
A

s
p
c
s
d
©

K

1

w
t
m
l
e
c
H
a
H
H
o
p
w
c

a
t
c
m

0
d

Wear 262 (2007) 138–145

Deformation due to contact between a rough surface and a smooth ball
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bstract

Theoretical and experimental results are presented to evaluate the deformation behavior of the contact between a real rough flat surface and a
mooth ball. There are three deformation responses: plastic deformation of the asperities only, plastic deformation of the bulk only and combined
lastic deformation of both the asperities and the bulk. The effects of the surface roughness and the Hertzian contact parameters on the effective

ontact pressure are presented. The experimental results confirmed the theoretical prediction very well. For a given Hertzian contact situation the
urface roughness plays an important role in controlling the deformation behavior of the contacting surfaces. A criterion is presented to predict the
eformation behavior of contacting engineering surfaces.

2006 Elsevier B.V. All rights reserved.
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. Introduction

When two engineering surfaces are pressed together there
ill always be some contact deformation. Depending on the con-

act condition, these contact deformation can be categorized as
acro-contact or micro-contact. The contact between a heavily

oaded roller and the inner and outer race ways in a rolling-
lement bearing, for example, can be analyzed as a macroscopic
ontact when omitting the effect of surface roughness. In the
ertz theory, the contact of two elastic bodies is based on the

ssumption that their surfaces are topographically smooth [1].
owever, most engineering surfaces are rough on micro-scale.
igh points or micro-protrusions, usually called asperities, exist
n all engineering solid surfaces irrespective of their method of
roduction. In non-lubricated or boundary lubrication systems,
hen such surfaces are loaded against each other, the actual

ontact takes place at these asperities, i.e. micro-contacts.
During the contact of two surfaces, contact will initially occur

t a limited amount of asperities of different shapes and sizes

o support the normal load [2–4]. The number of asperities in
ontact becomes larger as the normal load is increased. Defor-
ation occurs in the region of contact spots, establishing stresses
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hat oppose the applied load. If the deformation is in the same
rder as the topography of the surfaces, the response to the nor-
al load may be strongly related to the height and size of the

sperities. For an elastic–plastic deforming material the plas-
icity may be initiated either at the surface (asperities) or in the
ulk depending on the contact condition. This problem is of par-
icular interest to tribologists and engineers with respect to the
unctional properties of devices. Or in another words, depend-
ng on the desired functional performance specific contacting
urfaces may be designed.

The analytical and numerical modeling for estimating the
ctual pressure distribution for the contact of various surface pro-
les have been studied by many researchers [5–14]. Greenwood
nd Williamson [5] studied the contact between two nominally
at surfaces. They assumed that the flat surface is covered with
emi-spherical asperities and the heights of the asperities are
epresented by a well-defined statistical distribution function
i.e. Gaussian). As an extension, by using the same approach,
reenwood and Tripp (GT model) [6] analyzed the contact prob-

em of a smooth spherical surface against a plane covered with
sperities and Lo [7] analyzed the contact of two parallel rough
ylinders. Mikic and Roca [8] studied the contact problem of

wo rough spherical surfaces based on the plasticity theory.

Most of the developed contact models are devoted to the
alculation of the real contact area, load carrying capacity or
ub-surface stresses. The deformation behavior of the contacting

mailto:j.jamari@ctw.utwente.nl
dx.doi.org/10.1016/j.wear.2006.04.005
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Nomenclature

A0 unit area
d cut-off height
E reduced elastic modulus
E1,2 elastic moduli surface 1 and 2
H hardness
K hardness coefficient
K(k) first kind complete elliptical integral
N number of asperities
p effective pressure
p0 maximum Hertzian contact pressure
p(0) effective central pressure
P contact load
r radial coordinate
R radius of the sphere indenter
wb surface or bulk deformation
y profile coordinate in loading direction
z asperity height

Greek letters
α non-dimensional roughness parameter
β average asperity radius
φ(z) statistical distribution of asperity height
ηs asperity density, N/A0
μ non-dimensional asperity density parameter
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since it changes the mechanical component permanently. There-
fore, plastic deformation of the bulk of the contacting surfaces
will be discussed further in the present analysis. In general, for
smooth surfaces the initial yielding occurs when the maximum
ν1,2 Poisson’s ratio
ωa asperity deformation

urfaces is rarely explored, especially during unloading. Rajen-
rakumar and Biswas [9] have studied the deformation response
f the contact between a two-dimensional rough surface and a
mooth cylinder. A map which can be used as a design guide for
redicting the deformation responses (asperity or bulk deforma-
ion) of the contacting surfaces was constructed. However, the

ap was based upon a simple two-dimensional configuration of
he contact problem and there is no experimental verification.
he asperities are represented by uniformly spaced cylinders of

he same radius and height.
This paper offers a new criterion for surface deformation

or the contact of three-dimensional real rough surfaces. A
phere and a flat rough surface contact configuration was chosen
ecause it is found commonly in many engineering applications
uch as the contact of a ball on the race way of ball bearings,
all screws, ball joint, etc.

. Theoretical background

In the case of the contact between a sphere and a flat rough
urface, true contact is not made continuously over the circu-
ar contact area envisaged by the Hertz theory but through an

rchipelago of small discrete islands roughly clustered within a
ircular region. Therefore, true contact pressure is discontinu-
us, very high within the contact region and falling to zero in
etween the contact islands. In the present analysis of the con-
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act between a rough surface and a smooth ball, the GT model
s used for convenience.

By using iterative numerical techniques Greenwood and
ripp [6], see Appendix A, solved Eqs. (A.5)–(A.7) to find the
ffective pressure distribution p(r). The solution depends upon
wo independent non-dimensional parameters α and μ:

= σs

(
16RE2

9P2

)1/3

(1)

= 8

3
ηsσs(2Rβ)1/2 (2)

here σs is the r.m.s. roughness of the summits, R the radius of
he sphere, E the reduced elasticity modulus, P the normal load,
s the number of asperity per unit area and β is the radius of the
sperities.

Fig. 1 shows the calculation results of GT [6] expressed by
he ratio of the central effective pressure p(0) and the maximum
ertzian pressure p0 as a function of the parameter α for two
alues of μ which bracket most practical engineering surfaces.
t is clear from Fig. 1 that the parameter α is the primarily gov-
rning factor to predict the effect of surface roughness on the
ffective contact pressure while the detailed geometry of the
urface expressed by the parameter μ has a secondary effect.
he effective pressure decreases as the roughness increases, and
onsequently, the ratio of the deformation of the asperities to the
ulk increases. This contact problem has also been analyzed by
ikic and Roca [8] by assuming that the asperity deforms plas-

ically. Interestingly, results showed that the difference between
heir theory and the GT theory is very small.

Plastic deformation is particular of interest for engineers
ig. 1. Ratio of central effective pressure to maximum Hertz pressure as a func-
ion of roughness parameter α and μ, after [3,6].
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specimen was moved down by the loading screw and subse-
quently loaded by the dead weight load system. To reduce the
effect of friction the contact region was lubricated. The load
40 J. Jamari, D.J. Schipper

r central Hertz pressure:

0−y = KH (3)

abor [10] proposed that the value K in Eq. (3) is to be 0.6.
nother researchers found that the K value depend on the Pois-

on’s ratio ν. Chang et al. [11], for instance, found by using the
on Mises failure criteria that K = 0.454 + 0.41ν while Lin and
in [12] defined K = 0.4645 + 0.3141ν + 0.1943ν2. However, the
ifference of the K value between those three models is small.

In this paper, a combination of the relation of Tabor [10] and
he graph of GT [6] is proposed by which one is able to predict
or given contact conditions the contact deformation behavior.
n other words, if the effective maximum or central pressure
s larger than KH bulk plastic deformation occurs and if the
ffective central pressure is lower than KH plastic deformation
ay happen at asperity level. The experimental results to verify

he proposed combination of the GT and Tabor model will be
resented in the next section.

. Experimental work

.1. Specimens

Hardened steel spheres (H = 7.5 GPa, E = 210 GPa and
= 0.3) with a diameter of 10 mm were used as a hard smooth

pherical indenter. The deformable flat specimens used were
ade from aluminium (H = 0.24 GPa, E = 75.2 GPa and ν = 0.34)

nd brass (H = 1.2 GPa, E = 105 GPa and ν = 0.34). The sphere
pecimens have a center line average roughness Ra of about
.01 �m and the average roughness of the flat specimens varied
rom about 0.1 to 2.3 �m.

.2. Matching and stitching

In most practical situations it is not possible to get an accu-
ate or detailed image of a complete cross-section of the contact
rea. To determine an accurate image of the cross-section a high
ateral resolution is needed and as a result only small areas can
e measured due to the limitation of the hardware. To overcome
his problem Sloetjes et al. [13,14] developed a new measur-
ng technique by matching and stitching a number of small but
etailed images together from sequence measurements.

The matching of two images can be defined as aligning or
epositioning the overlapping part of two successive images.
he stitching process itself in fact is the matching process of
everal images in order to get a detailed and wide image of a
omplete section across the contact area. Several measurements
re taken in the stitching process and each one having a certain
verlap area with the previous one. For every stitching of the
ubsequence two images the mutual translation and rotation can
e determined based on the overlapping area (matching process).
nce all the images are matched, one large image is created as

complete of the stitching process. Fig. 2 shows schematically

he matching and stitching procedure used in the present exper-
ments. As can be seen in this schematically representation, the
redicted contact area (shown by the dashed line) from the static
Fig. 2. Matching and stitching procedure, schematically.

ompression of the sphere is wider than one single measurement
f the optical profiler therefore the matching and stitching pro-
edure is applied. This process is carried out for before and after
n experiment. To get the difference image between before and
fter loading/indentation the two large images are matched.

.3. Experimental details

Experiments were performed on a setup as shown in Fig. 3.
he maximum load which could be applied to this setup was
bout 300 N. Before doing any test, the spherical and flat spec-
mens were cleaned with acetone and dried in air. A new flat
urface is used for every single indentation test.

An optical interference microscope was used to measure the
hree-dimensional surface roughness. An X–Y table which is
ontrolled by stepper motors was employed to positioning the
at specimen from the loading position (position A) to the sur-
ace measuring position (position A′) and the other way around.
he measurement sequence is as follows. First, the flat surface
as measured under the optical interference microscope. The
umber of the stitching images which should be taken depends
n the predicted contact area and the chosen magnification of
he interferometer. After finishing the surface measurement in
osition A′ the flat surface was moved to the loading posi-
ion A. In this loading position the statically mounted sphere
Fig. 3. Experimental setup.
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4.2. Experiment on brass surfaces

Similar results were also found for the brass surfaces. The sur-
face measurement results of the brass for load = 12 N, α = 0.09
ig. 4. Surface measurements of an aluminium flat surface Rq = 0.67 �m, load =
xperiment.

as applied to the sphere specimen for 30 s and then unloaded.
rior to measuring the after loading contact area with the opti-
al interference microscope, again the sphere was cleaned and
ried. After taking all the surface images data the matching and
titching calculation was performed separately by a personal
omputer.

. Experimental results

.1. Experiment on aluminium surfaces

Fig. 4 shows the measurements results of the aluminium flat
urfaces before and after an experiment for load = 4 N, α = 0.86
nd μ = 6. The matching and stitching results of this surface can
e seen in Fig. 5a. It is clear from Fig. 5 that bulk deforma-
ion occurs as indicated by the different datum of the difference
mage following the shape of the spherical indenter. Fig. 5b
hows this phenomenon more clearly. As can be seen, the asper-
ties are almost undeformed whereas it is clear that the bulk is
eformed. This is referred to as asperity persistence where the
lastic deformation of the asperity is very small compared to the
ulk deformation.

Fig. 6 shows the example of the matching and stitching of the
xperimental results where deformation takes place both in the
sperities and bulk. In this case, the asperities and bulk deforma-
ion are comparable, therefore, in the difference image (Fig. 6a)
he shape of the bulk deformation like in Fig. 5a is present along
ith the local shape like archipelago which corresponds to the
ifference of the asperity deformation.

An example of experimental results of plastic deformation
n asperity level without any bulk plastic deformation of the
luminium surface is shown in Fig. 7. Here, the bulk deformation
s not present as can be seen in the difference image of Fig. 7a.
he deformation occurs in the asperities only.

For all the experimental results, it can be seen that the match-
ng and stitching performance is very good. The presence of a

mall scatter in the difference profile is due to the noise of the
easurement. However, the important information or the global

hape of the difference profile is very clear so that the plastic
eformation behavior can be evaluated easily.

F
l
a

α = 0.86 and μ = 6. (a) Before indentation experiment and (b) after indentation

It should be noted here that for all the present experiments
he value of σs was taken from the r.m.s. roughness of the sur-
ace [15]. The parameters ηs and β were calculated based on
nine point summit” method [16] in order to determine the
arameter μ.
ig. 5. Matching and stitching results of an aluminium surface Rq = 0.67 �m,
oad = 4 N, α = 0.86 and μ = 6. (a) Difference 3D image of Fig. 4 and (b) profile
t y = 200 �m.
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ig. 6. Matching and stitching results of an aluminium surface Rq = 2.1 �m,
oad = 4 N, α = 2.7 and μ = 10. (a) Difference 3D image and (b) profile at
= 158 �m.

nd μ = 11 are shown in Fig. 8. Example results of the match-
ng and stitching results for bulk deformation, combined bulk
nd asperity deformation and asperity deformation are shown in
igs. 9–11, respectively.
. Discussion

Experimental results showed that even for the same Hertzian
ontact pressure the plastic deformation state behaves differently

c
h
a
t

ig. 8. Surface measurements of a brass flat surface Rq = 0.13 �m, load = 12 N, α =
xperiment.
q

oad = 4 N, α = 2.84 and μ = 12. (a) Difference 3D image and (b) profile at
= 320 �m.

epending on the roughness of the surfaces. The parameter α

ncreases proportionally to the roughness of the surfaces, and as
result, the central effective pressure decreases. According to
q. (3) plasticity of the bulk surface may take place when this
entral effective pressure is larger than the constant K times the

ardness of the flat surface H. The experimental results presented
re in line with the theoretical prediction of α in Eq. (1) and
he central effective pressure curves of Fig. 1. It is unimportant

0.09 and μ = 11. (a) Before indentation experiment and (b) after indentation
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below the ratio p(0)/H = 0.6 asperity deformation is attained for
the whole range of the surface roughness tested. For the contact
conditions near the line p(0)/H = 0.6 comprises the deformation
behavior of the asperity and the bulk.
ig. 9. Matching and stitching results of a brass surface Rq = 0.13 �m,
oad = 12 N, α = 0.09 and μ = 11. (a) Difference 3D image of Fig. 8 and (b)
rofile at x = 380 �m.

hether the asperities deform elastically [6] or plastically [8] in
his statistical approach.

The results also showed the minor effect of the parameter
. For bulk deformation of brass as was shown in Fig. 9, for

nstance, the parameter μ = 11 which corresponds to the fraction

f the central effective pressure and the maximum Hertz pressure
(0)/p0 of about 0.925 (α = 0.09). If the parameter μ is taken to
e 4 the ratio p(0)/p0 = 0.9 and when the parameter μ is equal to
7 the ratio p(0)/p0 = 0.93 for the same α. Indeed, the difference

ig. 10. Profile of the matching and stitching results of a brass surface

q = 0.28 �m, load = 12 N, α = 0.2 and μ = 13.

F
a
a
s
c

ig. 11. Profile of the matching and stitching results of a brass surface

q = 0.7 �m, load = 12 N, α = 0.5 and μ = 7.

n the ratio p(0)/p0 becomes larger when the two extremes of the
arameter μ are taken as the parameter α increases, however,
he difference is not that dramatically.

Many experiments were performed in order to gain more
nsightful results for a certain range of surface roughness. These
esults are presented in Fig. 12 where p(0)/H is plotted as a
unction of the surface roughness Rq. In this figure the points
lA, AlB, AlAB, BrA, BrAB and BrB correspond the contact

ondition locations of aluminium and brass as was shown in
igs. 5–7 and 9–11 (the index A, B and AB refer to asperity, bulk
nd combined asperity–bulk plastic deformation, respectively).
he figure shows that for contact conditions located above the

atio p(0)/H = 0.6 bulk plastic deformation is observed while
ig. 12. Plastic deformation behavior of the contact between a rough surface and
smooth curved body. Square symbols are for aluminium and circle symbols

re for brass where the full filled symbols indicating bulk deformation, the open
ymbols indicate asperity deformation and the half-filled symbols represent a
ombined deformation of the asperity and the bulk.
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where zs is the height of the asperity summit above the datum.
The bulk deformation wb is related to the effective pressure p(r)
by the equations for the axi-symmetric deformation of an elastic
44 J. Jamari, D.J. Schipper

It can be concluded from above discussion that the central
ffective pressure of the contact between two rough surfaces can
e correlated to the contact of two smooth bodies by introducing
he parameters α and μ. For practical engineering purposes it is
ery convenience to build an expression in determining the value
f the ratio p(0)/p0 instead of using the graph in Fig. 1. Since the
arameter μ has a secondary effect to the ratio p(0)/p0 and for
= 4 and 17 brackets most of the engineering surfaces a curve
as found to fit the GT data as:

p(0)

p0
= 1 − exp

(
− 2

3α3/5

)
(4)

Using Eq. (4) and the plasticity condition of Eq. (3), a crite-
ion can be made for asperity deformation to occur as:

p0

H

[
1 − exp

(
− 2

3α3/5

)]
< K (5)

here K = 0.6 and p0 is the maximum Hertz pressure:

0 =
(

16PE2

π3R2

)
(6)

. Conclusion

An experimental investigation was carried out to study the
eformation behavior of the contact between a real rough sur-
ace and a smooth ball. The experimental results confirmed the
roposed criterion very well.

The main finding of the present work is that the surface
oughness is the primarily factor in controlling the deformation
ehavior of contacting surfaces. For a given Hertzian contact
ressure situation the deformation behavior differs significantly.

For the purpose of engineering application, a formula is
eveloped, Eq. (5), to predict the deformation behavior of con-
acting engineering surfaces.

If the ratio p(0)/H is larger than 0.6 bulk deformation occurs
nd if the ratio p(0)/H is lower than 0.6 asperity deformation
akes place. Combination between of asperity and the bulk defor-

ation occurs at the ratio p(0)/H ≈ 0.6.
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ppendix A

According to the GT model [6] the asperities are assumed to

ave spherical caps of uniform radius β, whose heights above a
ean datum have a statistical distribution φ(z) deform elastically

nd independently following the Hertz theory. The contact load
required to compress an individual asperity by an amount of

F
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a is given by:

a = 4

3
Eβ1/2ω3/2

a (A.1)

is the effective elastic modulus defined as:

1

E
= 1 − v2

1

E1
+ 1 − v2

2

E2
(A.2)

here E1 and E2, and ν1 and ν2 are Young’s moduli and Poisson’s
atios of the two materials in contact, respectively. If such a
ominally flat rough surface is in contact with a smooth flat
urface at a separation d, the effective pressure p between them
s:

= 4

3
ηsEβ1/2

∫ ∞

d

(z − d)3/2φ(z) dz (A.3)

here ηs is the asperity density, i.e. the number of asperity per
nit area N/A0.

The geometry of the contact of a rough surface with a smooth
phere is shown diagrammatically in Fig. A.1. A datum is taken
t the mean level of the rough surface. For the sphere, the profile
f the undeformed sphere relative to the datum is defined by:

= y0 − r2

2R
(A.4)

hen the contacting surfaces start to be compressed there will
e deformations in the asperities ωa and a deformation of the
ulk wb, hence the separation between the two surfaces is given
y:

(r) = wb(r) − y(r) = −y0 + r2

2R
+ wb(r) (A.5)

f the asperity deformation is assumed to be elastic, substituting
f Eq. (A.5) into Eq. (A.3) yields the effective pressure at radius
as:

(r) = 4

3
ηsEβ1/2

∫ ∞

d

{zs − d(r)}3/2φ(zs) dzs (A.6)
ig. A.1. Contact of a nominally flat rough surface with a smooth sphere, after
3,6].
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alf-space [3] and is written as:

b(r) = 4

πE

∫ a

0

t

t + r
p(t)K(k) dt (A.7)

here K is the first kind complete elliptical integral with argu-
ent k:

= 2(rt)1/2

r + t
(A.8)
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