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Abstract

In this paper theH2-optimal control problem of systems with multiple i/o delays is presented. The problem is first converted to an
equivalentH2 regulator problem with multiple delays. The idea is to view the regulator problem in time-domain as a linear quadratic
regulator problem with multiple input delays. It is shown that the rational part of the optimal controller has the same dimension as the
plant and the non-rational part may be chosen to have finite impulse response. Furthermore, the regulator problem solution is also used
to solve theH2 filtering problem with multiple measurement delays.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The presence of delays in a control system poses quite a
challenge to the design of optimal controllers.A lot of results
have been put forward to solve the problem of controlling
systems with delays optimally in some sense.
In the area ofH∞ control, Foias et al. (1996)treated a

general class of infinite dimensionalH∞ control problems
that includes i/o delay problems.Meinsma and Zwart (1998,
2000)solved theH∞ suboptimal control problem for sys-
tems with a single delay usingJ-spectral factorization ap-
proach. At the same timeMirkin (2003) introduced the idea
of extracting the dead-time compensator from the delay-free
parametrization. This approach reduces the control problem
to a special one-block problem. The ideas fromMeinsma
and Zwart (2000)andMirkin (2003) were put together in
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Meinsma et al. (2002). The result was then extended to the
multiple i/o delays case inMeinsma and Mirkin (2003).
Using semigroup approach, the papers (Delfour & Mitter,

1972a,b; Delfour et al., 1975) treat the LQ control of re-
tarded differential equations. This approach is an application
of general LQ theory for infinite dimensional systems (see
Curtain and Zwart (1995, Chapter 6)and references therein).
Extensions to general delay equations with delayed inputs
and outputs may be found inPritchard and Salamon (1985,
1987)andDelfour (1986). Earlier, theH2 (LQG) problem
for systems with a single i/o delay was solved inKleinman
(1969). Recently, it is shown inMirkin and Raskin (2003)
that the solution for this problem may be obtained from the
Youla parametrization. A related problem is theH2 preview
control problem, in which the controller is fed with an ad-
vanced version of the external input signal. The problem is
treated inKojima (2004).
In Moelja et al. (2003), the multiple i/o delays case of

theH2 problem is treated. Here, the technique fromMirkin
(2003)of reducing the problem to a one-block problem is
also used. InMoelja et al. (2003), the one-block problem
is further converted to anH2 regulator problem, which in
turn is solved using a frequency domain approach. However,
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the frequency domain method used inMoelja et al. (2003)
works well only for open-loop stable plants. For unstable
plants, pre-multiplication of the regulator equation by a cer-
tain all-pass transfer function, which makes the formulas
unnecessarily complicated, is needed. In addition, the result-
ing optimal controller appears to have a considerably large
state dimension. In this paper, a time-domain approach is
proposed to circumvent the drawbacks of the frequency do-
main approach. TheH2 regulator problem is viewed as an
LQR problem with multiple input delays. It is shown that
the LQR problem with delays may be reduced to a number
of standard LQR problems. It is done by splitting the opti-
mization time interval into time regions whose boundaries
are the delays and then apply dynamic programming ideas.
Within each time region, the optimization becomes essen-
tially delay-free and may be solved using standard methods.
The idea of splitting the optimization interval according to
the delay has been previously applied inTadmor (1997)for
the single input delay case in the context of robust control in
the gap. Another solution of the LQR problem with multiple
input delays, which is based on the infinite dimensional sys-
tems theory, may be found inKojima and Ishijima (2003).
The optimal input derived there shares a similar structure
with the result from this paper. However, inKojima and
Ishijima (2003)the problem is treated as the limiting prob-
lem of anH∞ problem, which requires an additional condi-
tion corresponding to a certain transcendental equation.
The controller structure resulting from the method in this

paper is quite simple. The controller consists of a rational
transfer matrix block, a finite impulse response block, and
delay components. The rational part of the controller has
the same state dimension as the plant and the method can
handle unstable plants. The solution to theH2-optimal con-
trol problem considered in this paper is not only interesting
from a theoretical point of view, but also has potential for
application. For example, the paper (Grimble and Hearns,
1998) considers the problem of steel-sheet profile control at
a hot strip mill, which has different delays in its measure-
ment channel. The problem is formulated as an LQG prob-
lem, which is equivalent to theH2 problem. However the
method developed inGrimble and Hearns (1998)assumes
that noise and disturbance models are block-diagonal. Cer-
tain approximation has to be made to meet this assumptions,
resulting in a controller that is not only sub-optimal but also
of high order. Using the method derived in this paper, it is
possible to compute and simulate the optimalH2-controller
for the same control problem without the approximation (see
Moelja and Meinsma, 2004).
The paper is organized as follows. After an introduction

and the problem formulation, the method for converting the
standard problem to an equivalentH2 regulator problem
is briefly reviewed. In the next section, the time-domain
solution of the regulator problem is presented followed
by a section describing the state space realization of the
optimal controller. The paper is concluded by a numerical
example.

2. Preliminaries

The transfer matrix and the impulse response of a linear
time-invariant systemG are denoted byG(s) andG(t), re-
spectively. The squaredH2-norm ofG may be computed as

‖G‖22 =
∫ ∞

−∞
trace[G(t)TG(t)]dt . (1)

A transfer matrixG(s) is said to be stable ifG(s) ∈ H∞. A
lower linear fractional transformation (LFT) of two transfer
matricesM andU of appropriate dimension is

F�(M,U) := M11+M12U(I −M22U)
−1M21, (2)

while the left homographic transformation of two transfer
matricesN andV of appropriate dimensions is

C�(N, V ) := −(N11− VN21)
−1(N12 − VN22). (3)

The matricesM andN are appropriately partitioned:

M =
[
M11 M12
M21 M22

]
, N =

[
N11 N12
N21 N22

]
.

As in Mirkin (2003), we define the “truncation” operator
�h(·). The operation sets the impulse response to zero after
t = h. GivenG(s) = C(sI − A)−1B we may express the
truncation ofG(s) as

�h(G) := C(sI − A)−1B − e−shCeAh(sI − A)−1B, (4)

which has a finite impulse response with support on[0, h].
A column vector with elementsa1, . . . , an is denoted as
col[a1, . . . , an] and1(t) is the step function.

3. Problem formulation

We consider standard control systems in which time de-
lays are present in either the control input or the measure-
ment output. Such control systems are depicted inFig. 1(a)
for the input delay case, and inFig. 1(b) for the output delay
case. Here the plantP(s) is a rational transfer matrix which
is assumed of having the following realization

(5)

connected with a proper controllerKs(s), and a multiple
delay operator. The output and input multiple delay operator
are of the form

�y(s)= diag(e−shy1,e−shy2, . . . ,e−shym), (6)

�u(s)= diag(e−shu1,e−shu2, . . . ,e−shup ), (7)
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Fig. 1. (a) The input delay problem, (b) the output delay problem, and
(c) the equivalent regulator problem.

wherem andp are the dimensions ofy andu, respectively.
We assume thatP(s) satisfies the following standard as-
sumptions:

A1. (CP2, AP , BP2) is detectable and stabilizable;
A2. R1 =DT

P12DP12>0 andR2 =DP21D
T
P21>0,

A3.

[
AP − j�I BP2
CP1 DP12

]
and

[
AP − j�I BP1
CP2 DP21

]
have

full column rank and full row rank, respectively
∀� ∈ R.

TheH2-optimal control problem is to find a stabilizing
LTI causal controllerKs(s) such that theH2-norm of the
transfer function fromw to z is minimized.

4. From standard problem to regulator problem

In Moelja et al. (2003), using techniques developed in
Mirkin (2003)andMirkin andRaskin (2003), it is shown that
solving the standard problem ofFig. 1(a) and (b) is equiv-
alent to solving anH2 regulator problem ofFig. 1(c). The
subsequent lemmas, which are given without proof, summa-
rize the formulas needed for the transformation. First, we
need to define several quantities. LetX andY be the stabi-
lizing solutions of the two familiar Riccati equations:

AT
XX +XAX −XBP2R

−1
1 BT

P2X +QX = 0, (8)

AYY + YAT
Y − YCT

P2R
−1
2 CP2Y +QY = 0, (9)

whereAX = (AP − BP2R
−1
1 DT

P21CP1), QX = CP1(I −
DP12R

−1
1 DT

P12)CP1, AY = (AP − BP1DT
P21R

−1
2 CP2), and

QY =BP1(I −DT
P21R

−1
2 DP21)B

T
P1. Define the matricesF

andL and the transfer functionG(s):

F := −R−1
1 (BT

P2X +DT
P12CP1), (10)

L := −(YCT
P2 + BP1D

T
P21)R

−1
2 , (11)

(12)

Also defineBP2,i andCP2,j as theith column ofBP2 and
the jth row ofCP2. According to Theorem 13.7 ofZhou and
Doyle (1998), the squared optimalH2-norm for the delay-
free case (�u = I,�y = I ) is

Jdf =min
Ks

‖F�(P,Ks)‖22 = tr(BT
P1XBP1)+ tr(R1FYF

T).

Lemma 1 (Input delays). Consider the problem of minimiz-
ing ‖F�(P (s),�u(s)Ks(s))‖2 over stabilizing, causalKs ,
whereP(s) and�u(s) are given by(5) and(7), respectively.
It is equivalent to minimizing‖G11(s)+G12(s)�u(s)K(s)‖2
over causalK, with G(s) given by(12), where there is a
causal bijection between K andKs . The bijection is gov-
erned by

Ks(s)= (I −Ks,1(s)�22(s))
−1Ks,1(s),

Ks,1(s)=K(s)(I +G−1
21 (s)G̃22(s)K(s))G

−1
21 (s),

whereG̃22(s)= CP2(sI − AP )
−1B̃P2,

�22(s)= G̃22(s)−G22(s)�u(s),

B̃P2 = [e−AP hu1BP2,1 . . .e−AP hupBP2,p].
Moreover, the squared optimalH2-norm is given by

min
Ks

‖F�(P,�uKs)‖22 = Jdf +min
K

‖G11+G12�uK‖22.

Proof. SeeMoelja et al. (2003). �

Lemma 2 (Output delays). Consider the problem of
minimizing ‖F�(P (s),Ks(s)�y(s))‖2 over stabilizing,
causal Ks , where P(s) and �y(s) are given by (5)
and (6), respectively. It is equivalent to minimizing
‖G11(s) + K(s)�y(s)G21(s)‖2 over causalK, with G(s)
given by(12),where there is a causal bijection betweenK
andKs . The bijection is governed by

Ks(s)= (I −Ks,1(s)�22(s))
−1Ks,1(s),

Ks,1(s)=G−1
12 (s)K(s)(I + G̃22(s)G

−1
12 (s)K(s)),

whereG̃22(s)= C̃P2(sI − AP )
−1BP2,

�22(s)= G̃22(s)− �y(s)G22(s),

C̃P2 = col[CP2,1e−AP hy1, . . . , CP2,me−AP hym ].
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Moreover, the squared optimalH2-norm is given by

min
Ks

‖F�(P,Ks�y)‖22 = Jdf +min
K

‖G11+K�yG21‖22.

Proof. SeeMoelja et al. (2003). �

5. Time-domain solution of theH2 regulator problem

In the previous section we showed that the standard prob-
lem of Fig. 1(a), (b) may be transformed to the regulator
problem ofFig. 1(c), which is addressed in this section. Con-
sider theH2 regulator problem of minimizing theH2-norm
of the transfer function from̂w to ẑ in Fig. 1(c) over causal,
LTI controllerK. We assume that the LTI systemsT1 andT2
have the joint realization

(13)

that satisfies the following standard assumptions:

A4. (C1, A, B2) is detectable and stabilizable;

A5. R =DT
2D2>0 and

[
A− j�I B2
C1 D2

]
has full column

rank for all� ∈ R.

Without loss of generality, we may also assume that the
delays in the delay operator� are in ascending order ac-
cording to their magnitude so that it may be written in the
form

�(s)= diag(e−sh0I0,e−sh1I1, . . . ,e−shN IN),

0= h0<h1< · · ·<hN . (14)

Note thatI0 may be empty which means that there are no
undelayed channels. The approach is to convert theH2 reg-
ulator problem to a time-domain optimal control problem
with input delays. It is then solved by exploiting the fact that
by confining ourselves to a time region between two delays,
for instance ont ∈ [h1, h2], the optimal control problem
becomes essentially delay-free.

5.1. Conversion to an LQR problem with multiple input
delays

In time domain, theH2 regulator problem is to find the
impulse response of the optimal controllerK(s):

Kopt(t)= arg min
K

‖T1(t)+ T2(t) ∗ �(t) ∗K(t)‖2, (15)

where�(t) = diag(�(t)I0, �(t − h1)I1, . . . , �(t − hN)IN)

and the ‘∗’ operator denotes the convolution operator. It is
straightforward to show that we may find any individual

column ofKopt(t) independently and it is given by

Kj,opt(t)= arg min
Kj

‖T1,j (t)+ T2(t) ∗ �(t) ∗Kj(t)‖2, (16)

whereKj(t) and T1,j (t) are thejth column ofK(t) and
T1(t), respectively. Therefore without loss of generality we
may assume thatT1(s) andK(s) are single-column transfer
functions.
A6. T1(s) andK(s) are single-column transfer functions.
The assumption A6 will be relaxed later. By assumption

A6 K(t) may be seen as a vector-valued signal, so that we
may reformulate (16) into an optimal control problem with
input delays. To this end, let us first partitionT2 andK
according to the delays:

(17)

K(t) = col[K0(t), . . . , KN(t)]. (18)

HereB2,k, D2,k andKk(t) are the respective parts ofB2,
D2, andK(t) that correspond to the delayhk. In addition,
the convolution of the delay operator and the controller is
given by

�(t) ∗K(t)= col[K0(t),K1(t − h1), . . . , KN(t − hN)].
From (16), it is apparent that wemay view the quantity inside
the norm brackets as the output of the system[ T1(s) T2(s) ]
with col[�(t),�(t) ∗K(t)] as the input. Moreover, the real-
ization (17) allows us to write down the state-space equation
for this system:

ẋ(t)= Ax(t)+
N∑
k=0

B2,kKk(t − hk), x(0)= B1 (19)

and the objective (16) becomes minimizing

J (x0,K)=
∫ ∞

0
‖C1x(t)+

N∑
k=0

D2,kKk(t − hk)‖22 dt . (20)

We see that the system description (19) and the associated
criterion function (20) constitute an LQR problem with mul-
tiple input delays withK(t) as the input.

5.2. Solution of the LQR problem with multiple input delays

In this section we show that we may reduce the optimal
control problem (19), (20) to a series of standard LQR prob-
lems. To solve the problem we utilize a standard result in op-
timal control theory, namely the principle of optimality (see
Anderson and Moore, 1989for details). One implication of
the principle is the following. Suppose we have an optimal
control problem over the time regiont ∈ [t0, te]. Then we
may solve the problem overt ∈ [t1, te], t1> t0 independent
of what happens duringt ∈ [t0, t1], provided that we start
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with the optimal state att = t1. Let us apply this principle
to the problem (19), (20) fort0 = 0, t1 = hN, te = ∞. On
t ∈ [hN,∞], all inputs are active. Define the new input for
t ∈ [hN,∞]:
�N(t)= col[K0(t), . . . , KN(t − hN)]1(t − hN). (21)

The state space Eq. (19) becomes

ẋ(t)= Ax(t)+ B2�N(t),
x(hN)= xN(x0,K0|t�hN , . . . , KN−1|t�hN ). (22)

Assume thatxopt(t), t�hN is known and apply the principle
of optimality. We have that

min
K0,...,KN

J (x0,K0, . . . , KN)

= min
K0,...,KN

∫ ∞

0
‖C1x(t)+

N∑
k=0

D2,kKk(t − hk)‖22 dt

=
∫ hN

0
‖C1xopt(t)+

N−1∑
k=0

D2,k Kk,opt(t − hk)‖22 dt

+min
�N

J[hN ,∞](xopt(hN),�N) (23)

whereJ[hN ,∞](x(hN),�N)

=
∫ ∞

hN

‖C1x(t; x(hN))+D2�N(t)‖22 dt . (24)

Eqs. (22) withx(hN)= xopt(hN) and (24) constitute a stan-
dard infinite horizon LQR problem. By solving this prob-
lem, the optimal input fromt = hN onwards is completely
determined as a function ofxopt(hN). Moreover, it is well
known that the optimal costJ[hN ,∞],opt is quadratic in the
initial statexopt(hN):

min
�N

J[hN ,∞],opt = xopt(hN)
TMNxopt(hN), (25)

for a certain constant matrixMN �0. Thus substituting (25)
in (23), we obtain

min
K0,...,KN

J (x0,K0, . . . , KN)

=
∫ hN

0
‖C1xopt(t)+

N−1∑
k=0

D2,kKk,opt(t − hk)‖22 dt

+ xopt(hN)
TMNxopt(hN)

= min
K0,...,KN−1

x(hN)
TMNx(hN)

+
∫ hN

0
‖C1x(t)+

N−1∑
k=0

D2,kKk(t − hk)‖22 dt . (26)

This means that the infinite horizon problem (20) is reduced
to a finite horizon problem (26). We may then continue to
apply the principle of optimality fort1=hN−1 andte =hN .
By solving the resulting LQR problem over the time region
t ∈ [hN−1, hN ], we may express the cost contribution of
the time regiont ∈ [hN−1,∞] as a quadratic function of
the state att = hN−1. By continuing in this fashion we

may obtain the optimal input by solving the optimal control
problem backward in time, time region by time region. The
optimal input for each time region is expressed as a function
of the optimal initial state of time region. Since we know the
optimal state att = 0, we may then move forward in time
to compute the optimal input for each time region. Let us
define the input�k(t) for the time regiont = [hk, hk+1] as
�k(t)= col[K0(t), . . . , Kk(t − hhk )][1(t − hk)

− 1(t − hk+1)]. (27)

Having computed the optimal new inputs�k using the algo-
rithm described earlier, we may recover the optimal original
inputK(t), which is given by

Kopt(t)= �∼(t) ∗ �(t), (28)

where

�∼(t)= diag(�(t)I0, �(t + h1)I1, . . . , �(t + hN)IN),

�(t)= col[�0,opt(t),01, . . . ,0N ]
+ col[�1,opt(t),02, . . . ,0N ]
+ · · · + col[�N−1,opt(t),0N ] + �N,opt(t).

Here 0k, k = 1, . . . , N is a zero column vector with dimen-
sion equal to the dimension ofIk in the delay operator (14).
Note thatKopt(t) is causal since�k,opt is identically zero
outsidet ∈ [hk, hk+1].
From the discussion, it is evident that the solution to the

LQR problem with multiple input delays (19), (20) amounts
to solving standard regional LQR problems for the time re-
gions t ∈ [hN,∞], t ∈ [hN−1, hN ], . . . , t ∈ [0, h1]. The
solution to these regional LQR problems is reviewed in the
appendix. Now we are in the position to formulate an al-
gorithm that solves the optimal control problem (19), (20).
The algorithm is formally stated in the following theorem.
Note that this algorithm refers to formulas in Lemmas A.1
and A.2 of the appendix.

Theorem 3 (Algorithm). Consider system(19) and the cri-
terion function(20).Define the new input�k, k= 0, . . . , N
as in (27).Also define

B̄k := [B2,0 · · · B2,k], D̄k := [D2,0 · · · D2,k]. (29)

Then(19) and (20) become

ẋ(t)= Ax(t)+
N∑
k=0

B̄k�k(t), x(0)= x0 := B1, (30)

J (x0,�0, . . . ,�N)=
∫ ∞

0
‖C1x(t)

+
N∑
k=0

D̄k�k(t)‖22 dt . (31)
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The optimal input may then be computed as followed.

(1) Solve the infinite horizon LQR problem

ẋ(t)= Ax(t)+ B2�N(t), x(hN)= xN , (32)

min
�N

∫ ∞

hN

‖C1x(t; x(hN))+D2�N(t)‖22 dt . (33)

Note that the optimal state att =hN , denoted byxN =
xopt(hN), is not yet known. By LemmaA.2 (Appendix),
the optimal cost is given by

xopt(hN)
TMNxopt(hN), (34)

whereMN is the stabilizing solution of the Riccati
equation(A.18).1 The optimal input for this region is
the impulse response of the transfer function:

�N,opt(s)= e−shN FN(sI − SN)
−1xN (35)

given by (A.20)1, where SN and FN are given by
(A.19)1. Next, setk := N − 1.

(2) Solve the finite horizon LQR problem

ẋ(t)= Ax(t)+ B̄k�k(t), x(hk)= xk, (36)

min
�k
(x(hk+1)

TMk+1x(hk+1)

+
∫ hk+1

hk

‖C1x(t)+ D̄k�k(t)‖2 dt). (37)

Againxk = xopt(hk) is not yet known. By LemmaA.1,
the optimal cost is given by

xopt(hk)
TMkxopt(hk), (38)

whereMk may be computed using(A.15).2 Then the
optimal�k(t) is the impulse response of the transfer
function(A.12)2:

�k,opt(s)= e−shk�Lk (Fk(sI − Sk)
−1Pkxk), (39)

wherePk, Sk, andFk are given by(A.11)2, (A.6)2, and
(A.4)2, respectively, while Lk = hk+1 − hk. Next, set
k := k − 1.

(3) If k >0 then repeat step2, otherwise go to the next
step. At this stageM1,M2, . . . ,MN are known.

(4) Solve the LQR problem of the system(36) for k=0with
the criterion function(37) for the casex(0)= x0=B1.
By LemmaA.1, the optimal control�0,opt(t) is the
impulse response of the transfer function(39)withk=0,
which is a function ofB1. Furthermore, the optimal
cost,which is also the optimal cost of the LQR problem
with input delays(19), (20),is given by

J[0,h1],opt(x(0),�0)= BT
1M0B1, (40)

whereM0 may be computed using(A.15)2 for k = 0.
Compute the optimal state att = h1, denoted byx1,
using(A.14)2 for k = 0.

1 See Lemma A.2 in the appendix.
2 See Lemma A.1 in the appendix.

(5) Compute the optimal control�k+1,opt(t) by substituting
x(hk+1) = xk+1 into (39). Next, compute the optimal
state att=hk+2, denoted byxk+2, using(A.14)2.Next,
setk := k + 1.

(6) If k <N repeat step5 otherwise do the following. Sub-
stitute the optimal state att = hN , denoted byxN to
(35) to obtain�N,opt(t). Finally, substitute�k,opt, k=
0, . . . , N to (28) to obtainKopt.

6. State-space realization of the optimal controller

In this section we relax assumption A6 and no longer as-
sume thatT1(s) andK(s) are single-column transfer func-
tions. We denote thejth column ofT1(s), K(s), andB1 as
T1,j (s), Kj(s), andB1,j respectively.
In the previous section, it is shown that the impulse

response of the optimal controller is given by (28).
For 0�k <N , the jth column of �k,opt(t), denoted by
�j,k,opt(t), is the impulse response of the transfer function
(A.12)2:

�j,k,opt(s)= e−shk�Lk (Fk(sI − Sk)
−1Pkxj,k), (41)

whereLk = hk+1 − hk and the formulas forSk, Pk, andFk
are given in LemmaA.1 in the appendix. Fork=N ,�j,N,opt
is the impulse response of the transfer function (A.20)1

�N,j,opt(s)= e−shN (FN(sI − SN)
−1xj,N ). (42)

The formulas forSN and FN are given in Lemma A.2
in the appendix. The optimal state att = hk, denoted by
xj,k, k=0, . . . , N , is the only thing that changes in (41), (42)
as j changes. Moreover, the optimal statexj,k may be com-
puted iteratively using (A.14)2: xj,k+1 = �k(Lk)xj,k, with
the function�k(t) given by (A.9)2. Sincexj,k=0 is equal to
the jth column ofB1, we have that

xj,k =
(
k−1∏
i=0

�i (Li)

)
B1,j . (43)

Therefore we may write fork = 0, . . . , N − 1

�k,opt(s)
= [�1,k,opt(s) · · · �J,k,opt]
= e−shk�Lk (Fk(sI − Sk)

−1Pk[x1,k · · · xJ,k])

= e−shk �Lk

(
Fk(sI − Sk)

−1Pk

(
k−1∏
i=0

�i (Li)

)
B1

)
︸ ︷︷ ︸

=:�̃k,opt(s),

(44)
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whereJ is the number of columns of the controllerK. Sim-
ilarly, for k =N we have that

�N,opt(s)
= [�1,N,opt(s) · · · �J,N,opt]
= e−shN (FN(sI − SN)

−1[x1,N · · · xJ,N ])

= e−shN
(
FN(sI − SN)

−1

(
N−1∏
i=0

�i (Li)

))
︸ ︷︷ ︸

=:�̃N,opt(s).

(45)

Hence, once the matricesSk, Fk, Pk, k= 1, . . . , N − 1, SN ,
andFN have been computed, we may compute�k,opt, k =
0, . . . , N using (44) and (45). Finally, the optimal controller
Kopt(s) may be recovered using (28). It is straightforward
to show that the optimal controllerKopt(s) may be written
as the sum of a FIR block and a rational transfer matrix
premultiplied by a multiple delay operator:

Kopt = �̃(s)+ e−shNdiag(I0,esh1, . . . ,eshN IN)�̃N(s))
(46)

where the rational̃�N is defined in (45) and

�̃(s)= col[�̃0
0,opt(s),01,J , . . . ,0N−1,J ,0N,J ]

+ col[e−sh1�̃0
1,opt(s), �̃

1
1,opt(s), . . . ,0N−1,J ,0N,J ]

+ · · · + col[e−s(hN−1)�̃
0
N−1,opt(s),

e−s(hN−1−h1)�̃1
N−1,opt(s), . . . , �̃

N−1
N−1,opt(s),0N,J ].

Here�̃k is defined in (44) and̃�
i

k with k=1, . . . , N−1 and
i = 0, . . . , k are the rows of̃�k corresponding to the delay
hk in the delay operator (14). The state dimension of the
rational part of the optimal controller is the same as the state
dimension of the plant. For the case where the controller is
single-column, the optimalH2-norm of the overall transfer
function T1(s) + T2(s)�(s)K(s) is given by (40). For the
general case whereK(s) has multiple columns, the optimal
H2-norm may be obtained from the following expression:

min
K

‖T1(s)+ T2(s)�(s)K(s)‖2 = traceBT
1M0B1. (47)

Remark 4. Since theH2-norm of a transfer function is equal
to theH2-norm of its transpose, the technique developed
in the last two sections may also be utilized to solve the
filtering problem with multiple measurement delays, which
is the transpose of the regulator problem.

7. Numerical example

Consider the regulator problem

min
K

‖T1(s)+ T2(s)�(s)K(s)‖2, (48)

�(s) = diag(1,e−sh1), h1>0.

In this exampleK(t) has a single column and thus the reg-
ulator problem may be converted directly to an LQR prob-
lem with input delays. In time domain the regulator problem
(48) becomes

min
K

‖T1(t)+ T2(t) ∗ �(t) ∗K(t)‖2. (49)

By partitioningT2 andK according to the delay:

T2(s)= [T2,0(s) T2,1(s)] =
[
A B2,0 B2,1
C1 D2,0 D2,1

]
, (50)

K(s)= col[K0(s),K1(s)], (51)

where B2,0 = B2,1 = 1, D2,0 = (0,1,0)T, and D2,1 =
(0,0,1/�)T, the quantity inside the norm-bracket in (49)
may be expressed as the outputz of the state-equation

ẋ(t)=K0(t)+K1(t − h1), x(0)= B1 = 1, (52)

z(t)= col

[
x(t),K0(t),

1

�
K1(t)

]
. (53)

In this framework, the objective (49) becomes

min
K0,K1

J (x(0),K0(t),K1(t))

= min
K0,K1

∫ ∞

0

(
x(t)2 +K0(t)

2 + 1

�2
K1(t − h1)

2
)
dt .

(54)

Eqs. (52) and (54) constitute the equivalent LQR problem,
for which we define the new regional inputs:

�0(t)=K0(t)[1(t)− 1(t − h1)], (55)

�1(t)= col[K0(t), K1(t − h1)]1(t − h1), (56)

for the time regionst ∈ [0, h1] andt ∈ [h1,∞], respectively.
Now we may solve the problem backward in time using the
algorithm of Theorem 3. For the time regiont ∈ [h1,∞],
the state-space equation (52) becomes

ẋ(t)= [1 1]�1(t), x(h1)= xopt(h1) (57)

for a certain but not yet knownxopt(h1) and the cost contri-
bution over this period is

J[h1,∞] =
∫ ∞

h1

(x(t)2 + �1(t)
T�1(t))dt . (58)

Using Lemma A.1, it may be shown that the optimal input
of this region is given by the state feedback

�1,opt(t)= −1√
1+ �2

[
1
�2

]
x(t)1(t − h1) (59)
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resulting in the optimal state trajectory

xopt(t)= e−
√
1+�2(t−h1)xopt(h1), t ∈ [h1,∞]. (60)

Substituting (60) back into (59) we obtain the optimal input
signal fort ∈ [h1,∞]:

�1,opt(t)= −1√
1+ �2

[
1
�2

]
× e−

√
1+�2(t−h1)xopt(h1)1(t − h1). (61)

Furthermore, the optimal cost over this region is

J[h1,∞],opt = xopt(h1)
2/(
√
1+ �2). (62)

Applying the principle of optimality, we move to the time
region[0, h1], in which the state equation is given by

ẋ(t)= �0(t), x(0)= 1. (63)

The infinite horizon criterion function (54) may be replaced
by the cost contribution over the region[0, h1] plus the
quadratic final state penalty (62):∫ h1

0
(x(t)2 + �0(t)

2)dt + x(h1)
2/(
√
1+ �2). (64)

By solving the finite horizon LQR problem (63), (64),
it may be shown that the optimal input for the regiont ∈
[0, h1] is given by

�0,opt(t)= [sinh(t)− q(h1) cosh(t)][1(t)− 1(t − h1)],
(65)

where the functionq(h1) is

q(h1)= sinh(h1)+ 1/
√
1+ �2 cosh(h1)

cosh(h1)+ 1/
√
1+ �2 sinh(h1)

, (66)

resulting in the optimal state trajectory

xopt(t)= [cosh(t)− q(h1) sinh(t)], t ∈ [0, h1]. (67)

We may then compute the optimal state att = h1 and the
optimal cost overt ∈ [0,∞]:

xopt(h1)= 1

cosh(h1)+ sinh(h1)/
√
1+ �2

,

J[0,∞],opt = q(h1).

The optimal state trajectory is obtained by combining the
optimal state trajectories of the two time regions (60), (67).
The optimal cost as a function of the parameter� for different
values of the delayh1 is shown inFig. 2. As expected, larger
values of the delayh1 correspond to higher cost. It is also
evident that the cost decreases as the parameter� increases.
This observation may be explained as follows. From the
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Fig. 2. The optimal cost as a function of�.
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Fig. 3. The optimal state trajectory of the equivalent LQR problem for
h1 = 0.5

criterion function (54), it is obvious that larger� makes the
second inputK1(t) cheaper, allowing the controller to inject
large input while keeping the cost relatively small. Indeed,
we can see from the optimal state trajectory depicted inFig.
3 that for large�, as soon as the inputK1(t) is active at
t = h1, the state is quickly driven to zero. The larger the
parameter�, the quicker the state vanishes aftert = h1. By
combining (61) and (65), we may retrieve the original input
K(t)= col(K0(t),K1(t)) of the LQR problem (52), (54):

K0(t)=
{
sinh(t)− q(h1) cosh(t), 0� t�h1,

−1√
1+�2

xopt(h1)e−
√
1+�2(t−h1), t > h1.

K1(t)= (−�2/(
√
1+ �2))xopt(h1)e−

√
1+�2t1(t).
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Using formulas from Section 6, we may obtain the optimal
controller for the regulator problem (48):

Kopt(s)= �h1

[ −q(h1)
s2 − 1
0

]

+
[
e−sh1 0
0 1

]
−xopt(h1)√

1+ �2(s + √
1+ �2)

−�2xopt(h1)√
1+ �2(s + √

1+ �2)


 .

8. Concluding remarks

The standardH2 problems ofFig. 1(a), (b) are equivalent
to theH2 regulator problem ofFig. 1(c). We showed that
solving theH2 regulator problem amounts to solving a se-
ries of LQR problems that results in the impulse response of
the optimal controller. We also derived the state-space for-
mulation of the optimal controller, which consists of a ratio-
nal block, a FIR block, and delay components. Besides for
solving the standard control problem, the theory may also
be applied to solve theH2 filtering problem with multiple
delays.
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Appendix. Solution of the regional LQR problems

As discussed in Section 5.2, the solution of the LQR prob-
lem with multiple input delays amounts to solving an infinite
horizon LQR problem overt = [hN,∞] andN finite hori-
zon LQR problems, each overt =[hk, hk+1], k=0, . . . , N .
The following two lemmas provide the solution of these
problems. In this section we do not assume thatT1(s) and
K(s) are single-column transfer functions. We denote the
j th column ofT1(s), K(s), andB1 asT1,j (s), Kj(s), and
B1,j respectively. Since the lemmas are standard results from
LQR theory, they are provided without proofs. We refer to
Anderson and Moore (1989)and Kwakernaak and Sivan
(1972)for detailed presentation of the LQR theory.

Lemma A.1. Consider LQR problem corresponding to the
system

ẋ(t)= Ax(t)+ B̄k�j,k(t), x(hk)= xj,k (A.1)

with the criterion function

min
�j,k

xTj,kMk+1xj,k +
∫ hk+1

hk

‖C1x(t)+ D̄k�j,k(t)‖2 dt
(A.2)

wherexj,k andMk+1�0 are known. Define

Lk := hk+1 − hk, Rk := D̄T
k D̄k, (A.3)

Qk := CT
1 (I − D̄kR

−1
k D̄T

k )C1�0, (A.4)

Fk := [−R−1
k D̄T

k C1 R−1
k B̄T

k ], (A.5)

Sk :=
[
(A− B̄kR

−1
k D̄T

k C1) B̄kR
−1
k B̄T

k

Qk −(A− B̄kR
−1
k D̄T

k C1)
T

]
(A.6)

�k(t)=
[
�k,11(t) �k,12(t)
�k,21(t) �k,22(t)

]
:= eSkt (A.7)

�̃k(t)=
[

�k,22(t) �k,21(t)
−�k,12(t) −�k,11(t)

]
(A.8)

�k(t) := �k,11(t)+ �k,12(t)C�(�̃k(Lk),Mk+1) (A.9)

	k(t) := �k,21(t)+ �k,22(t)C�(�̃k(Lk),Mk+1) (A.10)

Pk := col[I, C�(�̃k(Lk),Mk+1)]. (A.11)

Then the optimal input�j,k(t) is the impulse response of
the transfer function

�j,k,opt(s)= e−shk�Lk (Fk(sI − Sk)
−1Pkxj,k). (A.12)

Moreover, the optimal cost and the optimal final state are
respectively given by

x(hk)
TMkx(hk) and (A.13)

xopt(hk+1)= �k(Lk)x(hk), (A.14)

where Mk = −	k(0). (A.15)

Lemma A.2. Consider LQR problem corresponding to the
system

ẋ(t)= Ax(t)+ B2�j,N (t), x(hN)= xj,N (A.16)

with the criterion function

min
�j,N

∫ ∞

hN

‖C1x(t)+D2�j,N (t)‖22 dt , (A.17)

wherexj,N is known. LetMN be the stabilizing solution of
the Riccati equation:

0=QN + (A− B2R
−1
N DT

2C1)
TMN

+MN(A− B2R
−1
N DT

2C1)

−MNB2R
−1
N BT

2MN , (A.18)

whereRN=DT
2D2 andQN=CT

1 (I−D2R
−1
N DT

2 )C1.Define

FN := −R−1
N (BT

2MN +DT
2C1),

SN := A+ B2FN , (A.19)
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then the optimal control�j,N (t) on [hN,∞] is the impulse
response of the transfer function

�N,j,opt(s)= e−shN (FN(sI − SN)
−1xj,N ) (A.20)

and the optimal cost is

xTj,NMNxj,N . (A.21)

References

Anderson, B. D. O., & Moore, J. B. (1989).Optimal control linear
quadratic methods. Englewood Cliffs, NJ: Prentice-Hall.

Curtain, R. F., & Zwart, H. J. (1995).An introduction to infinite-
dimensional linear systems theory. New York: Springer.

Delfour, M. C. (1986). The linear quadratic optimal control problem with
delays in the state and control variables; a state space approach.SIAM
Journal of Control and Optimization, 24, 835–883.

Delfour, M. C., & Mitter, S. K. (1972a). Controllability, observability,
and optimal feedback control of affine hereditary differential systems.
SIAM Journal of Control, 10, 298–328.

Delfour, M. C., & Mitter, S. K. (1972b). Hereditary differential systems
with constant delays I; general case.Journal of Differential Equations,
12, 213–235.

Delfour, M. C., McCalla, C., & Mitter, S. K. (1975). Stability and infinite
time quadratic cost problem for linear hereditary differential systems.
SIAM Journal of Control, 13, 48–88.

Foias, C., Özbay, H., & Tannenbaum, A. (1996).Robust Control of Infinite
Dimensional Systems. Berlin: Springer.

Grimble, M. J., & Hearns, G. (1998). LQG controllers for state-space
systems with pure transport delays: application to hot strip mills.
Automatica, 34, 1169–1184.

Kleinman, D. L. (1969). Optimal control of linear systems with time-
delay and observation noise.IEEE Transactions on Automatic Control,
14(5), 524–527.

Kojima, A. (2004).H2 performance on preview feedforward action. In
Proceedings of the 16th MTNS. Leuven, Belgium.

Kojima, A., & Ishijima, S. (2003). Formulas on preview and delayed
H∞ control. InProceedings of the 42nd IEEE CDC(pp. 6532–6538).
Hawaii, USA.

Kwakernaak, H., & Sivan, R. (1972).Linear Optimal Control Systems.
New York: Wiley-Interscience.

Meinsma, G., & Mirkin, L. (2003).H∞ control of systems with multiple
i/o delays. In Preprints of IFAC workshop on time-delay system.
Rocquencourt, France.

Meinsma, G., & Zwart, H. (1998). The standardH∞ control problem for
dead-time systems. InProceedings of the MTNS ’98. Padova, Italy.

Meinsma, G., & Zwart, H. (2000). OnH∞ control of dead-time systems.
IEEE Transactions on Automatic Control, 45(2), 272–285.

Meinsma, G., Mirkin, L., & Zhong, Q. C. (2002). Control of systems
with I/O delay via reduction to one-block problem.IEEE Transactions
on Automatic Control, 47(11), 1890–1895.

Mirkin, L. (2003). On the extraction of dead-time controllers and
estimators from delay-free parametrization.IEEE Transactions on
Automatic Control, 48, 543–553.

Mirkin, L., & Raskin, N. (2003). Every stabilizing dead-time controller
has an observer-predictor-based structure.Automatica, 39, 1747–1754.

Moelja, A. A., & Meinsma, G. (2004).H2-optimal control of systems
with multiple i/o delays: time domain approach. InProceedings of
MTNS 2004. Leuven, Belgium.

Moelja, A. A., Meinsma, G., & Kuipers, J. (2003).H2-optimal control of
systems with multiple i/o delays. In Germain Garcia (Ed.),Preprints
of the fourth IFAC workshop on time delay systems. Rocquencourt,
France.

Pritchard, A. J., & Salamon, D. (1985). The linear quadratic optimal
control problem for infinite-dimensionals systems II: retarded system
with delays in control and observation.IMA Journal of Mathematical
Information, 2, 335–362.

Pritchard, A. J., & Salamon, D. (1987). The linear quadratic optimal
control problem for infinite dimensional systems with unbounded input
and output operators.SIAM Journal of Control and Optimization, 25,
121–144.

Tadmor, G. (1997). Robust control in the gap: a state-space solution in
the presence of a single input delay.IEEE Transactions on Automatic
Control, 42, 1330–1335.

Zhou, K., & Doyle, J. C. (1998).Essentials of robust control. Englewood
Cliffs, NJ: Prentice-Hall.

Agoes Moelja was born in Bandung, In-
donesia in 1976. He received the Bachelor
of Engineering degree in electrical engineer-
ing from Bandung Institute of Technology
in 1998 and the M.Sc. degree in engineering
mathematics from University of Twente, The
Netherlands in 2001. He is now a Ph.D. stu-
dent at Signals, Systems, and Control Group
of the Department of Applied Mathematics,
University of Twente working on control of
systems with i/o delays.

Gjerrit Meinsma was born in Opeinde, The
Netherlands in 1965. He received his Ph.D.
degree at the University of Twente in 1993.
During the following three years he held a
postdoc position at the University of New-
castle, Australia. Since 1997 he is with the
Department of Applied Mathematics at the
University of Twente, The Netherlands. His
research interests are in mathematical sys-
tems and control theory, in particular robust
control theory.


	H2-optimal control of systems with multiple i/o delays: Time domain approach*
	Introduction
	Preliminaries
	Problem formulation
	From standard problem to regulator problem
	Time-domain solution of the H2 regulator problem
	Conversion to an LQR problem with multiple input delays
	Solution of the LQR problem with multiple input delays

	State-space realization of the optimal controller
	Numerical example
	Concluding remarks
	Acknowledgements
	References


