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Accumulation of heavy particles around a helical vortex filament
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The motion of small heavy particles near a helical vortex filament in incompressible flow is
investigated. Both the configurations of a helical vortex filament in free space and a helical vortex
filament in a concentric pipe are considered, and the corresponding helically symmetric velocity
fields are expressed in terms of a stream function. Particle motion is assumed to be driven by Stokes
drag, and the flow fields are assumed to be independent from the motion of particles. Numerical
results show that heavy particles may be attracted to helical trajectories. The stability of these
attraction trajectories is demonstrated by linear stability analysis. In addition, the correlation
between the attraction trajectories and the streamline topologies is investigated. © 2007 American

Institute of Physics. [DOI: 10.1063/1.2771658]

I. INTRODUCTION

Helical vortex filaments are observed in many natural
and industrial applications.1 They can be found in wakes
downstream of propellers and wind turbines,” in combustive
flows containing a precessing vortex core,” and in industrial
gas conditioners used for the separation of heavy particles
and droplets.“’5 In addition, a recent numerical study has
shown that the advection of fluid particles in turbulence is
largely influenced by the presence of small-scale helical
vortices.® Helical vortex structures are also interesting from a
theoretical point of view, because a helical vortex filament is
the simplest three-dimensional vortex structure having non-
zero curvature and nonzero torsion.” Although the flow
field induced by a helical vortex filament has been widely
studied, the motion of heavy particles in such flows has re-
ceived relatively little attention. In the present paper, we
present particle trajectories and attraction trajectories gener-
ated by helical vortex flow, both in free space as well as in a
concentric pipe.

The velocity field induced by a vortex filament in an
incompressible, inviscid fluid in free space is described by
the Biot-Savart law. Hardin'' evaluated the Biot-Savart law
for the case of an infinite helical vortex filament in terms of
an infinite series of modified Bessel functions. The same
series had already been found by Lamb'? when he calculated
the magnetic field induced by a spool. The velocity field
derived by Hardin is invariant along helical curves and may
therefore be formulated in terms of a two-dimensional
stream function in helical coordinates. Mezi¢ et al."> showed
that the resulting flow field can have three different topolo-
gies, depending on the values of the helix curvature, the
helix pitch (the length of one revolution), and the thickness
of the vortex core.

The flow field induced by a helical vortex filament in a
concentric pipe is different from the free space configuration,
since the radial velocity on the pipe wall is required to be
zero. To approximately accommodate this boundary condi-
tion, Sarasta er al.'* employed a single image vortex of he-
lical shape exterior to the pipe, which leads to an exact for-
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mulation in the limit of infinite pitch. Okulov'? produces an
exact formulation by rigorous solution of the governing par-
tial differential equation. As an alternative, we derive the
stream function by employing a vortex distribution on the
pipe wall, which efficiently reproduces the result of Okulov.

From experiments and numerical studies,3 it is known
that a free helical vortex filament in a pipe can have a sta-
tionary shape, although the helix may propagate in itself. The
self-induced velocity of a helical vortex filament can be cal-
culated directly from the Biot-Savart law (see, e.g., Ref. 16),
leading to a logarithmic term which is singular in the limit of
zero-thickness of the vortex core. In reality the self-induced
velocity is finite, and several models have been developed in
order to overcome the singularity, see Refs. 17 and 18 for
reviews. In the present work, the self-induced and wall-
induced velocities are compensated for by a uniform axial
velocity field, to obtain a stationary helix.

The motion of heavy particles has been investigated ex-
tensively in the last two decades. Early studies,'”” reveal
inertial particles to distribute nonuniformly, which is gener-
ally referred to as preferential concentration. In general,
heavy particles are ejected from regions of high vorticity, and
accumulated in regions of high strain.”! In some flow fields,
initially uniformly distributed heavy particles tend to accu-
mulate in attraction points. Particular examples of such flow
fields are two-dimensional mixing layelrs,22 rotating flows
with a prescribed vorticity distribution,23 and a three-
dimensional Burgers vortex.”* Recently, heavy particles have
been shown to accumulate in a flow generated by an eccen-
tric point vortex on a disk,4 which corresponds to a helical
vortex filament in a pipe in the limit of infinite pitch.25

In the present paper, we investigate the motion of heavy
particles in the three-dimensional flow field around an infi-
nite helical vortex filament, with the particle motion driven
by Stokes drag. Gravity is neglected. Both the configuration
of a helical vortex filament in a pipe and in free space are
studied. It is shown that heavy particles are attracted to a
helical trajectory. The attraction is shown to take place for a
wide range of particle Stokes numbers, and to be closely
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related to the streamline topology of the carrier flow. The
results may be useful in the study of separation of heavy
particles or droplets from gas flows, and for the clustering of
fuel droplets in combustive flows with a precessing vortex
core.

In Sec. II, we present the equations for the velocity field
induced by a helical vortex filament in a concentric pipe. In
addition, the equations for particle motion are presented and
transformed to a helical frame of reference. Finally, the nu-
merical integration method is outlined. In Sec. III, the
streamline topologies encountered are identified, and Sec. IV
presents the results for the motion of heavy particles. We
identify attraction trajectories, and we demonstrate their sta-
bility by linear stability analysis. Finally, conclusions are for-
mulated in Sec. V.

Il. PHYSICAL-MATHEMATICAL MODEL
A. Flow field

We consider an infinitely long helical vortex filament
with strength I', winding radius a, and pitch h=21l, located
within a cylindrical pipe with radius R. A uniform flow U, in
the axial direction is superimposed onto the flow field in
order to fix the helix in space. All variables are made dimen-
sionless by I' and a, such that the problem is completely
defined by the dimensionless parameters //a, U,a/l", and
R/a. A sketch of the helix configuration is given in Fig. 1. It
is noted that the case of a helical vortex filament in free
space corresponds to the limit R/a— oe.

First, we define a helical curve, or helix, with pitch
2mrl/a, and dimensionless winding radius 7 as

l ) I\T
h(a;—,r,a()) = (r cos(a),rsin(a), (a - ao)—> , (1)
a a

where « is the coordinate along the helix, and « is the value
of a for which the z coordinate is zero. Without loss of
generality we choose the helical vortex filament as
h(a;l/a,1,0). The local tangent, normal, and binormal unit
vectors (Frenet vectors) on helical curves are defined as

_dn|dn| |

daldal n=ﬁ do?

-1
, b=tXn. (2)

In terms of the unit basis vectors in cylindrical coordinates,
e, ey and e,, and by introduction of

FIG. 1. Problem configuration for a helical vortex filament concentrically
positioned in a pipe.
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2
B= 1+(“—’), (3)

these expressions can be written as

ar ar
t:,B(eZ+7e€), n=-e,, b:,B(Tez—ee). 4)

To introduce the concept of helical symmetry, we use an
orthogonal map &(x), which defines helical coordinates &

=(&,7,0" as

§(x)=R<a—lZ>x,

cos(%> sin(ﬁ) 0
[ l
R(%>= . (az az

[ —sin 7 cos 7 0

0 0 1

©)

The map &(x) is illustrated in Fig. 2. Helical curves in the
x-frame reduce to straight lines parallel to the {-axis in the
é-frame. As a consequence, the helical vortex filament,
which is projected onto the (x,y)-plane as the unit circle, is
projected onto the (€, )-plane as a single point. A function
f(x) is called helically symmetric if it is independent of ¢:

= -0, (6)

Let the velocity field in the x-frame be denoted by u. In
terms of cylindrical coordinates related to the x-frame,
(r, 0,1)7, the velocity components are u,, ug and u_, respec-
tively. Furthermore, let the velocity field in the &-frame be
denoted by v. In terms of cylindrical coordinates related to
the &-frame, (r, ¢, )" with ¢= 0-za/l, the velocity compo-
nents are v,, Uy, and v, respectively. Then we have the fol-
lowing relations:"!

ar
UVgp=Uyg— Uy,

; (7)

v,=Uu,, U§=l/l.

z

For a helical vortex filament in free space, as well as for a
helical vortex filament enclosed by a concentric circular

HELIX CIRCLE
n} n
2 I ¢
5 LINE POINT

FIG. 2. Helical vortex filament in the x-frame and in the &-frame.
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pipe, we have

Jv
— =0,

o ®)

i.e., the velocity field v is helically symmetn'c.3’26

Because of helical symmetry, the flow field can be de-
scribed by a stream function W(r, ¢), and the velocities fol-
low from the canonical equations
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By taking into account the contribution due to the vortex
filament itself, the contribution due to a vortex distribution
on the pipe wall, and the contribution due to a uniform ve-
locity in the axial direction, the stream function can be de-
termined by the method presented in Appendix A. The result
is

r’a’ N r2a< Uooa> ra® i I (mrall)Z (mall) & <1
_ | === —= cos s r B
amlP T 2\ T )T e A e Ao
v = w (10)
a® 1 s r2a< Uooa> ra* E 1" (mal)Z! (mrall) & -1
—-—1n —| = -— cos mao, r>1,
4l " 4m 0 T u\T 2 = AT E TATEIEO5 T
|
with Z,, defined as ,32< a ) ﬂ2< a )
U, =0, ug=p\vy+r—ug|, u.=p\ug—r-vy.
Z,,(mx/l) = K,,(mx/1) K’,"(mR/l)I (mx/1) (11) 6 o Z s
mXx, = mx, - mxitL).
m ” I (mRI) " (13)

Here, I,, and K, denote modified Bessel functions of the first
and second kind, respectively, and the prime represents dif-
ferentiation with respect to the argument. It is noted that in
the limit of R/a— o, the function Z,, reduces to K,,, so that
the free space formulation of Hardin'' is retrieved.

The velocity components (u,,ug,u,)" can be retrieved
from Eq. (10) by using the vorticity w=V Xu. Since w-n
=0 and @-b=0 everywhere in the flow, it can be shown by
using Eq. (4) that

a

I/tz+ r~ug=um,

] (12)

where u, is a constant. By means of Egs. (7) and (12), we
can express the three components of u in terms of v,, Vg
and u,

The value of u, can be determined by noting that w-£=0
everywhere except at the vortex filament,

2B°upa 1PV 149 0¥
w-t=—T""- ST ot rB—|1=0,
[ rcd¢  rar ar
(14)
v (r,¢) # (1,0),
which leads to
a U.,a
=—+—. 15
"o 27Tl+ r (15)

As a result, the velocity components (u,,u4,u,)” become

p
a* < ,(ma \_, )
—22 mlm<—r>Zm<—)sm mao, r<I,
Lo — [
U, = w (16)
a’  [ma)_, )
— mlm< )Zm<—r)sm mo, 1<r<-—,
oy [ [
r o0
a ma \_, [ ma
—> m1m<—r)Zm<—>cos mao, r<I,
mrl - [
Ug= . (17)
1 a , [ ma ma R
—+—Em1m—Zm —r|cosma, 1<r<-—,
2mr @l l l a
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U.a a a® - I (ma )Z,(ma> &
—+——=—=2,ml | —r — |cos ma,
r 2al =2 "\ 1 )"\ 1

u,= )
U.a a

-— mI,'n(@>Zm<%r>cos mo,
r == ! I

Equations (16)—(18) are identical to the results obtained by
Alekseenko e al.’?

B. Particle motion

In many applications, such as gas-liquid separators, the
particle-laden flow is dilute, and one-way coupling is an ad-
equate approximation. In the present paper the particles are
assumed to be small, spherical, and to have a much higher
mass density than the carrier flow. Finally, gravity is ne-
glected. Under these conditions, the dimensionless equations
of motion for the particles, established by Maxey and

Riley,27 reduce to
dx” du? 1
—=u’, —=—(u-u), (19)
dr dr St

where x” and u” denote the position and the velocity of a
particle, respectively. The Stokes number St is the ratio be-
tween the particle relaxation time 7, and a typical time scale
of the flow. In the present paper, we define the Stokes num-
ber as

r 2p,T
st="2=rr (20)
a 9pva

where p, and r, denote the density and the radius of the
particle, and p and v denote the density and the viscosity of
the carrier flow, respectively.

Transformation of Egs. (19) to the &-frame gives

aw_ .,
dt
(21)
dv? 1
—— = —(0-v") - Q" X (¥ X
0 St(v vP) - ( &)
207 X P - QP X &,

where 7 is defined as the rotation rate due to the translation
of the particle along the z-axis,

07 =(0,0,00), = %vfg. (22)

The three additional terms on the right-hand side of Eq. (21)
represent acceleration terms due to the coordinate transfor-
mation: The centrifugal acceleration, the Coriolis accelera-
tion, and the time-change of the rotation rate.
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r<l,
(18)
R
1<r<-—.

C. Numerical approach

The equations of motion for heavy particles, Eq. (19),
combined with the equations for the flow field, Egs.
(16)—(18), are solved numerically by using a fourth order
Runge-Kutta scheme. A particle trajectory is calculated for a
series of decreasing values of the time step, where each next
value is half of the previous value. When the differences
between two subsequent trajectories are below a certain pre-
set level, the last obtained solution is considered sufficiently
accurate. For each particle, both its initial position and its
initial velocity are required. The initial velocity of a particle
is taken to be equal to the local velocity of the carrier flow at
the position of the particle. The pipe wall is modelled as an
absorbing wall; particles that reach the wall remain there.

The computation of the modified Bessel functions,
which occur in the expressions of the velocity components of
the carrier flow, Egs. (16)—(18), is described in Appendix B.

lll. FLOW FIELD TOPOLOGIES

We present a classification of the flow field topologies as
determined by the dimensionless groups R/a, [/a, and
U..a/T'. The limiting case of R/a— % has been described by
Mezi¢ et al."* The flow field topologies are distinguished by
the presence, character, and location of stagnation points &,
i.e., points of zero velocity in the &-frame,

10V (?‘I’
v(&)= ;ﬁ =0, U¢(§o) . (23)

The character of a stagnation point is fully determined by the
local value of the Hessian H, i.e., the determinant of the
Hessian matrix of W,

(-3l

AR 201022

where £=rcos ¢ and n=rsin ¢. Let Hy="H(&,), then we
have the following classification:

{>0 — elliptic point, extreme value of W, (25)

ol <0— hyperbolic point, saddle point of .

Due to symmetry, stagnation points only exist on the curves
2 —

7=0 and r=V&+7*=R/a. On these curves v,=0, and stag-

nation points are completely determined by the condition

v4=0. Since dv,/ dp=0 for r=R/a, critical points on the pipe
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TABLE I. Classification of topologies in bounded space; & is the location
of an elliptic point, & is the location of a hyperbolic point, and & is the
location of a shear point.

No. at Type and location No. at
Topology  &-axis of points at the &-axis pipe wall
I 0 0
il 2 0<&<é&y<l 0
11 2 —Rla< &< <0 0
v 2 —Rla< £<0; 1 <& <Rla 0
\% 1 0<&,<Rla 2
VI 3 —RIG< &5, < Ey<£p,<0 2
VII 4 “Rla<§s,<&y<Ep<0; 1<&,<Rla 0

wall are hyperbolic points. On the &-axis, on the other hand,
critical points can be either elliptic or hyperbolic points.

The presence of stagnation points is examined here for a
wide range of values for the dimensionless parameters: —5
=U,all'=5 (step size of 0.05), 0<l/a=5 (step size of
0.05), and R/a=1.05, 1.1, 1.25, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0,
and oo, respectively. As a result, seven different topologies
occur, summarized in Table I. Examples of each topology are
shown in Figs. 8(a)-8(g).

When R/a— o, there is no wall-induced velocity, so that
U.a/T is negative [see Eq. (A13) in Appendix A]. In this
case, only topologies I, II, and III have been found, see Fig.
3. In the same figure, we also show isolines of the dimen-
sionless vortex core thickness, €/a, which is uniquely deter-
mined by the values of U,a/I", [/a, and R/a, see Eq. (A13).
The result agrees with the work of Mezic et al.,13 who used
different dimensionless parameters,

Ua/T

I/a

FIG. 3. Flow field topologies as a function of //a and U..a/I" in unbounded
space (R/a— ). Corresponding isolines of the dimensionless core radius
€/a are also shown; €/a=10"" (dashed), e/a=10"? (dashed-dotted), €/a
=103 (dotted).

Accumulation of heavy particles around a helical vortex filament

Phys. Fluids 19, 107102 (2007)

Ua/T

50

I/a

FIG. 4. Flow field topologies as a function of //a and U.a/I" in bounded
space (R/a=2.0). Corresponding isolines of the dimensionless core radius
€e/a are also shown; e/a=10"" (dashed), e/a=10"% (dashed-dotted), €/a
=10 (dotted).

/I and L ( U““) (26)
all an =———
4 alN1 +a*?\ T

Topology I is the dominant topology as the pitch //a in-
creases, whereas topology II occurs for a small pitch and for
a moderate vortex core thickness. When //a > 1, topology 11
still exists, but then it is restricted to extremely small values
of the vortex core €/a. Finally, the occurrence of topology III
is limited by the (I/a)-axis and the line —U..l/ I'=constant.'?

In the wall-bounded case, topologies IV, V, VI, and VII
exist in addition to topologies I, II, and III. Topologies IV
and V both contain one elliptic stagnation point on the nega-

101 IR R | LI | L R | T T T 1117

ey ——  Elliptic
e Hyperbolic

10

10°

10°®

Error
>
®
LI N1 N 1 R N 1 AU B A1 B R MENN ) R AL

10° 10’ 10°
l/la

=E i e e e e e e

o
w

107 L—

-
o

FIG. 5. Position of stagnation points in helical vortex flow field, compared
to the 2D approximation, as a function of the helix pitch //a; R/a=2.0.
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FIG. 6. (Color online) Lines: Isolines of the stream function W in helical coordinates. Dots: Positions of initially uniformly distributed heavy particles in the
(&, ;p)-frame in the course of time; R/a=2.0, [/a=1, U,=0.10, St=2.0. (a) r=0, (b) t=5, and (c) t=25, (d) t=100.

tive é-axis, and they occur for a wide range of values for //a,
U.a/T', and R/a. Topology VI exists in a very narrow band
in parameter space only and is therefore not visible in Fig. 4.
It includes two counter-rotating elliptic islands on the nega-
tive ¢é-axis. Finally, topology VII occurs for very small
pitches only (I/a<0.1), and is characterized by a circular
line on which the velocity is zero; such a stagnation line
corresponds to a shear flow. In Fig. 8(g), the stagnation line
is denoted by the dashed circle, at r=1.77.

Topologies II-VII are characterized by the presence of
one or two elliptic stagnation points. In topology II the ellip-
tic stagnation point is always located on the positive &-axis,
and the flow field around it is corotating with the vortex. In
contrast, in topologies III-VII the elliptic stagnation points
are all located on the negative §&-axis, and the flow field

around them is counter-rotating with the vortex.

In the limiting case of [/a— o, topology I occurs in the
unbounded case. The resulting flow field is similar to the one
induced by a rectilinear vortex filament. For the wall-
bounded case, topology V occurs when the helix pitch ap-
proaches infinity. This result is in agreement with the two-
dimensional approximation of the helical vortex flow by a
point vortex on a disk, as studied in Ref. 4. In the two-
dimensional case, the self-induced velocity is zero, so that
U.alT is related explicitly to //a and R/a,

<Uwa) _la @
' )op 2mRYa>-1)

The influence of the torsion of the helical vortex filament

Downloaded 21 Nov 2007 to 130.89.112.64. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



107102-7

on the flow field in topology V can be assessed by compari-
son with the point vortex model presented in Ref. 4. We
determine the position & of the elliptic stagnation point in
the left half-plane and the positions & of the two hyperbolic
stagnation points on the pipe wall, and compare these posi-
tions to the 2D-approximation of the flow field. The calcula-
tion is repeated for a wide range of values of the helix pitch
l/a, for the case the pipe radius is taken constant at R/a=2.
The axial velocity U.a/I is then obtained from Eq. (27). We
define two errors as

Errory =||€yop — &n3p

Errorg = ||§E,2D - fE,3D||~

b

The results are presented in Fig. 5, showing that the differ-
ences between the full 3D problem and its 2D approximation
are only appreciable for //a =10, and vanish as [/a— .

IV. MOTION OF HEAVY PARTICLES

In this section we consider the motion of heavy particles
in the flow fields presented in the previous section. In Fig. 6,
the positions in the (&, 7)-frame of 805 particles are plotted
at four instants of time for a typical example of topology V;
the particles, which have a Stokes number St=2, are uni-
formly distributed over the plane z=0 at the start of the simu-
lation. As can be seen, some particles are quickly expelled
from the circular domain. The majority of particles, however,
move towards a single point at (£, %) =(-0.4,0.2). This at-
traction point in the (£, 7)-frame corresponds to a helical
attraction trajectory in the x-frame. This is illustrated by Fig.
7 where the particle positions are plotted in physical space, at
four instants of time. The helical attraction trajectory is more
or less in antiphase with the vortex filament.

In Fig. 8, we show the positions of initially uniformly
distributed heavy particles after 100 dimensionless time
units, for all topologies I-VII. Accumulation of particles in
the center of the domain is observed in all topologies except
for topology I. The positions of particles in physical space
corresponding to Figs. 8(c) and 8(e) are plotted in Figs. 9(a)
and 9(b), respectively. In Fig. 9(a), we see that a large group
of particles is transported along the z-axis; these particles,
which are released in the plane z=0 at r=0, are situated at
z=38 at r=100. Also, Fig. 9(b) shows that many particles
are concentrated on a helically shaped trajectory.

In the remainder of this section we analyze this accumu-
lation of particles. First, it is noted that a heavy particle can
only be trapped in an attraction point in the (&, )-frame if
two conditions are met: (1) a fixed point in the (&, 7)-frame
must exist, and (2) the fixed point must be stable. These two
conditions are investigated separately.

A. Fixed points

Let (¢°,%") denote a fixed point in the (&, 7)-frame. For
a particle located at the fixed point the following relations
hold:

=&, o=y, v}=0, v9=0, vi=v, (28

where (&,77,{’) denotes the particle position in the
&-frame, and (v§,v’,v?) denotes the corresponding particle

Accumulation of heavy particles around a helical vortex filament
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FIG. 7. (Color online) Dots: Positions of initially uniformly distributed
heavy particles in physical space in the course of time; R/a=2.0, I/a=1,
U,=0.10, and St=2.0. The solid line denotes the helical vortex filament. (a)
t=0, (b) =5, (c) t=25, and (d) #=100.

velocity. Substitution of the relations (28) into the equations
of motion, Eq. (21), gives

g

=0,
dt

d7’

dt

)

d p * *
di =Ug(§ ’77)’

(29)
d E 1 3 * B
_f = € 7)) +07%¢ =0,

dv? 1
Do — (€7 + Q20 =0,
5 St(vn(§ 7)) ]
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FIG. 8. (Color online) Lines: Isolines of the stream function W in helical coordinates. Dots: Positions of 805 initially uniformly distributed particles with
St=0.5 after dimensionless time 7=100. (a) Topology I: //a=1.0; U.a/I'=-0.5; R/a=2.0. (b) Topology II: [/a=1.0; U..a/I'=-1.0; R/a=2.0. (c) Topology III:
11a=0.25; U,.al/I'=-0.25; R/a=2.0. (d) Topology IV: I/a=1.0; U.a/T'=0.5; R/a=2.0. (e) Topology V: l/a=1.0; U,a/I'=0.1; R/a=2.0. (f) Topology VI:
1/a=0.5; U.,a/T'=-0.03; R/a=2.0. (g) Topology VII (the stagnation line is indicated by a dashed line at r=1.77): [/a=0.01; U..a/T'=0.0005; R/a=2.0.

where Q"= (a/ 1)u§(§*, 7"). This reveals that the attraction
trajectory corresponds to a point in velocity space, and to a
straight line parallel to the {-axis in position space.

Further inspection of Egs. (29) shows that the centrifugal
force and the Stokes drag on a heavy particle are exactly
balanced in a fixed point. Since the centrifugal force is al-
ways directed outward (with respect to the z-axis), we see
that the velocity of the carrier flow in the fixed point must be
directed in radial direction. Hence, v¢:0 and v, <0. Since it
can be derived from Eq. (10) that v,=—(1/r)9V/dp<0 if
and only if >0, fixed points can only occur in the upper
half of the (£, n)-plane.

Rewriting the fourth and the fifth relation of Eq. (29) as

vl€,7)=-StQ7¢,
. . (30)
v, (€, 7)=-StQ77,

we can conclude that the fixed point for St| 0 is located near
a stagnation point in the carrier flow. A fixed point for St
— o, on the other hand, satisfies |£| | 0. In Fig. 10, the lo-
cation of the fixed points is plotted for a range of different
Stokes numbers, for topologies II and III in the unbounded
case. Clearly, the fixed point for St| 0 is the elliptic stagna-
tion point itself, whereas the fixed point for St—c is the
origin.
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FIG. 8. (Continued).

B. Stability of fixed points

We investigate the stability of the fixed-point trajectories
in order to determine whether they are attraction trajectories.
The physical mechanism leading to particle attraction is the
Coriolis force, which is directed perpendicularly to the par-
ticle trajectory in the &-frame. When & <0, the flow around
the elliptic stagnation point is counter-rotating with respect
to the vortex, and Q=(a/l)v(&;,0)>0. As a result, the Co-
riolis force is directed to the center of the elliptic island. On
the other hand, when &;>0, the flow around the elliptic
stagnation point is corotating with the vortex. The velocity
component v, however, is negative for &;>0, so that ()
< 0. Hence, also in this case the Coriolis force is directed to
the center of the elliptic island. Therefore there is no quali-

tative distinction in particle attraction for &;>0 (such as in
topology II), compared to situations for which &;<<0 (such
as in topologies ITI-VIII).

We carry out a linear stability analysis in order to inves-
tigate the stability of the attraction points. The five equations
for &, 7, v, vf7, and v? in Eq. (21) are of the form

dx
A i 31
ity (31
with x=[&, 7, vg,v’;; v?]". Linearization of these equations
around a fixed point x leads to

dx; « « Ofi
i _ e 4 (= 2L
” FixO) + (= x;) ol

). (32

+O(x-x
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In the fixed point, f(x*)=0, which reduces Eq. (32) to If the real parts of all eigenvalues of the matrix df;/dy; are

. smaller than zero, any sufficiently small perturbation in x
dx; = dixi=x;) = (x;- X’.k)&—fi +O0(x-xP. (33)  with respect to x" will be damped, so that [y—x"| —0 as
dr dr T ox | — 0. Based on Eq. (21), the matrix M;;=Jf;/dx; is

. . T
p ) P d
00 St—l% + QP24 7}1;07Q St—lﬂ_vn Oy gp& St—lﬂ
9E € 9é 9€ Z3
. ) w d
00 St—la_vsf + QP+ 77’7& St—lﬁlfz + O+ g& St_lig
an an an an an
M= . (34)
0 - St =207 0
01 20 -St! 0
P10 P10 QP P10
0 0 pP—42(WPE+1")— —@— +2(WyP-vh)— =St
Vo AE I O @ -
Expressing ” and ) in terms of the independent variables, and evaluating the matrix at x" leads to
. ad . d e S d g\ T
00 Q248! (s E s S (@S an E s T
9Ed Pl s 73 23
;v d . e\l . d d
00  SCESH(USH@nTE Q2 -sr! —(E80)(a =t st 2L
M= an an dEdn an ain |, (35)
10 - St™! - 2allyv; 0
01 2all), -st! 0
00 —(7'1SV)(all) +2& (@*P)v; (€'150(all) + 27 (a*1P)v; - st!
where vZE v&. 7).
1. Limit of infinite pitch
In the limit of [/a—o, Q" =(a/ l)vz remains finite, and the matrix given by Eq. (35) reduces to
0 0 1 0 0
0 0 0 1 0
e\l . il .
St™! +Q7 St'— -stt! 20 0
M|y = dEdm an (36)
e & . .
-St'— N +Q7 20" -st' 0
23 dEdn
0 0 0 0 -sSt!
[
The characteristic polynomial for the eigenvalues \ is -1 1 ” =
POy s Moo= ——+—\1-4SEQ2xid SWH,
28t 28t
SEN +3SEA +(3St+2SE Q)N+ (1 +4 S2Q?)\?
* i # # -1 1 * . ¥
(S Q™ +2StQ?+StHON+SE Q™+ H =0, 7\3,4=E—E\/1—4St29zil4St\/g, (38)
(37)
-1
% . . . )\5 =" .
where H"=H(£"). The solution for the eigenvalues is St
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FIG. 9. (Color online) Positions of initially uniformly distributed heavy
particles with St=0.5 in physical space after dimensionless time 7=100; the
solid line denotes the helical vortex filament. (a) Topology III: //a=0.25;
U..a/T'=-0.25; R/a=2.0 [corresponding to Fig. 8(c)]. (b) Topology V: I/a
=1.0; U..a/T'=0.1; R/a=2.0) [corresponding to Fig. 8(¢e)].

For small Stokes numbers, the fixed point is located close to
the elliptic stagnation point in the §-frame, where the Hes-
sian satisfies 0<H" < Q2% The eigenvalues given by Eg.
(38) can then be approximated by

No==StQ7-H) = iVH +O(S),

1 * * *
Npa== o+ SUQP ) £ iVH +0(SP), (39)

Aeg=——.
3T st

It is observed that the real parts of all eigenvalues are nega-
tive. Hence, the fixed point is stable and it is an attraction
point. The real parts of the largest eigenvalues, A; and A,,
give an indication of the attraction rate. Since it is linear in
St, particle trapping occurs on a larger time scale when the
Stokes number is smaller.

The above analysis is especially relevant for the wall-
bounded case (R/a< ), because topology V, containing
one elliptic stagnation point in the §-frame, arises in the limit
of I/a>1. In the unbounded case (R/a— ), however, the
flow field for infinite pitch corresponds to topology I. In this
topology, there are no elliptic stagnation points in the
&-frame, and therefore a stable attraction trajectory of heavy
particles does not exist.

2. Limit of zero pitch

For small pitches (//a|0), we can approximate the ve-
locity component v =u, by Eq. (18). We note that elliptic
points cannot exist for r>1 when [/a|0. The product
I,,(mrall)Z, (mall) reduces to

Accumulation of heavy particles around a helical vortex filament

Phys. Fluids 19, 107102 (2007)

0.06

0.04

0.02

-0.08 -0.06 -0.04 -0.02 0

FIG. 10. Location of attraction points in two flow fields generated by a
helical vortex filament, for different Stokes numbers; [0 St=0.1; ¢ St
=0.2; O St=0.5; A St=1.0; > St=2.0; V St=5.0; < St=10.0. (a) Topology
I (I/a=1.0; U,a/T'==1.0; R/a— ). (b) Topology III (//a=0.25; U.a/T’
=-0.50; R/a— ).

i —mrall
Im(mra/l)Z,'n(ma/l) — GXp[mra :||:’7Texp[ mra ]

\2mmrall V2mmall
w exp[mrall — 2mR/1]

\s’/2 mmall

} . (40)

in which expansions for large arguments have been used.”
When [/a | 0, the right-hand side of Eq. (40) vanishes, lead-
ing to
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Uoo
%=7ﬁ+owmﬁ with k= 1. (41)

In addition, we know that in the limit //a | 0, the velocity
components in the & and 7-directions tend to zero inside the
helix. Thus, the only possible fixed point in the rotating
frame is the origin, where #WV/d&=FV/dn*=Q" and
PV £ 7n=0. Hence, the Hessian H— Q"2 and the matrix
for the separation vector reduces again to the one in Eq. (36).
The real parts of the eigenvalues of this matrix are —St™!
(with multiplicity 3) and 0 (with multiplicity 2), respectively,
indicating that the fixed point is not an attraction point. This
result is in agreement with the physical intuition that par-
ticles do not accumulate in a uniform axial jet induced by a
helical vortex filament with //a <1, which is similar to the
magnetic field induced by a spool. In conclusion, when
[/a |0, particle accumulation does not occur. Nevertheless,
heavy particles located inside the helix, do not leave this
region. In this sense, a helical vortex filament can transport
heavy particles.

The flow field depicted in Fig. 8(g) is an example of a
flow induced by a helical vortex filament with a very small
pitch (I/a=0.01). Indeed, in this configuration the particles
inside the helical vortex accumulate near the origin at a slow
rate, and they are transported along the z-axis with a high
velocity.

3. Finite pitch

For finite values of [/a, our numerical results show that
the attraction trajectory exists in all of the topologies II-VII.
Particles are attracted when the Stokes number is below a
critical value, which in turn depends on the values of //a,
R/a, and U,al/T.

The attraction rate can be quantified by the first
Lyapunov exponent A, defined as

A, = lim ™ 1o 1810 = E01
[£(0) - &(0)

t—oo
where &(7) and &(7) denote the positions of two particles,
respectively, which are approaching the attraction point.
When the Lyapunov exponent has a negative value, the par-
ticle trajectories converge. The convergence rate is propor-
tional to the absolute value of the Lyapunov exponent, which
depends on the dimensionless parameters.

In order to determine the dependency on the pitch, the
Lyapunov exponent is calculated for a wide range of //a. The
result is plotted in Fig. 11, for two different values of U,a/T’,
with R/a=2 and St=1.0. Apparently, the Lyapunov exponent
is approximately linear in (I/a)”'. Furthermore, the
Lyapunov exponent is proportional to the value of U.,a/T'.
This result can be explained by the observation that, when
the spatial variation in v, is moderate, the angular velocity of
the particle in the &-frame, )7, is approximately proportional
to a/l and to U,a/I". Therefore, if either a/l or U..a/T in-
creases, the Coriolis force increases, and particle accumula-
tion is enhanced.

An interpretation in terms of the vortex core thickness
€/a can be given as well. From Fig. 4, it is clear that a lower

) (42)
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—+— U,a/r=0.5
—A— Usa/l'=1.0

0.005
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0 0.05 0.1 0.15 0.2 0.25 0.3
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FIG. 11. The Lyapunov exponent A; as a function of the pitch //a, for two
different values of U,a/I'; R/a=2.0 and St=1.0.

value of €/a corresponds to a lower value of U,.a/I" at equal
[/a, or to a higher value of //a at equal U,a/I". Figure 11
then shows that a lower value of €/a results in a lower par-
ticle accumulation rate.

To address the dependency of the Lyapunov exponent on
the particle Stokes number, we calculate A; for a range of
Stokes numbers varying between 0.1 and 1.1, with [/a=5,
U.,a/T'=0.2 and R/a=2 (topology V). The result is given in
Fig. 12. It is observed that the Lyapunov exponent is ap-
proximately linear in the Stokes number in this case. This is
in accordance with Eq. (37), valid for I/a>> 1, which reveals
that the real part of the largest eigenvalues is approximately
linear in the Stokes number, as long as the Stokes number is
small. In the limit of St |0 (passive tracer limit) there can be

0.0014 T T T T T

0.0012

0.001

0.0008 -

0.0006

0.0004

0.0002

00 0.2 0.4 0.6 0.8 1 1.2

St

FIG. 12. The Lyapunov exponent A; as a function of the Stokes number St;
1/a=5.0, U,a/I'=0.2, and R/a=2.0.
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FIG. 13. Particle trapping efficiency as a function of St for topology II
(R/a=2.0; 1/a=1.0; U,a/T'=-1.0), topology II (R/a=2.0; 1/a=0.25;
U..al/T'=-0.25), topology IV (R/a=2.0; l/a=1.0; U.a/T"=0.50), and topol-
ogy V (R/a=2.0; l/a=1.0; U.,a/T'=0.10).

no accumulation due to continuity, so A; approaches zero.
Hence, the attraction rate is proportional to the Stokes num-
ber.

It should be noted that in the limit St— oo, the particle
becomes insensitive to the carrier flow, and the Lyapunov
exponent should go to zero. The Stokes numbers in Fig. 12,
however, are not large enough to visualize this.

C. Particle trapping efficiency

The amount of particle accumulation, as function of
time, can be quantified by the particle trapping efficiency P,
defined as

number of particles with r < R/a for t —

P

total number of initially uniformly distributed particles

X100 % . (43)

The particle trapping efficiency, calculated on the basis of the
positions of 805 initially uniformly distributed particles at
time =1000, is plotted in Fig. 13 as a function of the Stokes
number, for typical examples of topologies I, II, III, IV, and
V.

In topology I there is no accumulation at all. In topology
I1, P has a maximum around St=(1). For topologies III, TV,
and V, P is close to 100% when the Stokes number is small,
and close to zero when the Stokes number is large. This
reflects the decreasing influence of the carrier flow on par-
ticles for increasing Stokes number.

Finally, we investigate the correlation between the par-
ticle trapping efficiency and the size of the area around an
elliptic stagnation point in the (&, 7)-plane, circumscribed by
a separatrix of the stream function. The (normalized) elliptic
area size is defined as

Phys. Fluids 19, 107102 (2007)

FIG. 14. (Color online) Difference between particle trapping efficiency P
and the elliptic area size Ay as a function of //a and U.a/I'; St=1.0 and
R/a=2.0.

1 Rla JZW
Ap=—7"75 H(V ., —V(r,¢))rdpdr, (44
E W(R/G)ZJO . ( sep (r,))rdddr (44)
where H(:-) is the Heaviside function and W, denotes the
value of W at the separatrix, which is equal to the value of ¥
in the hyperbolic point on the separatrix. The correlation
between A, and P can be expressed by Errorp, defined as

Errorp = |P - Ag X 100 % . (45)

The value of Errorp is plotted as a function of the helix pitch
and the axial flow velocity in Fig. 14, for particles with St
=1, in bounded space with R/a=2. Clearly, the correlation
between A and P is very good over a wide range of flow
parameters. This indicates that the particle accumulation is
closely related to the flow field topology in a helical vortex
flow.

V. CONCLUSIONS

In the present paper, the motion of heavy particles near a
helical vortex filament is investigated both numerically and
analytically. The numerical simulations are based on a one-
way coupling between the potential flow field and the par-
ticle equations of motion. Stokes drag is taken into account
in order to isolate the effect of inertia of heavy particles on
their distribution.

The numerical results reveal that heavy particles may be
attracted to a helically shaped attraction trajectory. The
physical mechanism leading to particle trapping is that the
Coriolis force drives inertial particles to the center of an
elliptic region of the stream function, where the particles are
trapped by a balance between the Stokes drag and the cen-
trifugal force.

The stability of the attraction points is proven analyti-
cally for helices with large pitch //a>>1 in bounded space.
Further analysis shows that heavy particles are captured in-
side the helical vortex structure when the helix pitch is small,
i.e. [/a<k 1. For intermediate values of the helix pitch, the
particle trapping phenomenon is enhanced by the curvature
and the torsion of the helical vortex, as is illustrated by the
numerically determined Lyapunov exponent.

The particle accumulation is closely related to the area
of an elliptic region in the stream function. These elliptic
regions occur in six out of seven flow field topologies that
are found.
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APPENDIX A: DERIVATION OF THE STREAM
FUNCTION IN HELICAL COORDINATES

We derive the stream function of the velocity field in
helical coordinates, Eq. (10). Although the same stream func-

=75

2 e o]
el s
m=1

4a\ 1 o l

The stream function W, satisfies the boundary condition

Loy, 1av,
r (9(;‘) r do

Although an expression for W,, was obtained by Okulov"’ by
formally solving a partial differential equation in r and ¢
subject to the condition (A3), we present a different approach
here based on the observation that W, corresponds to a con-
tinuous vortex distribution I'), on the pipe wall. Because of
helical symmetry, I'), is a periodic function of ¢, independent
of £, and it can be expressed as a Fourier series,

for r=Rla. (A3)

T/(¢') =2 [ay cos(ke') + by sin(kgp')]. (A4)
k=1

The coefficient a; has been omitted, since it only generates a
uniform flow in the axial direction inside the pipe. The flow
field induced follows from the Biot-Savart law, and can be
calculated using Hardin’s solution method (for r<1),

v, :ﬂrZF (¢)4 12
2
- fo T (¢) mZII (mrall)K] (mR/1)
Xcos[m(¢p—¢')]d¢". (A5)
With
cos[m(¢p— ¢')] = cos(mep)cos(m¢’) + sin(mp)sin(me’),

(A6)

and the standard integrals

\I’u 0
1 2 2
_(a_z —1In r2> - ﬂz I;(ﬂ)l{r'n<#r>cos mep, r>1.
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tion was obtained by Alekseenko et al., we propose a differ-
ent derivation here.

The stream function W(r, ) can be decomposed into
three terms,

VY=v+¥, +V,, (A1)

where W, accounts for the flow induced by a stationary he-
lical vortex filament in free space, ¥,, accommodates a cor-
rection due to the presence of the pipe wall, and WV, accounts
for the uniform axial flow.

The stream function W, can be obtained from the Biot-
Savart law as Hardin shows,ll

r<l

k)

(A2)

O™, km=1,

2
f cos(kg')cos(me')d¢p' =

0

2
f sin(kg')sin(me')dd' = Sy, km=1,

0

the following expression is obtained:

2 2
R
\I,W_%‘ll_z_”llz 2 a, I (mrall)K} (mR/l)cos(md)
raR

2 bl (mrall)K, (mR/])sin(m ). (A7)

Substitution of Egs. (A7) and (A2) into Eq. (A3) yields

_a_I,(mall)

a,,=— 5
7RI (mR/l)’

b,=0 VY m.

and the resulting expression for W,

Ky, (mRI) cos(ma).

v, E I (marlDI! (mall)—">——— 7 (Rl

(A8)

The stream function V., is computed by requiring that
the helical vortex filament be stationary. Due to its curvature,
the helical vortex filament induces a velocity onto itself in
the binormal direction. It is well-known that the magnitude
of this velocity is infinite for an infinitely thin vortex
filament.®'*'%!” For a finite core size €, however, an ap-
proximation for the self-induced velocity has been derived
by Da Rios,7
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1 1+ Pla?
] b, (A9)

= 47(1 + a?I1P) 8 €la

which is valid for small core radii, i.e., e/a<<(1+(I/a)?). In
addition to the self-induced motion, the vortex filament
moves under the influence of the wall vorticity,

v,
U,,=8 b. (A10)
’ Jar
Substitution of Eq. (A8) into Eq. (A10) yields
22 * '
1+ a/l K, (mR/l
U, = arar > mIm(ma/l)I,’n(ma/l)Wb.
’ 7Tl m=1 Im(mR/l)
(A11)

Since the product I,,(ma/l)l} (ma/l)<O0, the wall-induced
velocity is directed opposite to the self-induced velocity of
the helical vortex filament. To obtain a stationary filament,
the sum of the wall-induced velocity and the self-induced
velocity must be compensated for by a uniform axial velocity
U, such that

U.a
T e.+U;,+U;,|-b=0. (A12)

Therefore,
U.a la a*\[ 1 2N32 1+ Pla?
=———|1+ =) = 1+ = In| ——
r al l 4 [ €la

, [ mR

I < K’“(T)

ma ma
+-> mlm( )—1,’n<—> . (A13)
a , (mR > l

I\ —
/

which defines a relation between the dimensionless param-
eters U,al/l’, l/a, R/a, and €/a. It is noted that when
U,a/T'>0, wall-induced velocity dominates over self-
induced velocity, and when U..a/I" <0, self-induced velocity

dominates over wall-induced velocity. The corresponding
stream function V¥, is

-3

Inserting Egs. (A2), (A8), and (A14) into Eq. (A1) yields the
stream function W, given in Eq. (10).

S

l

m=1

(A14)

APPENDIX B: COMPUTATION OF MODIFIED BESSEL
FUNCTIONS

The modified Bessel functions, which occur in the equa-
tions of the flow field, Egs. (16) and (18), are solved using a
routine from Press et al.”® This routine is based on a system
of four equations for the unknown functions 1,(2), I,(2),
K,(2), and K (2), for fixed n and Z. The algorithm is not
universally applicable: For |Z| <1, for |Z|>10°, and for n
> 100, different algorithms have to be used.

Accumulation of heavy particles around a helical vortex filament
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First, the argument Z in the modified Bessel functions
becomes very small when r | 0, causes a problem in evaluat-
ing the term 1/rI,(mra/l) which appears in Eq. (17). In
orderzgt(goavoid this, the following asymptotic expansion is
used: ™

(32)"

n!

1,(G) ===, fori<1. (B1)

In this way, the tangential velocity component on the z-axis
becomes

1
lim u,= —Z{(L—;)cos ®. (B2)

) 2w

For large orders (n>>1), the modified Bessel functions
of the first kind and their derivatives approach zero. On the
other hand, the modified Bessel functions of the second kind
and their derivatives approach infinity. Their products, how-
ever, remain finite. These products have been calculated us-
ing an asymptotic expansion, derived from theory of differ-
ential equations with a large parameter.31

Finally, for large arguments (|Z| — %), an asymptotic ex-
pansion has been implemented, based on theory for differen-
tial equations with an irregular singularity,3 !

As was stated by Hardin,'! the series in Egs. (16)—(18)
converge for all ¢ and r# 1. For r=1, the series do not
converge, and for r=1 the convergence is very slow. There-
fore, the series cannot be used if a particle is within an an-
nular region with inner radius ¥"=1-4 and outer radius r*
=146, with 6 a small number, here taken to be equal to
0.005. Inside this shell, linear interpolation is applied

(T =nf(7, @) + (r=r)f(r", ¢)

rt—r

flr,d) = (B3)

for any function f(r, ¢).
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