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Abstract

In this paper theH»-optimal control problem of systems with multiple i/o delays is presented. The problem is first converted to an
equivalentH> regulator problem with multiple delays. The idea is to view the regulator problem in time-domain as a linear quadratic
regulator problem with multiple input delays. It is shown that the rational part of the optimal controller has the same dimension as the
plant and the non-rational part may be chosen to have finite impulse response. Furthermore, the regulator problem solution is also used
to solve theH> filtering problem with multiple measurement delays.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction Meinsma et al. (2002)The result was then extended to the
multiple i/o delays case iMeinsma and Mirkin (2003)

The presence of delays in a control system poses quite a Using semigroup approach, the papddelfour & Mitter,
challenge to the design of optimal controllers. A lot of results 1972a,b Delfour et al., 197p treat the LQ control of re-
have been put forward to solve the problem of controlling tarded differential equations. This approach is an application
systems with delays optimally in some sense. of general LQ theory for infinite dimensional systems (see

In the area ofH,, control, Foias et al. (1996)reated a Curtain and Zwart (1995, Chapter&)d references therein).
general class of infinite dimensional,, control problems Extensions to general delay equations with delayed inputs
that includes i/o delay problemisleinsma and Zwart (1998, and outputs may be found Rritchard and Salamon (1985,
2000) solved theH,, suboptimal control problem for sys- 1987)and Delfour (1986) Earlier, theH, (LQG) problem
tems with a single delay usingtspectral factorization ap-  for systems with a single i/o delay was solvedKileinman
proach. At the same timiglirkin (2003) introduced the idea  (1969) Recently, it is shown iMirkin and Raskin (2003)
of extracting the dead-time compensator from the delay-free that the solution for this problem may be obtained from the
parametrization. This approach reduces the control problemYoula parametrization. A related problem is tHe preview
to a special one-block problem. The ideas friieinsma control problem, in which the controller is fed with an ad-
and Zwart (2000)and Mirkin (2003) were put together in ~ vanced version of the external input signal. The problem is

treated inKojima (2004)
In Moelja et al. (2003)the multiple i/o delays case of

* This paper was not presented at any IFAC meeting. This paper was the H, problem is treated. Here, the technique frivkinkin
recommended for publieation in‘revised form by Associate Editor T. (2003) of reducing the problem to a one-block problem is
'Wiffc',‘r'r‘eg‘gsg,ﬂc}f;‘; 2[,?2?” of Editor R. Tempo. also used. INVioelja et al. (2003)the one-block problem

E-mail addressesa.a.moelja@math.utwente.(h.A. Moelja), is further converted to aitf> regulator problem, which in
g-meinsma@math.utwente (&. Meinsma). turn is solved using a frequency domain approach. However,

0005-1098/$ - see front matté& 2005 Elsevier Ltd. All rights reserved.
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the frequency domain method usedhtoelja et al. (2003) 2. Preliminaries

works well only for open-loop stable plants. For unstable

plants, pre-multiplication of the regulator equation by a cer-  The transfer matrix and the impulse response of a linear

tain all-pass transfer function, which makes the formulas time-invariant systenG are denoted by (s) andG(z), re-

unnecessarily complicated, is needed. In addition, the result-spectively. The squarefl>-norm of G may be computed as

ing optimal controller appears to have a considerably large -

state dimension. In this paper, a time-domain approach is”G”% :/ tracd G (1) TG (1)] dt. 1)

proposed to circumvent the drawbacks of the frequency do- —o0

main approach. Thél, regulator problem is viewed as an

LQR problem with multiple input delays. It is shown that

the LQR problem with delays may be reduced to a number

of standard LQR problems. It is done by splitting the opti-

mization time interval into time regions whose bo_undgrles Fo(M, U) := My + MioU (I — MapU)~*May, )

are the delays and then apply dynamic programming ideas.

Within each time region, the optimization becomes essen-while the left homographic transformation of two transfer

tially delay-free and may be solved using standard methods.matricesy and V' of appropriate dimensions is

The idea of splitting the optimization interval according to

the delay has been previously appliedradmor (1997¥or C¢(N,V) = —(N11— VN21)_1(N12 — V N2o). 3)

the single input delay case in the context of robust control in

the gap. Another solution of the LQR problem with multiple The matrices\/ and N are appropriately partitioned:

input delays, which is based on the infinite dimensional sys-

tems theory, may be found iKojima and Ishijima (2003)  m = [Mll Mlz} , N= [Nll le] .

The optimal input derived there shares a similar structure Ma1 M2z Nai N2z

with the result from this paper. However, Kojima and

Ishijima (2003)the problem is treated as the limiting prob-

lem of anH,, problem, which requires an additional condi-

tion corresponding to a certain transcendental equation.
The controller structure resulting from the method in this

paper is quite simple. The controller consists of a rational 7, (G) := C(s — A)"*B —e™*"ceM(s1 — A) 1B, (4)

transfer matrix block, a finite impulse response block, and

delay components. The rational part of the controller has which has a finite impulse response with suppor{@m].

the same state dimension as the plant and the method ca®\ column vector with elementsas, ..., a, is denoted as

handle unstable plants. The solution to #ig-optimal con- collay, ..., a,] and1(z) is the step function.

trol problem considered in this paper is not only interesting

from a theoretical point of view, but also has potential for

application. For example, the papésrimble and Hearns, 3. Problem formulation

1998 considers the problem of steel-sheet profile control at

a hot strip mill, which has different delays in its measure-  We consider standard control systems in which time de-

ment channel. The problem is formulated as an LQG prob- lays are present in either the control input or the measure-

lem, which is equivalent to thél, problem. However the  ment output. Such control systems are depictellign 1(a)

method developed iGrimble and Hearns (199&ssumes  for the input delay case, and kig. 1(b) for the output delay

that noise and disturbance models are block-diagonal. Cer-case. Here the plait(s) is a rational transfer matrix which

tain approximation has to be made to meet this assumptions,s assumed of having the following realization

resulting in a controller that is not only sub-optimal but also

A transfer matrixG (s) is said to be stable i (s) € Hyo. A
lower linear fractional transformation (LFT) of two transfer
matricesM andU of appropriate dimension is

As in Mirkin (2003), we define the “truncation” operator

75 (-). The operation sets the impulse response to zero after
t =h. Given G(s) = C(sI — A)"*B we may express the
truncation ofG(s) as

of high order. Using the method derived in this paper, it is Ap ‘ Bp1 Bpo
possible to compute and simulate the optirfiatcontroller (s) = Pu(s) Pa(s)| _ o —

for the same control problem without the approximation (see Pa1(s) Pas(s) Pl P12

Moelja and Meinsma, 2004 Cp2|Dpnn 0 ®)

The paper is organized as follows. After an introduction
and the problem formulation, the method for converting the connected with a proper controllét,(s), and a multiple

standard problem to an equivalefk regulator problem  gejay operator. The output and input multiple delay operator
is briefly reviewed. In the next section, the time-domain g.e of the form

solution of the regulator problem is presented followed

by a section describing the state space realization of the A, (s) = diagie™*"t, e ™2 . e shwm), (6)
optimal controller. The paper is concluded by a numerical

example. Ay (s) = diagie™shut @ shu2 e Shuy, 7
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Fig. 1. (a) The input delay problem, (b) the output delay problem, and
(c) the equivalent regulator problem.

wherem andp are the dimensions of andu, respectively.
We assume thaP(s) satisfies the following standard as-
sumptions:

Al. (Cpp, Ap, Bpp) is detectable and stabilizable;
A2. Ry=D},Dp12>0andRy = Dp21D}y; > 0,
—jol jol Bpj

Ap Bp2 Ap —
AS. [ Cp1 DP12:| and[sz DP21:| have
full column rank and full row rank, respectively
Yo € R.
The Hz-optimal control problem is to find a stabilizing
LTI causal controllerK,(s) such that theH>-norm of the
transfer function fromw to z is minimized.

4. From standard problem to regulator problem

In Moelja et al. (2003) using techniques developed in
Mirkin (2003)andMirkin and Raskin (2003)it is shown that
solving the standard problem &ig. 1(a) and (b) is equiv-
alent to solving anH, regulator problem ofig. 1(c). The
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and L and the transfer functiot (s):
F = —R_l(B paX + DPlZCPl) (10)
L:=—(YChy+ Bp1D}y) Ry, (11)
1
Ap |~LR} Bps
G11 Gra : 2
G(s) = =| -R{F| O R}
G21 Gao o o,
p2 | R3 (12)

Also defineBp,; andCpy ; as theith column of Bp; and
thejth row of C p2. According to Theorem 13.7 &hou and
Doyle (1998) the squared optimatf,-norm for the delay-
free casedl, =1,4,=1)is

Jaf = mm | Fo(P, Ks) |3 =tr(Bh X Bp1) +tr(RiFYF ).

Lemma 1 (Input delay}. Consider the problem of minimiz-
ing || Fe(P(s), A,(s)K,(s))|2 over stabilizing causal K,
whereP (s) and A, (s) are given by5) and(7), respectively.
Itis equivalent to minimizingG11(s)+G12(s) A, (s) K (s)||2
over causalK, with G(s) given by(12), where there is a
causal bijection between K ank. The bijection is gov-
erned by
K(s) = (I — Ky 1(5)®22(s) ™

Ky 1(s) = K(s)(I + G-

KS 1(s)!
(S)G22(S)K(S))G L),
= Cpa(sI — Ap) 1Bpo,

Do(s) = Goa(s) —
Aph

where G2a(s)
G22(s) Au(s),
Bpy=[e ArhuiBpy, .. .e7Arhuwpp, .

Moreover the squared optimaklz-norm is given by

min || Fy (P, AyK3) |5 = Jor + min | G11+ G124, K 3.

Proof. SeeMoelja et al. (2003) [

Lemma 2 (Output delays Consider the problem of
minimizing || F¢(P(s), Ks(s)A,(s))]l2 over stabilizing
causal K;, where P(s) and A,(s) are given by (5)
and (6), respectively. It is equivalent to minimizing

subsequent lemmas, which are given without proof, summa- |G, (s) + K (s)A,(s)G21(s)||2 over causalK, with G(s)
rize the formulas needed for the transformation. FIrSt we g|ven by(lZ) where there is a causal b|Ject|on betwekn

need to define several quantities. letandY be the stabi-
lizing solutions of the two familiar Riccati equations:

AYX + XAx — XBp2R{*B],X + Qx =0 (8)
©)

where Ay = (Ap — BpaR{ "D}y Cp1), Ox = Cpa(l —
Dp12Ry ' D,)Cp1, Ay = (Ap — Bp1DJy Ry *Cp), and
Qy = Bp1(I — D)5 R; ' Dp21) B),. Define the matrice®

AyY + YA} —YCLoR;YCpo¥ + Qy =0

and K. The bijection is governed by
K 1(5)®22(5)) MK 1(9),

K;1(5) = Gy (K () + G22(5)G 15 (9)K (5)),

Ks(s) = —

where G2(s) = Cpa(s] — Ap) 'Bpo,
®22(s) = G2(s) — Ay(s)G2a(s),
—APhyl ..

Cpz =col[Cpp 1€ ., Cpo € Arhm],
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Moreover the squared optimakz-norm is given by column of Kopt(7) independently and it is given by

nl}in | Fe(P, KA )15 = Jar + rr}(in IG11+ K A,G21ll3. K opt(t) = arg rlgi_n [T, (1) + T2(t) = A(t) % K;(1)]|2, (16)
s J

Proof. SeeMoelja et al. (2003) [J where K () and Ty ;(¢) are thejth column of K (¢) and

T1(1), respectively. Therefore without loss of generality we
may assume thdt; (s) and K (s) are single-column transfer
functions.

A6. Ty(s) and K (s) are single-column transfer functions.
The assumption A6 will be relaxed later. By assumption
A6 K () may be seen as a vector-valued signal, so that we
may reformulate (16) into an optimal control problem with
input delays. To this end, let us first partitidh and K

according to the delays:

5. Time-domain solution of the H» regulator problem

In the previous section we showed that the standard prob-
lem of Fig. 1(a), (b) may be transformed to the regulator
problem offig. 1(c), which is addressed in this section. Con-
sider theH, regulator problem of minimizing thél>-norm
of the transfer function frond to Z in Fig. 1(c) over causal,

LTI controller K. We assume that the LTI systerfisand 7>

have the joint realization A |Bl [32,0 B2,N-‘

1[0 [Dyo o Dol

[Ti(s) To(e)| =

[T()T()] A|By By 17)

S 8 =

1o Cil 0 D, 1y KO =K. KO (18)
Here B2, D2 and Ky (¢) are the respective parts @b,

that satisfies the following standard assumptions: D>, and K (¢) that correspond to the deldy. In addition,
the convolution of the delay operator and the controller is

A4. (C1, A, B») is detectable and stabilizable; given by

A—jol B>
A5. R=DjDz>0and| Dz] has full column 1) x K (1) = collKo(t), K1(t — ha), ..., Kn(t — hw)].

rank for allw  R. From (16), itis apparent that we may view the quantity inside

the norm brackets as the output of the sysi@its) T(s)]

with col[d(z), A(¢) * K (z)] as the input. Moreover, the real-
ization (17) allows us to write down the state-space equation
for this system:

Without loss of generality, we may also assume that the
delays in the delay operatot are in ascending order ac-
cording to their magnitude so that it may be written in the

form

R —sho —shy —shy N
Als) = diage™ 1o, €754y, ... 7N, H0) = Ax()+ ) BaaKi(t —h), x© =B (19)
O=ho<hi<---<hy. (14) k=0

and the objective (16) becomes minimizing
Note thatlp may be empty which means that there are no

undelayed channels. The approach is to converfheeg- o0 N 5

ulator problem to a time-domain optimal control problem J (xo, K) 2/0 1C1x (1) + Z D2 Ki(t = hillz dr. (20)

with input delays. It is then solved by exploiting the fact that k=0

by confining ourselves to a time region between two delays, We see that the system description (19) and the associated
for instance ory € [hy, h2], the optimal control problem  criterion function (20) constitute an LQR problem with mul-
becomes essentially delay-free. tiple input delays withk (r) as the input.

5.1. Conversion to an LQR problem with multiple input 5.2. Solution of the LQR problem with multiple input delays
delays
In this section we show that we may reduce the optimal
In time domain, theH> regulator problem is to find the  control problem (19), (20) to a series of standard LQR prob-
impulse response of the optimal controll€(s): lems. To solve the problem we utilize a standard result in op-
timal control theory, namely the principle of optimality (see
Kopt(t) = arg n{}inllTl(t) + To(t) * A@t) * K(t)ll2,  (15) Anderson and Moore, 198@r details). One implication of
the principle is the following. Suppose we have an optimal
where A(¢t) = diag(o(¢)lo, 6(t — h1)I1, ..., 0 — hn)IN) control problem over the time regiane [r, t.]. Then we
and the %’ operator denotes the convolution operator. It is may solve the problem overe [t1, t.], t1 > fo independent
straightforward to show that we may find any individual of what happens during € [fo, #1], provided that we start
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with the optimal state at=r1. Let us apply this principle
to the problem (19), (20) forp =0, 1 = hn, t, = 00. On

t € [hy, oo], all inputs are active. Define the new input for
t €lhy, o0l

@Dy () =col[Ko(t),..., Kyt —hn)I(t — hy). (21)
The state space Eq. (19) becomes

x(1) = Ax(t) + B2®n (1),

.x(hN)Z.XN(.xO, K0|t<hN,--,KNfl|t<hN) (22)

Assume thakopt(?), t <hy is known and apply the principle
of optimality. We have that

min  J(xg, Ko, ..., Kn)
Kn

N
o
/ 1C1x(t) + > Doy Ki(t — hy)||5 o
KvJo k=0
hy N-1
= /0 | C1xopt(t) + Z Do Kiopt(t — hi) |15 dr
k=0
+ rgin Jihy, 001 Xopt(hn), Pn) (23)
N

where Jju .01 (x(hn), Pn)

o
=/h ICrx(t; x(hy)) + D2y (1) |13 dt.
N
Egs. (22) withx (h ) = xopt(hn) and (24) constitute a stan-
dard infinite horizon LQR problem. By solving this prob-
lem, the optimal input fromt = h) onwards is completely
determined as a function agpt(2x). Moreover, it is well
known that the optimal coslj;,,c),0pt iS quadratic in the
initial statexopt(/1n):

(24)

@in Jihy .ool.opt = Xopt(hn) T My xopt(hn), (25)
N

for a certain constant matrid > 0. Thus substituting (25)
in (23), we obtain

min  J(xo, Ko, ..., Kn)
Ko,....,Kn
hy N-1
=/0 | C1xopt(?) + Z Do i Ky opt(t — hi)l|3dr
k=0
+ xopt(hN)TMNxopt(hN)
= min  x(hy)" Myx(hy)
Ko,..., Kn-1
hn N-1
+ /O 1)+ Y DaxKilt —holdde.  (26)
k=0

This means that the infinite horizon problem (20) is reduced
to a finite horizon problem (26). We may then continue to

apply the principle of optimality for; =hy_1 andz, =hy.

By solving the resulting LQR problem over the time region
t € [hn—1, hn], we may express the cost contribution of

the time regiort € [hy_1, 00] as a quadratic function of
the state at = hy_1. By continuing in this fashion we
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may obtain the optimal input by solving the optimal control
problem backward in time, time region by time region. The
optimal input for each time region is expressed as a function
of the optimal initial state of time region. Since we know the
optimal state at = 0, we may then move forward in time
to compute the optimal input for each time region. Let us
define the inputdy (r) for the time regiorr = [hy, hyy1] @s

&y (1) =col[Ko(1), ..., Kp(t — hp )1V — hy)

— 1t = hiy D). (27)

Having computed the optimal new inpu®s using the algo-
rithm described earlier, we may recover the optimal original
input K (r), which is given by

Kopt(t) = A7 (1) * P(1), (28)
where
A~ () =diago() o, 0(t + ha) 11, ..., 0(t + hy)IyN),
D(t) = col[Po opt(?), 01, ..., O]
+ COI[Ql,Opt(t)9 027 N ON]
+ -+ col[Py_1,0pt(?), On] + P opt(t).
Here Q,k=1,..., N is a zero column vector with dimen-

sion equal to the dimension éf in the delay operator (14).
Note thatKop(?) is causal sinced; opt is identically zero
outsider € [hy, hjy1].

From the discussion, it is evident that the solution to the
LQR problem with multiple input delays (19), (20) amounts
to solving standard regional LQR problems for the time re-
gionst € [hy,00], t € [hny—1,hn], ..., t € [0, h1]. The
solution to these regional LQR problems is reviewed in the
appendix. Now we are in the position to formulate an al-
gorithm that solves the optimal control problem (19), (20).
The algorithm is formally stated in the following theorem.
Note that this algorithm refers to formulas in Lemmas A.1
and A.2 of the appendix.

Theorem 3 (Algorithm). Consider syster{il9) and the cri-
terion function(20). Define the new inpu®y, k=0,..., N
as in(27). Also define

By :=[B2o --- Bayxl, Dy:=[D2o --- Daxl. (29)
Then(19) and (20) become
N —_
B0 =Ax() + ) Be®i(t), x(O)=xo:=B1,  (30)
k=0
o0
J(x0, Bo. ..., Py) = /0 ICax(r)
N —_—
+ 3 Der(n)|3dr. (31)
k=0
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optimal input may then be computed as followed.

Solve the infinite horizon LQR problem

X(t) = Ax(t) + B2®y(1), x(hy)=xp, (32)
m"ﬂ/ C1x(t; x(hy)) 4+ D2®@y (2)]15 dr. (33)
(DN /’lN

Note that the optimal state at=/,, denoted by y =
Xopt(hn), is not yet known. By Lemm#a2 (Appendiy,
the optimal cost is given by

Xopt(hn) " My xopt(h), (34)

where My is the stabilizing solution of the Riccati
equation(A.18).r The optimal input for this region is
the impulse response of the transfer function

Dy opt(s) = €M Fy(sT — Sy) Ly (35)

given by (A.20)!, where Sy and Fy are given by
(A.19)L. Next setk := N — 1.
Solve the finite horizon LQR problem

X(t) = Ax(t) + Be®i(t),  x(hy) = xg, (36)
rgin(x(th)TMka(th)
k
hi+1 _ )
+ fh 1CLx(t) + D)2 ). (37)
k

Again x; = xopt(hy) is not yet known. By LemmAal,
the optimal cost is given by

Xopt(k) T Myxopt(hi),

where M; may be computed usir@.15)2 Then the
optimal &, (¢) is the impulse response of the transfer
function (A.12)%:

(38)

Dy opt(s) = €Mz (Fi(sT — Sp) "t Pexy), (39)

wherePy, Sy, and F; are given by(A.11)?, (A.6)?, and
(A.4)?, respectivelywhile L = hyy1 — hy. Next set
k:=k—1.

If k>0 then repeat stej2, otherwise go to the next
step. At this stagéfy, Mo, ..., My are known

Solve the LQR problem of the syst€36) for k=0 with
the criterion function(37) for the casex(0) = xo = Bj.
By LemmaA.1, the optimal control®g opt(?) is the
impulse response of the transfer funct{@0)with k=0,
which is a function ofB;. Furthermore the optimal
cost which is also the optimal cost of the LQR problem
with input delayg19), (20),is given by

Ji0.h11.0pt(x (0), Do) = Bf MoB1, (40)

where Mo may be computed usir@.15) for k = 0.
Compute the optimal state at= /1, denoted byx1,
using (A.14) for k = 0.

See Lemma A.2 in the appendix.

2

See Lemma A.1 in the appendix.

(5) Compute the optimal contrdl, 1 opt(?) by substituting
x(hg+1) = xx+1 into (39). Next compute the optimal
state atr = /2, denoted byt 2, using(A.14)?. Next
setk :=k + 1.

(6) If k < N repeat stefb otherwise do the following. Sub-
stitute the optimal state at= iy, denoted byxy to
(35) to obtain®y opt(t). Finally, substituted; opt, k =
0,..., N to(28)to obtain Kopt.

6. State-space realization of the optimal controller

In this section we relax assumption A6 and no longer as-
sume thatTy(s) and K (s) are single-column transfer func-
tions. We denote thgh column ofT1(s), K (s), and B1 as
T1,(s), K;(s), and By, ; respectively.

In the previous section, it is shown that the impulse
response of the optimal controller is given by (28).
For 0<k <N, the jth column of @ op(7), denoted by
D; .opt(t), is the impulse response of the transfer function
(A.12)%

D 1 opt(s) = €My (F(sT — Sp) " Pexjp), (41)

whereL; = h;1 — hy and the formulas fofy, Py, and Fy

are givenin LemmaA.1 in the appendix. HGe N, @; v opt
is the impulse response of the transfer function (AL20)

Dy jopt(s) =€ (Fy(sT — Sn)"Lxjm). (42)

The formulas forSy and Fy are given in Lemma A.2
in the appendix. The optimal state mt iy, denoted by
Xjx k=0,..., N,isthe only thing that changes in (41), (42)
asj changes. Moreover, the optimal statg, may be com-
puted iteratively using (A.14) x; 41 = Iy (Li)x; k, with
the functionIx(¢) given by (A.9)"!. Sincex; x—o is equal to
thejth column of B1, we have that

(43)

-1
Xjk= (H Fi(Li)> By ;.

i=0
Therefore we may write fok =0,..., N — 1

¢k,opt(s)
= [(pl,k,opt(s) ‘Dj,k,opt]
=e e, (Fi(sT — S0 Pelxyk
k—1

— e*Shk T, <Fk(S1 _ Sk)ilPk (l_[ FI(L,)) Bl) (44)

i=0

x7k])

:3&)k,opt(3)s
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wherel is the number of columns of the controll€r Sim-
ilarly, for k = N we have that

(I)N,opt(s)
= [D1,n,0pt(s) Dy N,opt]
= e "W (Fy(sT — Sy) Hxan xsn])
N-1
—eshy (FN (sI —Sy)~ L (]_[ I; (Li)>> (45)
i=0
:543N,0pt(3)~

Hence, once the matriceSs, Fy, Pr, k=1,...,N -1, Sy,
and Fy have been computed, we may comp®gopt, k =
0,..., N using (44) and (45). Finally, the optimal controller
Kopt(s) may be recovered using (28). It is straightforward
to show that the optimal controlletopt(s) may be written

as the sum of a FIR block and a rational transfer matrix
premultiplied by a multiple delay operator:

Kopt= ®(s) + e *"Vdiaglo. €™, ..., "V Iy) Dy (s))

(46)
where the rationa®y is defined in (45) and
d(s) = COI[&)gyopt(s), 01.7,---,0n-17,0n.s1]
+ Col[e*Shlffﬁiopt(s), &iopt(s), ..., 0n—1,7,0n,y]
+ .-+ colfe~ -1 @?V_l,opt(S),
g s(iv-1=h1) éll\/—l,opt(s)’ o @x:iopt(s), O, /1.

Heredy is defined in (44) and)f{ withk=1,...,N—1and
i=0,...,k are the rows ofp; corresponding to the delay
hi in the delay operator (14). The state dimension of the

rational part of the optimal controller is the same as the state
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A |(B1 Bs
C1| 0 Dq

A(s) = diag(1, e*"1),

[Tu(s) Ta(s)] =

o o ~|o
o = O
Rl © ©

h1>0.

In this examplek (¢) has a single column and thus the reg-
ulator problem may be converted directly to an LQR prob-
lem with input delays. In time domain the regulator problem
(48) becomes

min [|73(t) + T2(t) % A@) * K (D)]l2- (49)
By partitioning 7> and K according to the delay:

_ _| A B2o B2i
To(s) =[T20(s) T21(s)]= |:Cl Dao D2,1:| , (50)
K (s) = col[Ko(s), K1(s)], (51)

where Boo = B21 =1, D2o = (0,1, O)T, and D1 =
(0,0,1/)", the quantity inside the norm-bracket in (49)
may be expressed as the outputf the state-equation

x(t)=Ko(t) + K1(t —h1), x(0)=B1=1, (52)

z(t) = col |:x(t), Ko@), % Kl(t)] . (53)

In this framework, the objective (49) becomes
min J(x(0), Ko(?), K1(1))
Ko.K1

= min
Ko,K1

o 1
/ (x(t)z + Ko(t)* + S Ka1(t — h1)2> dr.
0 x
(54)
Egs. (52) and (54) constitute the equivalent LQR problem,

dimension of the plant. For the case where the controller is for which we define the new regional inputs:

single-column, the optimat/>-norm of the overall transfer
function T1(s) + T2(s)A(s)K (s) is given by (40). For the
general case whertE (s) has multiple columns, the optimal
H>-norm may be obtained from the following expression:
min || Ta(s) + T2(s)A(s)K (s)||? = traceB] MoB1. (47)
Remark 4. Since theH>-norm of a transfer function is equal
to the Ho-norm of its transpose, the technique developed
in the last two sections may also be utilized to solve the

filtering problem with multiple measurement delays, which
is the transpose of the regulator problem.

7. Numerical example
Consider the regulator problem

mKin IT1(s) 4+ T2(s) A(s) K (s) |2, (48)

Po(1) = Ko)[1(1) — 1t — h1)], (55)
®1(t) = col[Ko(t), Ka(t —h)]I1(t — h1), (56)

for the time regions € [0, k1] andr € [h1, oo], respectively.
Now we may solve the problem backward in time using the
algorithm of Theorem 3. For the time regiore [A1, co],

the state-space equation (52) becomes

x(hy) = xopt(hl)

for a certain but not yet knowspt(1) and the cost contri-
bution over this period is

X)) =[1 1UP1(r), (57)

o0
Jihy.00) = /h (x()% + D1(1) P1(1)) . (58)

1
Using Lemma A.1, it may be shown that the optimal input
of this region is given by the state feedback

-1

N 9)

P10pt(t) = |:“12:|x(t)ﬂ(t—h1)



1236 A.A. Moelja, G. Meinsma / Automatica 41 (2005) 1229-1238

resulting in the optimal state trajectory 1
Xopt(t) = eV xo(hy), 1 € [hy, 00]. (60)
Substituting (60) back into (59) we obtain the optimal input
signal fort € [hq, col: 2
(8]
. -1 1 £
Lopt(t) = T |2 &
x @ VIR ¢ ()1t — hy). (61)

Furthermore, the optimal cost over this region is

0 1
Jhy,00],0pt = xopt(hl)z/(v 1+ a?). (62) 0 10 20
a
Applying the principle of optimality, we move to the time _ . _
region[0, /1], in which the state equation is given by Fig. 2. The optimal cost as a function of
x(1) =Po(t), x(0) =1 (63)
The infinite horizon criterion function (54) may be replaced 1
by the cost contribution over the regidf, #1] plus the
quadratic final state penalty (62):
h1 —
J AR L R O Y e N O
0 2
©
By solving the finite horizon LQR problem (63), (64), = _°| a=1 |
it may be shown that the optimal input for the regiom % """
[0, k1] is given by S a=2
@ opt(t) = [sinh(t) — g (h1) cosh)][1(r) — 1(t — h1)], i
(65) - "'--.m.\.\\._
. - 0 :
where the functiory (k1) is 0 0.5 1
time t
i /14 o2
q(hy) = sinf(hy) +1/v1+ C(_)Sf(hl), (66) Fig. 3. The optimal state trajectory of the equivalent LQR problem for
coshhy) + 1/4/1 4 o2 sinh(hq) h1=05
resulting in the optimal state trajectory
Xopt(t) = [cOSHr) — g(hy)sinh(1)], 1 € [0, ha]. (67)  criterion function (54), it is obvious that largermakes the

second inpuK1(¢) cheaper, allowing the controller to inject
large input while keeping the cost relatively small. Indeed,
we can see from the optimal state trajectory depictdeign
1 3 that for largea, as soon as the input1(z) is active at
- — t = hi, the state is quickly driven to zero. The larger the
coshihy) + sinh(hy)/v1+ a2 parameter;, the quicker the state vanishes aftet 41. By
J10,001,0pt = ¢ (11). combining (61) and (65), we may retrieve the original input
K () = col(Ko(t), K1(t)) of the LQR problem (52), (54):

We may then compute the optimal stater at 27 and the
optimal cost over € [0, oo]:

xopt(hl) =

The optimal state trajectory is obtained by combining the
optimal state trajectories of the two time regions (60), (67).

The optimal cost as a function of the parametter different g ) — { 5"1'"1'0) —q(h) CjSL’Z)’t , 0<1<hy,
values of the dela) is shown inFig. 2 As expected, larger ﬁxopt(hl)e_ Fet=h) > .

values of the delayi; correspond to higher cost. It is also

evident that the cost decreases as the parametereases. 2 > —/ 1402t
. . . K =(— V1 h 1.
This observation may be explained as follows. From the 1) = (mat/(v1+a%)xop(hr)e ®
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Using formulas from Section 6, we may obtain the optimal wherex;; and M, 1 >0 are known. Define
controller for the regulator problem (48):

4 (h) Ly := hgy1 — hk, R := D];rbk, (A.3)
Kopt(s) = Ty s26 1 Ok := C{(I — DyR;*DJ)C1>0, (A.4)
—opt(hn) Fi:=[-R'D[C1 R'B]), (A5)
n e 0| V1+o2(s+V1+0a?) ) ) ) )

0 1 —o?xopt(h1) ' 5 e [(A — ByR D] C1) BR B} }

VIt o2(s+ VIt D) O —(A— BeR DI C)T )
8. Concluding remarks 2ra1(t) 2k 12(0} ¢

) =| 2k ’ =M A7
¥® [zk.m(r) S 29(0) (A7)

The standardi, problems ofFig. 1(a), (b) are equivalent
to the Hy regulator problem ofig. 1(c). We showed that 5 (/) = |: 2p22(t)  Zg,21(t) ] (A.8)
solving the H> regulator problem amounts to solving a se- =2k 12() =2k 11(0)
ries of LQR problems that results in the impulse response of
the optimal controller. We also derived the state-space for- [ (1) = 2k,11() + 2, 12() Ce(S(Lx), Mir1) (A.9)
mulation of the optimal controller, which consists of a ratio- _
nal block, a FIR block, and delay components. Besides for Ek(0) = Zia1t) + Zi 22 CoEr (Li), Miy1) (A.10)
solving the standard control problem, the theory may also
be applied to solve thél, filtering problem with multiple

delays. Then the optimal input®; (1) is the impulse response of
the transfer function

P :=colll, Co(Zr(Ly), Miy)]- (A.11)

Acknowledgements D kopt(s) = € Mhry (Fi(sT — Sp) ™ Pexjp). (A.12)
This work was supported by the Netherlands Organization Moreover the optimal cost and the optimal final state are
for Scientific Research. respectively given by
x(he)"Mix(hy) and (A.13)
Appendix. Solution of the regional LQR problems xoptUhir1) = T (Li)x (hy), (A.14)
As discussed in Section 5.2, the solution of the LQR prob- where M; = —5;(0). (A.15)
lem with multiple input delays amounts to solving an infinite
horizon LQR problem over = [Ay, oo] and N finite hori- Lemma A.2. Consider LQR problem corresponding to the
zon LQR problems, each ove& [hy, hy11], k=0, ..., N. system
The following two lemmas provide the solution of these
problems. In this section we do not assume thak) and X(1)=Ax(t) + B2®; (1), x(hy)=xj N (A.16)

K (s) are single-column transfer functions. We denote the
jth column of T1(s), K(s), and By as Ty ;(s), K;(s), and

By j respectively. Since the lemmas are standard results from o0
LQR theory, they are provided without proofs. We refer to m_in /
Anderson and Moore (198%nd Kwakernaak and Sivan o
(1972)for detailed presentation of the LQR theory. wherex; y is known. LetMy be the stabilizing solution of

the Riccati equation
Lemma A.1. Consider LQR problem corresponding to the

with the criterion function

IC1x(t) + D2®; N (0)||3r, (A.17)

hy

system 0= QOn + (A — BoRy'DyC) "My
_ _ My (A — B2RYIDIC
2(t) = Ax(1) + Bi®; (), x(hi) =xjx (A1) + Mn( o >
— My B2Ry By My, (A.18)

with the criterion function

, whereRy=DJ) D, andQy =C] (I — D2Ry*D})C1. Define
k+1

T A 2
min x; , My 1x; +/ C1x(t) + D@ j ()| dt _

(A.2) Sy := A+ BoFy, (A.lg)
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then the optimal contro®; v () on[hy, oo] is the impulse
response of the transfer function

¢N,j,0pt(s) = e_ShN (Fn(sI — SN)_lxj,N) (AZO)
and the optimal cost is

x}:NMij,N- (A21)
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