�yðk � nþ 1Þ; uðkÞ; . . . ; uðk � nþ 1ÞÞT 2 R2n ð2Þ

denoting by u; y the input and output sequences, respectively, and

y ¼ ðan�1; . . . ; a0; bn�1; . . . ; b0Þ
T 2 R2n ð3Þ

denotes the parameter vector.

To keep notation simple, we will associate Pn to R2n: In the sequel, ‘y 2 Pn’ should be read as
‘the system parameterized by y and described by (1)’.

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2004; 18:335–347

M. CADIC AND J. W. POLDERMAN336



Definition 2.2 (Asymptotically stable systems and controllable systems in Pn)
We denote by Sn the set of asymptotically stable systems in Pn and by Cn the set of controllable
systems in Pn: Controllability here refers to the case where no pole-zero cancellation occurs.

Assumption 2.3 (System to be controlled)
The system to be controlled is described by

yðk þ 1Þ ¼ ðy0ÞTfðkÞ þ dðkÞ; k50 ð4Þ

where y0 ¼ ða0n�1; . . . ; a
0
0; b

0
n�1; . . . ; b

0
0Þ

T 2 Sn \ Cn denotes the unknown parameter vector and
dðkÞ represents the modelling error which is unknown but bounded, with a known bound d; i.e.,
jdðkÞj4d; 8k50:

Remark 2.4

The assumption that system (4) is controllable is motivated by our control purpose. The
assumption that the system to be controlled is open-loop asymptotically stable is for the sake of
open-loop identification in the first phase of the algorithm. As stated below, the control
objective is not only to stabilize the real plant but also to improve its performance. The
assumption that a bound d on the modelling error is known is chosen as the simplest case of
approximate modelling. No stochastic assumptions on the modelling error is made, since for
small data sets they may not be justified.

The control objective is left unspecified. Instead, we make the following assumption.

Assumption 2.5 (Controllers)
There exists a single-valued continuous map f assigning to any system y 2 Cn its controller f ðyÞ
leading to the control law

uðkÞ ¼ f ðyÞxðkÞ 8k ð5Þ

where x denotes the non-minimal state-vector

xðkÞ ¼ ð�yðkÞ; . . . ;�yðk � nþ 1Þ; uðk � 1Þ; . . . ; uðk � nþ 1ÞÞT 2 R2n�1 ð6Þ

and such that the resulting closed-loop system (1), (5) is asymptotically stable.

We now define strongly robust sets of systems in Cn:

Definition 2.6 (Strongly robust sets)
A set O � Cn is strongly robust if for any system y 2 O and for any sequence of systems
fyðkÞgk2N � O; the sequence of controllers ff ðyðkÞÞgk2N according to (5) is such that the time-
varying closed-loop system defined by

yðk þ 1Þ ¼ yTfðkÞ

uðkÞ ¼ f ðyðkÞÞxðkÞ ð7Þ

where fðkÞ and xðkÞ are defined in (2) and (6), respectively, is asymptotically stable. More
precisely, O � Cn is strongly robust if for any system y 2 O; for any sequence of systems
fyðkÞgk2N � O; for any initial state xð0Þ 2 R2n�1; if uðkÞ ¼ 0; 8k50; then limk!1 xðkÞ ¼ 0:
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Remark 2.7

Continuity in Assumption 2.5 is essential for the existence of strongly robust sets of systems [3].
Pole placement and LQ control satisfy Assumption 2.5.

Remark 2.8

Whether a set of systems is strongly robust or not depends on the control objective, i.e. a given
uncertainty set can be strongly robust with respect to some control objectives and not strongly
robust with respect to some others.

3. MULTI-PHASE ADAPTIVE CONTROL SYSTEMS BASED ON STRONG
ROBUSTNESS: THE GENERAL STRUCTURE

Figure 1 describes the general scheme of the adaptive control systems based on strong
robustness. Two phases are distinguished. In the first phase, the identification phase, data
measurements are used to compute the set of all candidate models that are consistent with these
measurements, and at each time, it is tested whether this set is strongly robust or not. If this test
is positive, the system switches to the second phase, the control phase, where a certainty

Initial model

Apply the identification input

Strong robustness?

no

no

yes

yes

Desired performance obtained?

Control phase

Identification phase

Compute the unfalsified set G(k)

Compute G(k)^

Compute the model �(k) ^

Apply the controller f(�(k)) ^

Figure 1. Iterative scheme.
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equivalence type of control strategy is applied: at each measurement the model is updated within
the strongly robust model set and the controller is designed on this model. Applying this
controller on the actual plant leads to new input–output measurements, and subsequently, the
uncertainty set, the model and the controller can be tuned more accurately so as to improve the
closed-loop performance.

3.1. Identification phase

During the identification phase, two tasks are completed at each measurement: the unfalsified set
is computed, and a test is applied on this set to check whether it is strongly robust or not.

Compute the unfalsified set #GGðkÞ: Model set estimation in the case of unknown but bounded
modelling error has received some constant attention [4–10]. It consists in computing the
unfalsified set #GGðkÞ; defined as the set of parameter vectors y consistent with the i/o data
measurements up to time k and the known bound on the modelling error. Formally, #GGðkÞ is the
polytope defined by

#GGðkÞ ¼ fy 2 R2n : jyðiÞ � yTfði� 1Þj4d; 8i4kg ð8Þ

and is computed as the intersection of 2k half spaces in the parameter space defined by equations
of the form

yðiÞ � yTfði� 1Þ4d; 8i4k

yðiÞ � yTfði� 1Þ5� d; 8i4k
ð9Þ

Denoting by GðkÞ the set of parameter vectors consistent with the i/o data at time k:

GðkÞ ¼ fy : jyðkÞ � yTfðk � 1Þj4dg ð10Þ

#GGðkÞ can be computed as

#GGðkÞ ¼ GðkÞ \ #GGðk � 1Þ ¼
\
i4k

GðiÞ ð11Þ

Remark 3.1

The set defined in (11) is convex.

Check Strong Robustness: This test indicates when to switch to the second phase of the
algorithm. If the model set #GGðkÞ is strongly robust, the adaptive system switches to the second
phase.

3.2. Control phase

Let us suppose that the set #GGðkÞ defined in (11) becomes strongly robust at the time T > 0: The
control phase is then started. During this phase, the model is updated, and the controller is
designed on the basis of this estimate.

Compute the model #yyðkÞ: At each measurement, the model #yyðkÞ of the true parameter vector y0

is updated, leading to the new model #yyðk þ 1Þ: Since y0 2 #GGðkÞ; we naturally choose #yyðT Þ as a
member of #GGðT Þ; and 8k5T ; the model #yyðk þ 1Þ is computed as the orthogonal projection of the
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previous estimate #yyðkÞ on the set #GGðk þ 1Þ: This leads to the following update procedure:

#yyðT Þ is arbitrarily chosen in #GGðT Þ

#yyðk þ 1Þ ¼ arg min
y2 #GGðkþ1Þ

fðy� #yyðkÞÞTðy� #yyðkÞÞg 8k5T ð12Þ

Remark 3.2

From our prior knowledge in Assumption 2.3, the true system y0 is open-loop asymptotically
stable and controllable. Hence it seems that a ‘good’ model should also be open-loop
asymptotically stable and controllable, in which case we should have #yyðkÞ 2 #GGðkÞ \Sn \ Cn:
Now, note that if the model set is strongly robust, then all its members are controllable. Hence,
in the control phase, the update law (12) guarantees that #yyðkÞ 2 #GGðkÞ \ Cn: On the other hand,
open-loop asymptotic stability of the estimate is not guaranteed by the update law (12), but we
emphasize that stability of the model is not required. Moreover, Sn is neither convex nor closed,
hence #GGðkÞ \Sn may be neither convex nor closed. Hence, generating the new estimate in
#GGðkÞ \Sn using orthogonal projection as in (12) might be computationally expensive or
infeasible.

Design a controller: Since #GGðkÞ is strongly robust 8k5T ; it follows that #GGðkÞ � Cn 8k5T :
Following Assumption 2.5, at each time k5T ; we compute the controller f ð#yyðkÞÞ; leading to the
updated control input law:

uðkÞ ¼ f ð#yyðkÞÞxðkÞ 8k5T ð13Þ

From Assumption 2.5, and because of strong robustness, the time-varying controller f ð#yyðkÞÞ
stabilizes the true plant y0 8k5T :

4. STRONGLY ROBUST MODEL SET: EXISTENCE AND CHARACTERIZATION

Clearly, since the objective is to perform control of the unknown plant, we must guarantee that
the criterion that decides if the control phase starts in finite time, i.e. we must ensure that the
model set #GGðkÞ is strongly robust in finite time. This remark raises two key issues: first, it is
crucial that the identification input yields a strongly robust model set. Then, we must be able to
test practically at each measurement whether the model set is strongly robust or not. We now
address these two issues.

4.1. Strong robustness of the model set: input design

In Reference [3] the following theorem is proved.

Theorem 4.1 (Existence of strongly robust sets)
For any system y0 in Cn; there exists an open neighbourhood of y0 contained in Cn which is
strongly robust.
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In the sequel, if the uncertainty set #GGðkÞ is sufficiently small, i.e. if the radius of the smallest
sphere containing #GGðkÞ is sufficiently small, then it is strongly robust. From Theorem 4.1 the
following result follows.

Theorem 4.2

If the identification input sequence fuðkÞg is such that limk!1 rð #GGðkÞÞ ¼ 0; where rð #GGðkÞÞ
denotes the radius of the smallest sphere containing #GGðkÞ; then there exists k0 such that #GGðkÞ is
strongly robust 8k5k0:

Therefore, in the case where the input sequence is such that #GGðkÞ is bounded and shrinks with
time, a strongly robust uncertainty set is identified in finite time. This guarantees that the
adaptive system described in Figure 1 switches to the control phase in finite time. The design of
an input sequence leading to a strongly robust set in finite time is proposed in Reference [11]
where the authors show that any input of the form

uðkÞ ¼ gk � *uuðkÞ ð14Þ

where f *uuðkÞg is the 2n periodic sequence defined by

*uuðkÞ ¼ utðkÞ; tðkÞ ¼ kmod 2n 8k ð15Þ

where the 2n values u0; . . . ; u2n�1 are chosen so that

gcd
X2n�1

i¼0

uix
i; x2n � 1

 !
¼ 1 ð16Þ

and where the gain sequence fgkg satisfies

lim
k!1

gk ¼ 1 and lim
k!1

ðgkþ1 � gkÞ ¼ 0 ð17Þ

yields an uncertainty set #GGðkÞ which is bounded in finite time and such that its radius uniformly
decreases with time. More precisely, it has been shown in Reference [11] that the identification of
the system (4) with the input sequence given in (14)–(17) is such that there exists K50 such that
#GGðkÞ is bounded 8k5K and

8k5K; 9k05k : rð #GGðk0ÞÞ5rð #GGðkÞÞ ð18Þ

where rð #GGðkÞÞ denotes the radius of the smallest sphere containing #GGðkÞ: Hence, it follows from
Theorem 4.1 that #GGðkÞ is strongly robust in finite time.

Remark 4.3

Because of the increase of the input gain g; our approach (14)–(17) might not look appealing at
first sight. If indeed the designer apply input (14)–(17) with the only objective of securing strong
robustness and without concern for system performance, choosing for the gain sequence a
sequence g that increases very fast, then poor transients may still occur. Therefore, it seems that
the increase rate of g should be chosen in an adaptive way rather than arbitrarily, so as not to
exceed the minimum input level needed to reach strong robustness. However, since the system is
unknown, no information tells us a priori what value this gain should take so that the
uncertainty set becomes small enough to allow control to be started. Hence to increase g is
somehow unavoidable. Having observed that increasing the gain is necessary for control
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purposes, it should also be emphasized that within a complete adaptive control scheme the input
gain will never be increased more than it is necessary to exhibit a strongly robust uncertainty set.
Otherwise stated, the idea is to no longer step gk as soon as the uncertainty set is small enough to
be useful for control. We show later (see Theorem 4.6) that this happens after a finite number of
iterations. Thus the input sequence stays bounded during identification.

4.2. Characterizing strong robustness

At each time, it must be tested whether the updated unfalsified set is strongly robust or not, so as
to know when the adaptive system can switch to the control phase. Thus it is crucial to have an
explicit test to check whether a given set of systems is strongly robust or not.

First it should be noted that if a set of systems in Pn is strongly robust, then all its elements
are controllable. Therefore, if the uncertainty set has uncontrollable systems, it is not strongly
robust and the adaptive scheme stays in the identification phase. Hence, we should first check if
the uncertainty set is a subset of the controllable systems in Pn; although to check this property
is not clear in the general case. Then, the construction of a necessary and sufficient test for
characterizing strongly robust sets in Cn is not trivial, and is still under investigation. However,
note that what we essentially need is a sufficient test for strong robustness. In this respect, we
have the following theorem [12].

Theorem 4.4

Let O be a subset of Cn: Given any system y 2 O; we denote by ðA; bÞ 2 RN�N � RN�1 a state
space representation of dimension N of y; rewriting (4) by

xðk þ 1Þ ¼ AxðkÞ þ buðkÞ ð19Þ

and (5) by

uðkÞ ¼ *ff ðA; bÞxðkÞ ð20Þ

O is strongly robust if the following inequality holds:

8y1; y2 2 O; jjf ðy2Þ � f ðy1Þjj4rC
A1þb1 *ff ðA1;b1Þ

ð21Þ

where jj:jj denotes the Euclidean norm in R1�N and 8y 2 O; rC
Aþb *ff ðA;bÞ

denotes the complex
stability radius of the Schur matrix Aþ b *ff ðA; bÞ with respect to the perturbation structure ðb; IN Þ
as it is defined in Reference [13].

Remark 4.5

Condition (21) is only a sufficient condition for strong robustness and may hence be
conservative. However, the achievement of Theorem 4.4 is that testing if a set O � Cn is
strongly robust, which a priori involves time-varying systems, is reduced into a test involving
time-invariant quantities only.

Back to the adaptive control scheme presented in Section 3, Theorem 4.4 provides us with a
sufficient condition on the uncertainty set #GGðkÞ to guarantee its strong robustness. As seen in
Section 3, in order to switch to the control phase, the overall adaptive scheme needs to know
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explicitly when the uncertainty set satisfies condition (21). In this respect we have the following
result.

Theorem 4.6

If the identification input sequence fuðkÞg is such that

lim
k!1

rð #GGðkÞÞ ¼ 0 ð22Þ

where rð #GGðkÞÞ denotes the radius of the smallest sphere containing #GGðkÞ; then there exists k1 such
that (21) is satisfied, taking O ¼ #GGðkÞ 8k5k1:

Proof

Suppose the identification input is such that limk!1 rð #GGðkÞÞ ¼ 0: Since y0 2 #GGðkÞ; 8k; and
y0 2 Cn; then there exists a time K such that 8k5K; #GGðkÞ � Cn: Then by continuity of the
map f (Assumption 2.5), we have that limk!1 rðf ð #GGðkÞÞÞ ¼ 0; where rðf ð #GGðkÞÞÞ denotes
the radius of the smallest sphere containing f ð #GGðkÞÞ and where for any set S � Pn; f ðSÞ denotes
the set defined by f ðSÞ ¼ ff ðyÞ : y 2 Sg: Therefore, 8e > 0; 9k1 such that 8f ; f 0 2 #GGðk1Þ then

jjf � f 0jj4e: Now, choose any y1 2 #GGðk1Þ and e ¼ rC
A1þb1 *ff ðA1;b1Þ

; where rC
A1þb1 *ff ðA1;b1Þ

denotes the

complex stability radius of the Schur matrix A1 þ b1 *ff ðA1; b1Þ with respect to the perturbation

structure ðb1; IN Þ [13]. We then have: 8f ; f 0 2 #GGðk1Þ then jjf � f 0jj4rC
A1þb1 *ff ðA1;b1Þ

: Hence, 8y2 2

#GGðk1Þ we have: jjf ðy1Þ � f ðy2Þjj4rC
A1þb1 *ff ðA1;b1Þ

; this for any y1 2 #GGðk1Þ . Thus (21) is satisfied taking

O ¼ #GGðk1Þ: Clearly, this implies that (21) is satisfied, taking O ¼ #GGðkÞ 8k5k1: &

The identification input design (14)–(17) provides us with an uncertainty set that satisfies (22).
Hence the sufficient test for strong robustness (21) is satisfied in finite time, allowing the overall
scheme to switch to the control phase in finite time.

5. ANALYSIS OF THE ADAPTIVE SYSTEM

In this section we are concerned with the analysis of the proposed adaptive control scheme.

5.1. Finite switching time

The identification input is constructed so that the uncertainty set becomes strongly robust in
finite time. Therefore, the control phase is guaranteed to start in finite time. Obviously, this
switching time depends on the characteristics of the system to be controlled (initial conditions
and value of the unknown parameter vector y0), on the characteristics of the modelling error
signal d and the assumed value of its bound d; and on the chosen identification input.
Intuitively, the switch from the identification phase to the control phase is expected to occur
faster in the case of a small modelling error and a small bound d: On the contrary, for large
modelling error and very conservative bound d; we expect that more measurements will be
necessary before the system switches to the control phase. But it seems quite natural that small
prior knowledge on the system to be controlled requires a longer learning phase.
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5.2. Convergence of the model to the real system

The convergence of #yyðkÞ to the true parameter vector is not a priori guaranteed and is dependent
on the input–output data that specify the uncertainty set #GGðkÞ: Note that the proposed scheme
has the property of neutrality, i.e. in the case where the present uncertainty set is not falsified by
the new input–output measurement, the model and hence the model-based controller are not
updated. Hence, the adaptation process might stop after a finite time during the control phase,
leading to a frozen adaptive system. Of course, such a case does by no means imply that the
model error is zero, but simply means that the newly observed data do not bring any useful
information with respect to the identification process. The model update law (12) provides the
following properties [14].

Property 5.1

The model error sequence f#yyðkÞ � y0g is bounded and non-increasing:

jj#yyðkÞ � y0jj4jj#yyðk � 1Þ � y0jj 8k ð23Þ

and is asymptotically slow, i.e

lim
k!1

ðjj#yyðkÞ � y0jj � jj#yyðk � 1Þ � y0jjÞ ¼ 0 ð24Þ

5.3. Transient analysis

The proposed adaptive control approach mainly differs from classical approaches in the first
phase, therefore the transient analysis is key in its analysis. Intuitively, since at no time the
adaptive control system based on strong robustness does involve any destabilizing controller,
the transient behaviour is expected to be superior to classical certainty equivalence-based
schemes where, on the contrary, the model-based controller may be temporarily destabilizing. A
rigorous proof of this intuitive result in the case of pole placement can be found in Reference
[15], followed by a simulation example in the case of first-order systems and pole placement. It is
shown that because of insufficient prior knowledge on the system to be controlled, classical pole
placement might generate poor model-based controllers for an arbitrarily large number of
iterations, yielding bad transients in the input–output response of the closed-loop system.

In addition it is worth noting that, even in the case where at each frozen time instant the
closed-loop system would be obtained, stability of the time-varying system is not necessarily
maintained in classical approaches if adaptation is too fast. In comparison, at no time in our
strategy a destabilizing controller is applied to the real system, and closed-loop stability is
guaranteed, regardless how fast the adaptation goes. Still, identification inputs generated as in
Section 4.1 may induce poor transients, but this appears to be the inevitable price to be paid due
to insufficient prior knowledge, whereas in classical adaptive control approaches, the bad
transients serve no purpose.

5.4. Asymptotic analysis

Once the adaptive system has switched to the control phase, which is guaranteed to occur in
finite time, a classical adaptive control approach is used. Hence the asymptotic analysis is fairly
standard. For instance, if the control objective is pole placement, the interested reader can refer
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to Reference [14] for the asymptotic analysis. In addition, at no time in our design the time-
variations induced by the adaptation process can destroy stability of the closed-loop system.
Hence, bad asymptotic behaviour caused by fast adaptation cannot occur.

5.5. Bounded input

For the sake of the identification of a strongly robust uncertainty set, it is shown in Reference
[11] the input energy level must be increased so that the criterion for strong robustness described
in Section 4.2 is satisfied. By construction of this identification input depicted in Section 4.1,
strong robustness is satisfied in finite time, hence after such time the identification phase stops,
i.e. the identification input does not have to be increased any longer. This implies that the input
sequence stays bounded in the first phase. Later, in the second phase, the input is designed
according to (5), which also stays bounded since the estimate on which the controller is designed
is guaranteed to be controllable.

6. REVISITING THE ADAPTIVE SCHEME: FUTURE RESEARCH

The adaptive control scheme presented in the previous sections can switch to the second phase
only when condition (21) is satisfied, which may take a long time. Now, rather than switching
from identification to control as it has been presented in Section 3, a suggestion would be to
gradually start control before strong robustness is reached, under some precautions so that
global stability of the adaptive scheme is not endangered. Also, we remark that the time at
which strong robustness is achieved, and hence the time at which control is actually started,
depend on the desired control objective. Next, based on these two remarks, we discuss how the
introduced adaptive control scheme can be revisited.

6.1. Dwell time

The adaptive control scheme exposed in the previous sections requires that a strongly robust
uncertainty set is identified before the control phase can be started. However, the certification of
the sufficient condition for strong robustness (21) may be obtained only when the uncertainty set
is very small. As a result, it may take long before the adaptive system actually switches to the
control phase. Now, one can perhaps re-consider the presented scheme and proceed in the
following way. Strong robustness requires that the controller based on any sequence of systems
in the uncertainty set stabilizes any system in the set. Hence, a first condition to be satisfied is
that the controller based on any system in the uncertainty set stabilizes any other system in the
set. This condition on the uncertainty set is already stringent but is satisfied in finite and
reasonable time when using input sequence (14)–(17). To this respect, it has been proven in a
slightly different context that stabilizing the identified class of models automatically leads to
stabilization of the true unknown system [16, 17]. Once it has been checked that the controller
based on any system in the uncertainty set stabilizes any other system in this set, time-variations
of the controller should also be taken into account so that strong robustness is achieved: it
should be checked that the time-varying controller based on any sequence of systems in the
uncertainty set stabilizes any fixed system in the set. This could be done by checking if the
uncertainty set satisfies condition (21) at any time. Or, one may already start control using
adaptation of a model and certainty equivalence, while checking at any time that the stability of
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the time-varying closed-loop system is not disrupted. More precisely, at each time we would
estimate a model according to (12), compute the controller on the basis of this estimate
according to (13), but at the same time force the time-variations of the controller to be mild
enough so that global stability of the overall scheme is preserved. Such an idea suggests to
introduce a so-called dwell time [16] between consecutive instants at which the model is updated,
in such a way that it would be adaptively selected on the basis of collected data measurements.
However, how to compute adaptively such a dwelling time in our framework is not clear yet and
requires further investigation.

6.2. Weak strong robustness

In Remark 2.8, we note that the outcome of the strong robustness test depends on the control
objective. Otherwise stated, a set of systems which is not strongly robust with respect to a
control objective might be strongly robust if we update the control objective. Hence, the
performance of our algorithm depends on the desired control objective. This might be of interest
if the control objective is defined as a set of control objectives rather than being defined
uniquely. Within these control objectives, there exists one for which the algorithm is completed
in a minimal time. We define a weakly strongly robust set of systems as follows.

Definition 6.1

A set O � Cn is weakly strongly robust if there exists a control objective such that O is strongly
robust with respect to this control objective. Any control objective solution of this problem is
then said to be weakly achievable.

Now, remark that the ‘distance’ between the set of weakly achievable control objectives and
the desired control objective is likely to decrease iteratively if the uncertainty set uniformly
shrinks with time, where the notion of distance between two control objectives should be
specified. Based on this discussion, we could thus revisit the proposed adaptive control scheme
based on strong robustness so that, at each time of the design, the control objective is optimized
amongst the class of control objectives that are weakly achievable with respect to the actual
uncertainty set. If some degree of freedom exists on the desired control objective, one would
pick the optimal weakly achievable control objective, so that a strongly robust set is found in a
minimal time. Moreover, even in the case where the desired control objective is fixed, the
distance between the set of weakly achievable control objectives and this desired control
objective might give some insight on how the input sequence may be generated so that the
uncertainty set becomes strongly robust. The study of multi-phase adaptive control based on
weak strong robustness is still in progress.

7. CONCLUSION

This paper introduces the structure of a two-step adaptive control system based on a criterion
deciding when to put most of the effort on identification or on control. This criterion consists in
checking whether the parameter uncertainty set is such that the controller based on any model
taken in this set leads to a stable system when applied to any other model in this set, regardless
how fast the adaptation is done. Our motivation is to avoid the case where a destabilizing
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controller would be applied to the plant to be controlled, what may occur in usual classical
adaptive control, due to two factors: lack of prior knowledge on the system to be controlled and
fast time-variations. Our design guarantees the existence of a time at which strong robustness is
reached, however, this time cannot be predicted since it depends on the unknown system to be
controlled. Hence, we have to assume that a large observation set of i/o data is available,
although this is a quite restricting assumption. Moreover, securing strong robustness along the
presented sufficient test for strong robustness may lead to the strong robustness certification
only when the uncertainty set is very small. In this case, the identification phase should be
prolonged for quite some time before control can start, although the actual uncertainty set is
strongly robust before the time at which the scheme switch to the second phase. To avoid this, a
necessary and sufficient test for strong robustness would be preferred; the construction of such a
test is still under investigation.
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